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Fermionic massive modes along cosmic strings

Christophe Ringeval
Institut d’Astrophysique de Paris, 98bis boulevard Arago, 75014 Paris, France

~Received 15 June 2001; published 5 November 2001!

The influence on the cosmic string dynamics of fermionic massive bound states propagating in the vortex,
and getting their mass only from coupling to the string-forming Higgs field, is studied. Such massive fermionic
currents are numerically found to exist for a wide range of model parameters and seen to modify drastically the
usual string dynamics coming from the zero mode currents alone. In particular, by means of a quantization
procedure, a new equation of state describing cosmic strings with any kind of fermionic current, massive or
massless, is derived and found to involve, at least, one state parameter per trapped fermion species. This
equation of state exhibits transitions from subsonic to supersonic regimes while the massive modes are filled.
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I. INTRODUCTION

Since it was realized that some early universe phase t
sitions might lead to the formation of topological defects@1#,
cosmic strings have been the subject of intense work wi
the context of cosmology@2#. The large scale structure gen
erated by an ordinary string network in an expanding u
verse, as well as its imprint on the microwave backgrou
have thus been derived@3,4# in order to state on their signifi
cance in the wide range of mechanisms in which they
been originally involved@5,6#. These predictions, compare
with the observations, therefore constrain the symme
breaking schemes effectively realized in the early Univer
These, associated with the most recent data for the mi
wave background anisotropies@7#, even seem to show tha
such ordinary string networks could not have played
dominant role in the Universe evolution, thereby all the mo
so constraining the particle physics symmetries leading
their formation. However, as was recently shown@4#, a non-
negligible fraction of such defects could have contributed
the overall cosmic microwave background~CMB! anisotro-
pies.

Meanwhile, it was shown by Witten@8# that in realistic
physical models, involving various couplings of the stri
forming Higgs field to other scalar or fermion fields, curren
could build along the strings, turning them into ‘‘superco
ducting wires.’’ Without even introducing couplings with th
electromagnetic fields@9#, the breaking of Lorentz invarianc
along the vortex induced by such currents may drastic
modify the string properties, and thus the cosmological e
lution of the associated networks. In particular, cosmic str
loops can reach centrifugally supported equilibrium sta
called vortons@10#, that would completely dominate the Un
verse@11#. Theories predicting stable vortons thus turn out
be incompatible with observational cosmology, hence
particular interest focused on ‘‘superconducting’’ models.

Unfortunately, all the new properties and cosmologi
consequences stemming from string conductivity have
yet been clearly established, because of the complicated
somehow arbitrary, microphysics possible in these mod
However, although the microscopic properties induced
such currents depend on the explicit underlying field the
0556-2821/2001/64~12!/123505~21!/$20.00 64 1235
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@12,13#, a macroscopic formalism was introduced by Car
@14# which permits a unified description of the string dynam
ics through the knowledge of its energy per unit lengthU and
tensionT. These end up being functions of a so-called st
parameterw, as the current itself, through an equation
state. Such a formalism is, in particular, well designed
scalar currents, as shown in, e.g., Refs.@15,16#: due to their
bosonic nature, all trapped scalar particles go into the low
accessible state, and thus can be described through the
sical values taken by the relevant scalar fields@17#. The in-
duced gravitational field@18,19# or the back reaction effect
@20# depend only on this state parameter. The classical st
stability @21,22# has already been investigated for vario
equations of state relatingU andT, on the basis of scalar an
chiral currents microphysics@23,24#. Moreover, it was also
shown, through a semiclassical approach, that fermionic
rent carrying cosmic strings, even though in principle invo
ing more than one state parameter@25#, can also be describe
by an equation of state of the so-called ‘‘fixed trace’’ kin
i.e., U1T52M 2. Such a relationship has the property
allowing stable loop configurations to exist, at least at
classical level@22#. Nevertheless, these results have been
rived for fermionic currents flowing along the string in th
form of zero modes only, as they were originally introduc
by Witten @8#, although it was shown that the fermions ma
also be trapped in the vortex with nonvanishing masses@26#;
hence the following work in which the influence of suc
massive modes is studied for the simplest of all fermio
Witten model.

In this paper, after deriving numerically the relevant pro
erties of the trapped massive wave solutions of the Di
equation in the vortex, we show that the quantization pro
dure, originally performed to deal with the fermionic ze
modes@25#, can be generalized to include the massive on
and leads to a new equation of state with more than one s
parameter. In particular, it is found that the fixed trace eq
tion of state, that holds for massless fermionic currents alo
is no longer verified. Besides, the massive modes are actu
found to rapidly dominate the string dynamics, there
modifying the classical vorton stability induced by the ze
modes alone.

Let us sketch the lines along which this work is made.
©2001 The American Physical Society05-1
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CHRISTOPHE RINGEVAL PHYSICAL REVIEW D64 123505
Sec. II, the model and the notations are set, while we de
the equations of motion. Then, in Sec. III, by means o
separation between transverse and longitudinal degree
freedom of the spinor fields, the massive wave solutio
along the string are computed numerically for a wide ran
of fermion charges and coupling constants. The constrain
transverse normalizability is found to be satisfied only
particular values of the trapped modes mass,m̄ say, whose
dependence with the model parameters is investigated.
two-dimensional quantization of them̄ normalizable massive
modes is then performed in Sec. IV, using the canonical p
cedure. In the way previously discussed in the case of z
modes@25#, the conserved quantities, i.e., energy-moment
tensor and charge currents, are then expressed in their q
tum form. Their average values, in the zero-temperat
case, and infinite string limit, lead to macroscopic expr
sions for the energy per unit lengthU and tensionT, which
end up being functions of the number densities of fermio
propagating along the string. Their derivation and extens
to any kind and number of fermionic carriers is performed
Sec. V, while the cosmological consequences of this n
analysis are briefly discussed in the concluding section.

II. MODEL

We shall consider here an Abelian Higgs model with s
lar F and gauge fieldBm , coupled, following Witten@8#, to
two spinor fields,C andX say. Since we are only intereste
in the purely dynamical effects the current may induce on
strings, we will not consider any additional electromagne
like coupling of the fermion fields to an extra gauge fie
Thus we consider here the so-called ‘‘neutral limit’’@15#.

A. Microscopic Lagrangian

The previous assumptions imply one needs one lo
U(1) symmetry which is spontaneously broken through
Higgs mechanism, yielding vortices formation. The Hig
field is chosen as complex scalar field with conserved cha
qcf under the localU(1) symmetry, associated with a gaug
vector fieldBm . The two spinor fields acquire masses from
chiral coupling to the Higgs field, and have opposite elect
magnetic charges in order for the full~four-dimensional!
model to be anomaly free@8#. Under the broken symmetr
they also have conserved chargesqccR

, qccL
andqcxR

, qcxL

for their right- and left-handed parts, respectively. WithLh ,
Lg and Lc , Lx , the Lagrangian in the Higgs, gauge, a
fermionic sectors, respectively, the theory reads

L5Lh1Lg1Lc1Lx , ~1!

with

Lh5
1

2
~DmF!†~DmF!2V~F!, ~2!

Lg52
1

4
HmnHmn, ~3!
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Lc5
i

2
@C̄gmDmC2~DmC!gmC#

2gC̄
11g5

2
CF2gC̄

12g5

2
CF* , ~4!

Lx5
i

2
@X̄gmDmX2~DmX !gmX#

2gX̄11g5

2
XF* 2gX̄12g5

2
XF, ~5!

where theU(1) field strength tensor and the scalar poten
are

Hmn5¹mBn2¹nBm , ~6!

V~F!5
l

8
~ uFu22h2!2, ~7!

while covariant derivatives involve the field charges throu

DmF5~¹m1 iqcfBm!F, ~8!

DmC5S ¹m1 iq
ccR

1ccL

2
Bm

1 iq
ccR

2ccL

2
g5BmDC, ~9!

DmX5S ¹m1 iq
cxR

1cxL

2
Bm

1 iq
cxR

2cxL

2
g5BmDX, ~10!

and the relation

ccL
2ccR

5cf5cxR
2cxL

~11!

should hold in order for the Yukawa terms inLc andLx to
be gauge invariant.

B. Basic equations

This theory admits vortex solutions which are expected
form in the early Universe by means of the Kibble mech
nism @1#. A cosmic string configuration can be chosen to
along thez axis, and we will use Nielsen-Olesen solutions
the field equations@27#. In cylindrical coordinates, the string
forming Higgs and gauge fields thus read

F5w~r !einu, Bm5B~r !dmu , ~12!

where the winding numbern is an integer, in order for the
Higgs field to be single valued under rotation around
string. In such vortex background, the equations of motion
the fermionic sector, for both spinor fieldsF read~here and
5-2
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FERMIONIC MASSIVE MODES ALONG COSMIC STRINGS PHYSICAL REVIEW D64 123505
in various places throughout this paper, we shall denote bF
an arbitrary fermion, namely a spinorC or X)

igm¹mF5
] j F

m

]F̄ Bm1MFF ~13!

with the fermionic gauge currents

j F
m5q

cFR
1cFL

2
F̄gmF1q

cFR
2cFL

2
F̄gmg5F, ~14!

and the mass terms

Mc5gw cosnu1 igwg5 sinnu, ~15!

Mx5gw cosnu2 igwg5 sinnu. ~16!

Note the fermionic currents have an axial and vectorial co
ponent because of the chiral coupling of the fermions to
Higgs field, as can be seen through the mass termsMF in
Eqs.~15! and~16!. Moreover, since the Higgs field vanishe
in the string core while taking nonzero vacuum expectat
value, h say, outside, the mass term acts as an attrac
potential. As a result, fermionic bound states, with ene
between zero andgh, are expected to exist and propagate
the string core.

III. FERMIONIC BOUND STATES

A. Trapped wave solutions

Since the string is assumed axially symmetric, it is co
venient to look for trapped solutions of the fermionic equ
tions of motion, by separating longitudinal and transve
dependencies of the spinor fields. Using the same notat
as in Ref.@25#, the two-dimensional plane-wave solution
along the string, for both fermions, read

Cp
(«)5e« i (vt2kz)S j1~r !e2 im1u

j2~r !e2 im2u

j3~r !e2 im3u

j4~r !e2 im4u

D ,

Xp
(«)5e« i (vt2kz)S z1~r !e2 i l 1u

z2~r !e2 i l 2u

z3~r !e2 i l 3u

z4~r !e2 i l 4u

D , ~17!

where«561 labels the positive and negative energy so
tions. Similarly to the Higgs field case, the winding numbe
of the fermions,mi andl i , are necessary integers. In order
simplify the notations, it is more convenient to work wi
dimensionless scaled fields and coordinates. Withmh

5hAl the mass of the Higgs boson, we can write

w5hH, Q5n1qcf B, and r 5
%

mh
. ~18!
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In the same way, the spinorial components of theC field are
rescaled as

j1~% !5
mh

A2p
Av1k ã1~% !, j2~% !5 i

mh

A2p
Av2k ã2~% !,

j3~% !5
mh

A2p
Av2k ã3~% !, j4~% !5 i

mh

A2p
Av1k ã4~% !.

~19!

In the chiral representation, and with the metric signatu
(1,2,2,2), in terms of these new variables, Eqs.~13! and
~17! yield, for theC field,

e2 i (m121)uFdã1

d%
2 f̃ 1~% !ã1~% !G

5«
m̄

mh
e2 im2uã2~% !2

mf

mh
H~% !e2 i (m41n)uã4~% !,

e2 i (m211)uFdã2

d%
2 f̃ 2~% !ã2~% !G

52«
m̄

mh
e2 im1uã1~% !1

mf

mh
H~% !e2 i (m31n)uã3~% !,

e2 i (m321)uFdã3

d%
2 f̃ 3~% !ã3~% !G

52«
m̄

mh
e2 im4uã4~% !1

mf

mh
H~% !e2 i (m22n)uã2~% !,

e2 i (m411)uFdã4

d%
2 f̃ 4~% !ã4~% !G

5«
m̄

mh
e2 im3uã3~% !2

mf

mh
H~% !e2 i (m12n)uã1~% !,

~20!

wheremf5gh is the fermion mass in the vacuum in whic
the Higgs field takes its vacuum expectation valueh, and
m̄5Av22k2 is the mass of the trapped mode. The coupli
to the gauge fieldBm appears through the purely radial fun
tions f̃ :

f̃ 1~% !5
ccR

cf

Q2n

%
2

m1

%
, f̃ 2~% !52

ccR

cf

Q2n

%
1

m2

%
,

f̃ 3~% !5
ccL

cf

Q2n

%
2

m3

%
, f̃ 4~% !52

ccL

cf

Q2n

%
1

m4

%
.

~21!

The spinor fieldX verifies the same equations apart from t
fact that, due to its coupling toF† @see Eq.~5!#, it is neces-
sary to transformn→2n.
5-3
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CHRISTOPHE RINGEVAL PHYSICAL REVIEW D64 123505
As was originally found by Jackiw and Rossi@28# and
Witten @8#, there are alwaysn normalizable zero energy so
lutions of the Dirac operator in the vortex which allow fe
mions to propagate at the speed of light in the ‘‘2z’’ and
‘‘ 1z,’’ say, directions, for theC andX fields, respectively.
These solutions are found to be eigenvectors of theg0g3

operator and are clearly obtained from the above equat
by setting the consistency angular relationshipsm1215m4
1n andm2115m31n, those leading to the zero mode di
persion relationm̄50⇔v56k. Note that only one eigen
state ofg0g3 end up being normalizable for each kind
chiral coupling to the Higgs field, and thus the relevant d
persion relations reduce tov52k andv5k, for theC and
X zero modes, respectively@25#.

Such zero modes have a simple interpretation: since
Higgs field vanishes in the string core, the mass termMF in
Eq. ~13! vanishes too, and the fermions trapped in have z
mass. As a result, they propagate at the speed of light
they verify the dispersion relationsv5k or v52k.

B. Massive trapped waves

However, it is also possiblea priori, for the trapped fer-
mions, to explore outer regions surrounding the string c
where the Higgs field takes nonexactly vanishing values
practice, this is achieved by means of a nonvanishing
mion angular momentum, which will lead to a nonvanishi
effective massm̄25v22k2Þ0. For theC field, such mas-
sive solutions of the equations of motion~20! can only be
obtained for four-dimensional solutions, in order to ease
zero mode constraintv56k. The required angular consis
tency relations therefore read

m5m15m2115m31n5m41n11. ~22!

Similarly, the angular dependence ofX field has to verify
analogous conditions with the transformationn→2n. It was
previously shown numerically that the Abelian Higgs mod
with one Weyl spinor always admits such kind of normal
able solutions@26#. In the following, massive solutions fo
Dirac spinors are numerically derived for our model a
shown to exist for a wide range of fermion charges and c
pling constants.

1. Analytical considerations

Some interesting analytical asymptotic behaviors of th
modes have been previously studied@25,26#. In particular,
there are only two degeneratenormalizableeigensolutions of
Eqs.~20! at infinity. Since the Higgs field goes to its consta
vacuum expectation value and the gauge coupling funct
vanish, we found the eigensolutions to scale as exp(6V%),
with

V5Amf
22m̄2

mh
2

. ~23!

First, note that in order to have decreasing solutions at in
ity, the mass of the trapped modesm̄ has to be less than th
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fermion vacuum massmf , as intuitively expected~for m̄
.mf , one recovers the oscillating behavior that is typical
free particle solutions!. Moreover, from Cauchy theorem
two degrees of freedom can be set in order to keep only
two well defined solution at infinity. On the other hand, b
looking at the power-law expansion of both system and
lutions near the string core@25,28#, only two such solutions
are also found to be normalizable. More precisely, norma
ability of each eigensolution at%50 leads to one condition
on the winding numbersmi of each spinorial componentj i .
Moreover, in order for the fermion field to be well defined b
rotation around the string, each spinorial componentj i with
nonzero winding numbermi has to vanish in the string core
and so behaves like a positive power of the radial distanc
the core. The analytical expression of the eigensolutions n
%50 reads@25#

S j1

j2

j3

j4

D
s1

;S a1%
2m

a2~a1!%2m11

a3~a1!%2m1unu12

a4~a1!%2m1unu11

D ,

S j1

j2

j3

j4

D
s2

;S a1%
m1unu2n

a2~a1!%m1unu2n11

a3~a1!%m2n

a4~a1!%m2n21

D ,

S j1

j2

j3

j4

D
s3

;S a1%
m

a2~a1!%m21

a3~a1!%m1unu

a4~a1!%m1unu11

D ,

S j1

j2

j3

j4

D
s4

;S a1%
2m1unu1n12

a2~a1!%2m1unu1n11

a3~a1!%2m1n

a4~a1!%2m1n11

D . ~24!

The normalizability condition for the four eigensolutions c
be summarized by

sup~0,n!,m, inf~1,11n!, ~25!

and so, for any value ofm there are only two conditions
satisfied. However, from the consistency angular conditi
on each spinorial components, only three pairs of soluti
are acceptable near the string. Assumingn.0, if m<0 then
only the pair (s1 ,s4) is both normalizable and well define
by rotation around the vortex, similarly form>n11 the
relevant solutions are (s2 ,s3), whereas for 1<m<n, they
are (s3 ,s4). As a result, the two remaining degrees of fre
dom can be set to get only these pairs near the string core
a given value ofm, but there is no reason that they shou
match with the two normalizable solutions at infinity. In o
5-4
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FERMIONIC MASSIVE MODES ALONG COSMIC STRINGS PHYSICAL REVIEW D64 123505
der to realize this matching we have to fine tune anot
parameter which turns out to be the mass of the modesm̄.
As expected for bound states, this mass is therefore ne
sarily quantized. Note at this point thatm̄50 is, in such a
procedure, nothing but a particular case of the general s
tion here presented. The three different pairs of well defin
solutions at the origin suggest that there are three kind
similar massive bound states in the vortex, according to
values of the winding numberm. Intuitively, the more the
field winds around the string, the farther the particle explo
regions surrounding the core due to the higher values ta
by its angular momentum, meaning the largest the exten
of its wave function is, the more it acquires mass from co
pling to a nonexactly vanishing Higgs field. As a result, t
lowest massive modes will certainly be obtained from valu
of m which correspond to vanishing winding numbersmi .

2. Symmetries

In the following, the equations of motion~20! will be
summarized in the form (S«) i

j ã j50, with implicit summa-
tion implied over repeated indices.

The first symmetry is obtained from the complex con
gation of the equations of motion~20!. Since complex con-
jugation does not modify Eqs.~20!, once the angular consis
tency relations~22! are set, there is an arbitrary comple
phase in the choice of solutions, and it will be sufficient
look for real rescaled spinorial componentsã i .

There is another symmetry between the positive and ne
tive energy solutions of the equations of motion~20! that
may be useful. With the label«56 for particle and antipar-
ticle states, respectively, one has

~S1! i
j ã j 1

50 ⇒ ~S2! i
j ã j 2

50, ~26!

provided

ã i 2
5~g0g3! i

j ã j 1
. ~27!

As a result, the negative energy solutions are obtained f
the positive ones by the action of theg0g3 operator, thereby
generalizing the properties of the zero modes which w
precisely found as eigenstates of this operator@8,25,28#.

The last symmetry concerns the gauge coupling functi
f̃ i . Under the transformations

m→m̂5n112m,

ccL
→ ĉcL

52ccR
, ~28!

ccR
→ ĉcR

52ccL
,

the gauge functionsf̃ i , in Eqs. ~20!, are simply swapped
according to f̃ 1↔ f̃ 4 and f̃ 2↔ f̃ 3. As a result, for everyã
solution found at givenccL

andm, there is another solution

â, with charge ĉcL
5cf2ccL

and winding numberm̂5n

112m, namely
12350
r

es-

u-
d
of
e

s
en
on
-

s

-

a-

m

e

s

â1~% !5ã4~% !, â2~% !5ã3~% !,
~29!

â3~% !5ã2~% !, â4~% !5ã1~% !.

Note that the particular caseccL
5 ĉcL

5cf/2 appears as a
frontier separating two symmetric kinds of solutions wi
two differents winding numbers lying on both sides ofm
5(n11)/2. As a result, the three different behaviors fou
above from normalization and angular consistency con
tions seem to reduce to only two, since the domains wh
m<0 andm>n11 are actually connected by charge sym
metry in relation tocf/2.

On the other hand, due to its coupling to the antivort
instead of the vortex, the equations of motion of theX field
are simply obtained from Eqs.~20! by the transformations
ã i→b̃ j , ccL(R)

→cxL(R)
, andmi→ l i . The l i are the winding

numbers of the scaledX spinorial components, namely th
b̃ i , and they verify the angular consistency relations~22!
with n replaced by2n as previously discussed. Let us intro
duce one more transformation on theC parameters,

m→m̂5 l 1n,

ccL
→ ĉcL

5cxR
, ~30!

ccR
→ ĉcR

5cxL
.

Naming g̃i the scaled gauge coupling functions of theX
spinor, theC ones are found to transform according tof̃ 1

→g̃3 , f̃ 2→g̃4 , f̃ 3→g̃1, and f̃ 4→g̃2. Thus, if theã are so-
lutions of theC equations of motion~20!, with m winding
number andccL

charge, then there existb̃ solutions for theX
field with same massm̄, provided l 5m2n and cxL

5ccR

5ccL
2cf , and they read

b̃1~% !5ã3~% !, b̃2~% !52ã4~% !,
~31!

b̃3~% !5ã1~% !, b̃4~% !52ã2~% !.

Owing to these symmetries, it is sufficient to study theC
equations of motion~20!, for various values of the winding
number m and for left-handed part charges, namelyccL

,

higher or equal thancf/2.

3. Numerical methods

In order to compute the relevant massive wave soluti
for theC fermions on the string, it is necessary to solve fi
the vortex background. At zeroth order, neglecting the b
reaction of the fermionic currents, and in terms of the dime
sionless fields and parameters, the equations of motion
the string forming Higgs and gauge fields read, fro
Eq. ~1!,
5-5
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d2H

d%2
1

1

%

dH

d%
5

HQ2

%2
1

1

2
H~H221!, ~32!

d2Q

d%2
2

1

%

dQ

d%
5

mb
2

mh
2

H2Q, ~33!

wheremb5qcfh is the classical mass of the gauge bos
The solution of these equations is well known@15,17,29# and
shown in Fig. 1 for a specific~assumed generic! set of pa-
rameters.

The system of Eqs.~20! being linear and involving only
first-order derivatives of the spinor components, a Run
Kutta numerical method of integration has been used. H
ever, as noted above, since we are interested only in nor
izable solutions, it is more convenient to perform t
resolution from an arbitrary cutoff at infinity, toward th
string core. Let us introduce%` , the cutoff value on the
dimensionless radial distance. From the asymptotic form
Eqs.~20! at infinity, and in order to suppress the exponen
growth, the spinorial componentsã i have to verify

ã1~%`!52
m̄

Vmh
ã2~%`!1

mf

Vmh
ã4~%`!, ~34!

ã3~%`!52
mf

Vmh
ã2~%`!1

m̄

Vmh
ã4~%`!. ~35!

These conditions constrain two degrees of freedom, and
other one is fixed by normalization of the wave functions
%` . As a result, only one free parameter can be used ye
order to achieve the matching between these well defi
solutions and the two normalizable ones near the string c
It will be the case only for particular values of the massm̄.
Numerically, the matching is performed in two steps. Fir
by means of the last free parameter, one of the usually di
gent component near the string core is made to vanish%

FIG. 1. The solutions of the field equations for the vortex ba
ground. The Higgs fieldH takes its vacuum expectation value
infinity and the gauge bosons condensate in the vortex.
12350
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50. Obviously, this component is chosen among those h
ing a nonzero winding number since, in order to be sin
valued by rotation around the vortex, it necessarily vanis
at the string core. Once it is performed, the last diverg
component at%50 is regularized, its turn, by calculating th
mass of the modem̄ leading to a convergent solution. For th
range of model parameters previously defined, the numer
computations thus lead to the mass of the trapped wave
lutions as well as their components as function of the rad
distance to the string coreã i(%).

- FIG. 2. The mass of the lowest massive bound state, relativ
the fermion vacuum mass, plotted as function of the coupling c
stant to the Higgs field, i.e., the fermion vacuum mass relative to
mass of the Higgs boson.

FIG. 3. The mass of the lowest massive bound state, relativ
the fermion vacuum mass, plotted as function of the coupling c
stant to the Higgs field, for several values of the fermionic charg

The closestccL
is to cf/2, the higher mode massm̄ is. In the

extreme caseccL
;cf/2, m̄;mf there is no longer normalizable

massive bound statein the perturbative sector.
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FIG. 4. The transverse spinorial components of theC field, as functions of the distance to the string core, for the lowest massive b
state. The transverse normalized probability density is also plotted and takes its maximum value nearby the string core, as ex
massive bound states exploring the neighborhood of the core by means of nonvanishing angular momentum. Note that form50, one
spinorial component behaves like a zero mode one, i.e., it condenses in the string core contrary to the others.
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4. Numerical results

In what follows, the Higgs winding number is assum
fixed to the valuen51, and the range ofccL

restricted to

ccL
>cf/2, the other case being derivable from the symm

ric properties discussed above.
The first results concern the ‘‘perturbative sector’’ whe

the fermion vacuum mass verifiesmf,mh , or equivalently,
for a smaller Yukawa coupling constant than the Higgs s
coupling, i.e.,g,Al. In this case, for reasonable values
the fermion charges, i.e., of the same order of magnit
than the Higgs oneccL

*cf/2, only one normalizable mas

sive bound state is found with null winding numberm50.
As a result, by means of transformations~28!, there are also
symmetric modes forccL

<cf/2, with winding numberm

52. The dependency of the mode massm̄ with the fermion
vacuum mass and charges~i.e., the coupling constants t
Higgs and gauge fields! is plotted in Figs. 2 and 3. The stud
has been also extended to the nonperturbative sector w
this massive mode thus appears as the lowest massive b
state. First, it is found that the mass of the trapped m
always decreases with respect to the coupling constant
with the fermion vacuum massmf . Moreover, for small val-
ues ofmf /mh , the derivative of the curvem̄(mf /mh) van-
ishes near the origin~see Fig. 2!. As a result, the mass mode
in the full perturbative sector does not depend on the c
pling constant to the Higgs field, at first order. On the oth
hand, Fig. 3 shows that the mass of the bound state ha
depends at all on its coupling with the gauge field~i.e., on
the chargesccL

) in the nonperturbative sector, where all th
curves have the same asymptotic behavior. Near the or
the closestccL

is to cf/2, the higher mode massm̄ is. In the

particular limiting caseccL
;cf/2, there is no normalizable

massive bound state, and as can be seen in Fig. 3, alread
ccL

/cf52, the mode mass is close tomf . It is not surprising

since, as it was above noted,ccL
5cf/2 is a frontier between

two kinds of solutions with different winding numbers, an
12350
t-

f-

e

ere
nd
e
.e,

-
r
ly

in,

for

thus, at this point, the ‘‘normalizable’’ winding numbers a
not well defined. Note that this is only true ifmÞ(n11)/2
as it is the case here in the perturbative sector withn51 and
m50.

The normalized scaled spinorial componentsã(%) have
been plotted in Fig. 4 for the lowest massive bound sta
with the normalization

FIG. 5. The evolution of the mass spectrum form50 winding
number, as function of the coupling constants. Each main bra
represents one massive mode whereas the substructures sho
evolution with respect to the fermion chargeccL

. Five values of the
fermion charge have been plotted, fromccL

52 to ccL
510, and the

spectrum has been computed only in the nonperturbative se
since only the lowest mode exists for lower values ofmf /mh ~see

Fig. 3!. As expected, all the modes have massm̄ decreasing with
their coupling constant to the Higgs field. Moreover, the substr
tures show that, for sufficiently large values ofmf /mh , the mode
mass is a decreasing function of the chargeccL

. However, note that
this behavior can be inverted for some modes close to their app
ance region, as it is the case for the second one.
5-7
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FIG. 6. The transverse spinorial components of theC field, plotted as functions of the distance to the string core, for them521 lowest
massive bound state. The transverse normalized probability density is also plotted and vanishes in the string core. In this case,
nents of the spinor wind around the string and the corresponding mode is thus centrifugally confined in a shell nearby the core, as
for a nonzero angular momentum eigenstate.
als
av

ted

rs in
er.
E % d% ã i
†ã i51. ~36!

The corresponding transverse probability density has
been plotted in Fig. 4. Note that the massive mode w
12350
o
e

function is larger around the string rather on it, as expec
for a nonvanishing angular momentum.

The nonperturbative cases withmf.mh , involve much
more massive bound states. First, another mode appea
addition to the previous one, with the same winding numb
s. The
ected,
FIG. 7. The components of theC field as function of the radial distance, and the corresponding transverse probability densitie
curves have been computed form521 winding number, and for two additional incoming modes in the nonperturbative sector. As exp
interferences fringes appear from the nonzero angular momentum eigenvalues of these modes.
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Because of the fact thatm̄ decreases withmf ~see Fig. 2!, for
higher values ofmf , another mode comes into the normali
able mass range. Since normalizability at infinity requi
m̄,mf , the number of massive modes increases with
value ofmf . Moreover, there are also solutions involving a
the other possible winding numbers. The evolution of
mass spectrum, for winding numberm50, and with respect
to the coupling constant to the Higgs and gauge fields
plotted in Fig. 5. The behavior of each mass is the sam
that of the lowest mode previously studied, the new prop
ties resulting only in the appearance of new states for hig
values of the fermion vacuum massmf , as found for two-
dimensional Weyl spinors in Ref.@26#.

Physically, the additional massive modes at a given wi
ing number can be interpreted as normalizable eigenstate
the angular momentum operator in the vortex potential, w
higher eigenvalues. From Figs. 4 and 6, one can see tha
each value ofm, the lowest massive state is confined arou
the string with a transverse probability density showing o
one peak whereas the higher massive modes have trans
probability density profiles with an increasing number
maxima, as can be seen in Fig. 7. In fact, as for the struc
of atomic spectra, the two spatial degrees of freedom of
attractive potential certainly lead to two quantum numb
labeling the observable eigenstates, one of them be
clearly m, and the other appearing through the number
zeros of the spinorial components, or, equivalently, the nu
ber of maxima of the associated transverse probability d
sity.

The massive modes with higher winding numbers beh
in the same way. However, they exist only for nonzero v
ues of the coupling constantmf /mh , this one increasing with
the value of the winding numberm. The scaled spinoria
components and the transverse normalized probability d

FIG. 8. The mass of them521 lowest massive bound state
relative to the fermion vacuum mass, with respect to the coup
constant to the Higgs field. Note that the mode does not exist in
perturbative sector.
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sity of the lowest massive bound state with nextm521
winding number are plotted in Fig. 6. They are found to
normalizable for coupling constantmf /mh*0.5 when
ccL

/cf52, as can be seen in Fig. 8. Contrary to them50
lowest massive state, all spinorial components wind aro
the string, and the transverse probability of finding such
mode vanishes in the string core, as expected for a non
angular momentum eigenstate. Obviously, this is also true
all higher values ofm, as for them522 massive mode
which appears to be normalizable formf /mh*1.2.

It is clear from the numerical results that the fermions c
be trapped in the string in the form of massive bound sta
for a wide range of model parameters. The only except
takes place for fermion charges close to the particular va
ccL

5cf/2 where there is no normalizable massive bou
state in the perturbative sector. Note, again, that all the p
vious results are also relevant for the massive modes w
symmetric winding numbersm̂5n112m, as well as for the
X spinor field and for the antiparticle states of bothC andX
fermions.

IV. FOCK SPACE FOR MASSIVE MODES

The existence of massive trapped waves requires tha
quantum state space@25# be enlarged to include them. Fo
each normalizable mode with massm̄, a two-dimensional
Fock space can be constructed by spinor field expansion
the relevant massive plane waves. The full quantum the
can therefore be obtained from tensorial product of the
ferent Fock spaces belonging to their own mass represe
tion, together with the Fock space associated with the z
modes@25#. As a first step toward a full theory, we will only
consider the plane waves associated with one massive m
of massm̄.

A. Quantum field operators

Quantization is performed through the canonical pro
dure by defining creation and annihilation operators satis
ing anticommutation rules. However, the particular struct
of the trapped massive waves yields relationships betw
longitudinal quantum operators with nontrivial transverse
pendencies.

1. Fourier transform

In the previous section, it was shown that the fermio
could propagate along the string direction with given massm̄
belonging to the spectrum. From Eq.~17!, setting

Cp
(1)5uc~k,r ,u!ei (vt2kz), Cp

(2)5vc~k,r ,u!e2 i (vt2kz),
~37!

with

v5Am̄21k2, ~38!

and using the symmetry properties shown in Sec. III B 2,
transverse parts of the massive trapped waves for par
and antiparticle states can be written as

g
e

5-9
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uc~k,x'!5S Av1k ā1~r !e2 imu

iAv2k ā2~r !e2 i (m21)u

Av2k ā3~r !e2 i (m2n)u

iAv1k ā4~r !e2 i (m2n21)u

D ,

~39!

vc~k,x'!5S Av1k ā1~r !e2 imu

2 iAv2k ā2~r !e2 i (m21)u

2Av2k ā3~r !e2 i (m2n)u

iAv1k ā4~r !e2 i (m2n21)u

D ,

with the notations

x'5~r ,u!, and ā5
mh

A2p
ã. ~40!

Contrary to the zero mode case, fermions can now propa
in both directions of the string, so that the momentumk of
the massive waves can take positive and negative values
a result, theC field can be Fourier expanded over positi
and negative energy states as

C5E dk

2p2v
@b†~k!u~k,x'!ei (vt2kz)

1d~k!v~k,x'!e2 i (vt2kz)#, ~41!

where the subscripts have been omitted. The normaliza
convention of the Fourier transform is chosen as in the z
modes case@25#, i.e.,

E dz ei (k2k8)z52pd~k2k8!. ~42!

Obviously, theX field verifies similar relations with the
transformationn→2n, as was noted previously.

2. Commutation relations

In order to express the Fourier coefficientsb(k) and
d†(k) as function of the spinor fieldC, let us introduce
another unit spinors

û~k,x'!5S Av1k ā3~r !e2 imu

iAv2k ā4~r !e2 i (m21)u

Av2k ā1~r !e2 i (m2n)u

iAv1k ā2~r !e2 i (m2n21)u

D ,

~43!

v̂~k,x'!5S Av1k ā3~r !e2 imu

2 iAv2k ā4~r !e2 i (m21)u

2Av2k ā1~r !e2 i (m2n)u

iAv1k ā2~r !e2 i (m2n21)u

D .

They clearly verifyû5g0g3v̂ and from Eq.~39!
12350
te

As

n
ro

û†~k!u~k!5 v̂†~k!v~k!52v n̄~r !,
~44!

û~k!†v~2k!5 v̂†~k!u~2k!50,

where the dependency with respect to transverse coordin
have been omitted in order to simplify the notation, a
where we introduced the function

n̄~r !5ā1~r !ā3~r !1ā2~r !ā4~r !. ~45!

From Eqs.~41!, ~42!, and ~44!, the Fourier coefficients are
found to be functions of theC field, and read

b†~k!5
1

NE r dr du dz e2 i (vt2kz)û†~k,x'!C,

~46!

d~k!5
1

NE r dr du dz ei (vt2kz)v̂†~k,x'!C,

where we have defined the normalization factor

N5E r dr du n̄~r !5E % d% ñ~% !. ~47!

Similarly, the expansion of theC† field on the same positive
and negative energy solutions leads to the definition of
Fourier coefficients, namelyb(k) andd†(k). From Eqs.~42!
and~44!, they can also be expressed as functions ofC†, and
verify

b~k!5@b†~k!#†, and d†~k!5@d~k!#†. ~48!

In order to perform a canonical quantization along t
string world sheet, let us postulate the anticommutat
rules,at equal times, between the spinor fields

$C i~ t,xW !,C† j~ t,xW8!%5d~z2z8!~G0! i
j~x' ,x'8 !, ~49!

where G0 is a matrix with respect to spinor componen
whose utility will be justified later, and which reads

G0~x' ,x'8 !5
1

2m̄2
~vI2kg0g3!@u~k,x'!u†~k,x'8 !

1v~k,x'!v†~k,x'8 !#. ~50!

Note thatG0 does not depend onv andk. Explicit calcula-
tions show that the first terms involvingv andk are mixed
with u(k) and v(k), and yield Lorentz invariant quantities
such asm̄. Moreover,G0 has the following orthonormaliza
tion properties

û†~k,x'!G0~x' ,x'8 !û~k,x'8 !52v n̄~r !n̄~r 8!,
~51!

û†~k,x'!G0~x' ,x'8 !v̂~2k,x'8 !50,

and similar relationships are obtained forv̂ by swappingû

and v̂.
5-10
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The anticommutation rules for theC Fourier coefficients
are immediately obtained from Eqs.~42!, ~46!, ~48!, and Eq.
~49!, using the properties ofG0 in Eq. ~51!, and read

$b~k!,b†~k8!%5$d~k!,d†~k8!%52p2vd~k2k8!,
~52!

with all the other anticommutators vanishing. As a result,
Fourier coefficientsb† and d† behave as well defined cre
ation operators, whereas their complex conjugates,b andd,
act as annihilation operators of a particle and antipart
massive state, respectively.

In order to verify the microcausality of the theory and
justify, a posteriori, the ansatz of Eq.~49!, let us derive the
anticommutator between the quantum field operatorsC and
C†, at any time. The C expansion in Eq.~41! and its com-
plex conjugate yield

$C i~x!,C† j~x8!%5E dk dk8

~2p!22v2v8

3@$b†~k!,b~k8!%ui~k,x'!u† j~k8,x'8 !

3ei [(vt2v8t8)2(kz2k8z8)]

1$d~k!,d†~k8!%v i~k,x'!v† j~k8,x'8 !

3e2 i [(vt2v8t8)2(kz2k8z8)] #. ~53!

Using Eq.~52!, this equation simplifies to involve tensoria
products of unit spinors evaluated at the same momentum
is therefore convenient to introduce two additional matric
namelyG3(x' ,x'8 ) andM(x' ,x'8 ), which verify

u~k,x'!u†~k,x'8 !5vG0~x' ,x'8 !2kG3~x' ,x'8 !

2M~x' ,x'8 !,
~54!

v~k,x'!v†~k,x'8 !5vG0~x' ,x'8 !2kG3~x' ,x'8 !

1M~x' ,x'8 !.

From Eq.~39!, these matrices are simply related toG0 by

G3~x' ,x'8 !5G0~x' ,x'8 !g3g0,
~55!

M~x' ,x'8 !5G0~x' ,x'8 !Md~x'8 !g0,

whereMd(x') is the diagonal matrix

Md~x'!5m̄ DiagS ā3~r !

ā1~r !
e2 inu,

ā4~r !

ā2~r !
e2 inu,

ā1~r !

ā3~r !

3einu,
ā2~r !

ā4~r !
einuD . ~56!

From Eqs.~54! and~55!, the anticommutator~53! reduces to

$C~x!,C†~x8!%5@G0~x' ,x'8 !i ]01G3~x' ,x'8 !i ]3

1M~x' ,x'8 !# iD~xi2xi8!, ~57!
12350
e

e

It
,

wherexi5(t,z), andD is the well-known Pauli Jordan func
tion which reads

iD~xi2xi8!5E dk

2p2v
@e2 ik(xi2xi8)2eik(xi2xi8)#, ~58!

and vanishes outside the light cone. As a result, the quan
fields indeed respect microcausality along the string. T
matricesGm appear as the analogues of the matricesgm for
the Dirac spinors living in the vortex. The two-dimension
quantization along the string is thus not independent of
transverse structure. It is all the more manifest in the a

commutator expression betweenC and C̄: from Eq. ~57!,
and using Eq.~55!, one gets

$C~x!,C̄~x8!%5G0~x' ,x'8 !@ ig0]01 ig3]3

1Md~x'8 !# iD~xi2xi8!. ~59!

The matrixG0 now appears clearly as a local transverse n
malization of the longitudinal quantum field operators. No
that the mass term also depends on the transverse coordi
due to the nontrivial profile of the Higgs field around th
string. Moreover, settingt5t8 in Eq. ~57!, leads to the pos-
tulated anticommutator at equal times~49!, and therefore jus-
tifies the introduction of theG0 term.

3. Fock states

In the following, uP& will design a Fock state constructe
by applying creation operators associated with a mas
mode m̄, on the relevant string vacuum. Such a state w
similarly defined for zero modes in Ref.@25#. From the an-
ticommutators~52!, a massiveC state with momentumk is
now normalized according to

^k8uk&52p2vd~k2k8!. ~60!

Similarly, it will turn out to be convenient to derive the av
erage of the occupation number operator since it will app
in the derivation of the equation of state. From Eq.~52!, and
for a C massive mode, it reads

^Pub†~k!b~k8!uP&

^PuP&
5

2p

L
2v2p(

i
d~k2ki !d~k82ki !,

~61!

where the summation runs over allC massive particle state
present in the relevantm̄ Fock stateuP&, andL is the physi-
cal string length, coming from thed(0) regularization by
means of Eq.~42!.

B. Stress tensor and Hamiltonian

The classical stress tensor can immediately be deri
from variation of the full Lagrangian~1! with respect to the
metric, and theC fermionic part thus reads@25#

Tc
mn5

i

2
C̄g (m]n)C2

i

2
@] (mC̄#gn)C2B(m j c

n) . ~62!
5-11
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1. Hamiltonian

The quantum operators associated with the classic
conserved charges can be obtained by replacing the clas
fields by their quantum forms involving creation and anni
lation operators. In this way, the Hamiltonian appears, fr
Noether theorem, as the charge associated with the
component of the energy momentum tensor

Tc
tt5 i C̄g0] tC2 i ~] tC̄!g0C. ~63!

Using Eqs.~39! and ~41! in the previous equation, and pe
forming a spatial integration, the Hamiltonian operator rea
after some algebra,

Pc
t 5E dk

2p2vE d2x'@2b~k!b†~k!

1d†~k!d~k!#ū~k,x'!g0u~k,x'!. ~64!

In order to simplify this expression, let us introduce the p
rameters

S̄X
2 5ā2

21ā3
2 , and S̄Y

2 5ā1
21ā4

2 . ~65!

From Eq.~39!, the Hamiltonian now reads

Pc
t 5E dk

2p2v
@2b~k!b†~k!1d†~k!d~k!#@~v2k!uuSX

2 uu

1~v1k!uuSY
2 uu#, ~66!

with

uuS2uu5E r dr du S̄25E % d% S̃2~% !. ~67!

Analogous relations also hold for theX field. It is interesting
to note that Eq.~66! generalizes the expression previous
derived in the zero modes case@25#, being found again by
setting v52k for the C zero modes, orv5k for the X
ones. The normal ordered Hamiltonian is obtained if o
uses the anticommuting normal ordered product for crea
and annihilation operators, i.e.,

:Pc
t
ªE dk

2p2v
@b†~k!b~k!1d†~k!d~k!#@~v2k!uuSX

2 uu

1~v1k!uuSY
2 uu#. ~68!

Sincev>k, this Hamiltonian is always positive definite an
is thus well defined. Note that, as in the zero mode case, s
a prescription overlooks the energy density difference
tween the vacuum on the string and the usual one, but it
be shown to vary as 1/L2 and therefore goes to zero in th
infinite string limit @25,30,31#.

2. Effective stress tensor

In order to make contact with the macroscopic formali
@14#, it is necessary to express the classically observa
12350
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quantities with no explicit dependence in the microsco
structure. The relevant two-dimensional fermionic ene
momentum tensor can be identified with the full one in E
~62!, once the transverse coordinates have been integr
over. Due to the cylindrical symmetry around the string
rection, z say, all nondiagonal components, in a Cartes
basis, involving a transverse coordinate vanish after integ
tion. Moreover, since the fermion fields are normalizable
the transverse plane, the diagonal terms,TF

rr and TF
uu , are

also well defined, and by means of local transverse st
tensor conservation, the integrated diagonal componentsTF

xx

and TF
yy , also vanish@19#. As expected, the only relevan

terms in the macroscopic formalism are thusTF
ab with a,b

P$t,z%, i.e., the ones that live only in the string world she
On the other hand, the macroscopic limit of the involv
quantum operators is simply obtained by taking their aver
over the relevant Fock states.

Replacing the quantum fields in Eq.~62! by their expan-
sion ~41!, and using Eq.~39!, one gets the quantum expre
sion of the energy momentum tensor. Averaging the relev
componentsTc

ab in the Fock stateuP&, by means of Eqs.~39!
and ~61!, one obtains

^:Tc
tt :&P5

1

L F(
i

Nc

ū~ki !g
0u~ki !1(

j

N̄c

ū~kj !g
0u~kj !G ,

~69!

^:Tc
zz:&P5

1

L F(
i

Nc ki

v i
ū~ki !g

3u~ki !

1(
j

N̄c kj

v j
ū~kj !g

3u~kj !G , ~70!

^:Tc
tz :&P5

1

2L S (
i

Nc F ū~ki !g
3u~ki !1

ki

v i
ū~ki !g

0u~ki !G
1~ i ,Nc!↔~ j ,N̄c!D , ~71!

where thei summations run over theNc particle states with
momentumki involved in the Fock stateuP&, while the j

summations take care of theN̄c antiparticle states with mo
mentumkj , all with massm̄. In order to simplify the nota-
tion, the transverse dependence of the unit spinors have
been written, and the averaged operators stand for

^Tab&P5
^PuTabuP&

^PuP&
. ~72!

Similarly, the same relationships can be derived for theX
field, by replacing theC unit spinors by theX ones with the
correct angular dependence, and certainly, in another m
representationm̄x . Once the transverse coordinates ha
been integrated over, Eqs.~69!, ~70!, and ~71!, lead to the
two-dimensionalC stress tensor.
5-12
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^T̄c
ab&P5S EcPuuSY

2 uu1ĒcPuuSX
2 uu

EcP1PcP
2

uuSY
2 uu2

ĒcP2 P̄cP
2

uuSX
2 uu

EcP1PcP
2

uuSY
2 uu2

ĒcP2 P̄cP
2

uuSX
2 uu PcPuuSY

2 uu2 P̄cPuuSX
2 uu

D , ~73!
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EcP5
1

L F(
i

Nc

~v i1ki !1(
j

N̄c

~v j1kj !G ,

ĒcP5
1

L F(
i

Nc

~v i2ki !1(
j

N̄c

~v j2kj !G ,

~74!

PcP5
1

L F(
i

Nc ki

v i
~v i1ki !1(

j

N̄c kj

v j
~v j1kj !G ,

P̄cP5
1

L F(
i

Nc ki

v i
~v i2ki !1(

j

N̄c kj

v j
~v j2kj !G .

Recall that the full effective energy momentum tensor a
involves the Higgs and gauge fields of the vortex ba
ground. Since they essentially describe a Goto-Nambu st
@32#, their transverse integration yields a traceless diago
tensor

E r dr du~Tg
tt1Th

tt!52E r dr du~Tg
zz1Th

zz![M2.

~75!

Note that the full stress tensor may also involve several m
sive C andX states, with different masses belonging to t
spectrum. In this case, there will be as many additional te
in the form of Eq.~73!, as different massive states there a
in the chosen Fock states.

C. Fermionic currents

The quantum current operators can be derived from t
classical expressions~14! by using Eq.~41!, while the corre-
sponding conserved charges are obtained from their sp
integration. By means of Eq.~61!, the current operator, av
eraged in the relevant Fock stateuP&, reads

^: j F
a :&P5q

cFR
1cFL

2

1

L F2(
i

NF ūig
aui

v i
1(

j

N̄F ū jg
auj

v j
G

1q
cFR

2cFL

2

1

L F2(
i

NF ūig
ag5ui

v i

1(
j

N̄F ū jg
ag5uj

v j
G , ~76!
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with aP$t,z%, and once again, the sums run overC, or X,
particle and antiparticle states. Theui are the unit spinors
associated with the field dealt with. Concerning the tra
verse components, due to the properties of the unit spinou
andv in Eq. ~39!, only the orthoradial one does not vanis
and reads

^: j F
u :&P52q

cFR
1cFL

2

1

L F(
i

NF ūig
uui

v i
1(

j

N̄F ū jg
uuj

v j
G

2q
cFR

2cFL

2

1

L F(
i

NF ūig
ug5ui

v i
1(

j

N̄F ū jg
ug5uj

v j
G ,

~77!

whereaŝ : j F
r :&50 due to the bound state nature of the stu

ied currents. As expected, the gauge charges carried by
trapped fermion in the form of massive mode, generate o
macroscopic charge and current densities along the string
was the case for the zero modes@25#. However, the nonvan-
ishing orthoradial component shows that the local char
also wind around the string while propagating in thez direc-
tion, as suggested by the above numerical studies. Howe
this component will be no longer relevant in the macrosco
formalism, since it vanishes in a Cartesian basis, once
transverse coordinates have been integrated over.

Nevertheless, this nonzero angular momentum of the m
sive modes is found to generate new properties for the
gitudinal currents. Let us focus on the vectorial gauge c
rents generated by one exitation state, with energyv and
momentumk, of a C massive mode,m̄ say. From Eq.~76!,
using Eqs.~39! and ~65!, the world sheet vectorial charg
current reads

^: j cV
0 :&«52q

ccR
1ccL

2

«

L F S 11
k

v D S̄Y
2 1S 12

k

v D S̄X
2 G ,

~78!

^: j cV
3 :&«52q

ccR
1ccL

2

«

L F S 11
k

v D S̄Y
2 2S 12

k

v D S̄X
2 G ,

~79!

where«561 stands a one particle or antiparticle exitati
state. Now, even settingk50 in the previous equation
yields a nonvanishing spatial current. Physically, it can
simply interpreted as an anomalous magneticlike momen
the considered massive mode in its rest frame. Examin

Eq. ~79! shows that it could be null only ifS̄Y
2 (r )5S̄X

2 (r ),
which is generally not satisfied due to the particular sha
5-13
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of massive spinor components trapped in the string~see Sec.
III !. These ones being associated with nonzero winding n
bers, it is therefore not surprising that, even for a mass
stationary state along the string, the nonvanishing charge
gular momentum around the string generates such additi
magneticlike moment. Note that it does not concern the z
modes, first because they precisely involve vanishing wi
ing numbers@25#, and then because for them, there is
defined rest frame due to their vanishing mass. Obviou
this property can be generalized for the axial part of
current, and thus is also valid for the total current of a
massive spinor field trapped in the string.

All the above construction of the Fock space and the d
vation of the quantum operators associated with the ene
momentum tensor and gauge currents remains valid for e
C and X massive mode. More precisely, the other mas
belonging to theC spectrum verify analogous relationship
providedm̄ is replaced by the relevant one, as for the u
spinors. In addition, theX massive states require to tran
form n→2n in Eq. ~56!, due to their coupling to the anti
vortex. At this stage, the averaged values of the stress te
and currents have been obtained, and therefore allow
derivation of an equation of state, once the Fock states
known.

V. EQUATION OF STATE

The energy per unit length and tension in a given Fo
stateuP& are basically the eigenvalues associated with tim
like and spacelike eigenvectors of the effective tw
dimensional full stress tensor. Obviously this one includ
the classical Goto-Nambu term resulting of the string for
ing Higgs and gauge fields@see Eq.~75!#, with the fermionic
part generated by the massive currents@see Eq.~73!#. More-
over, in order to describe the string by an adequate ma
scopic formalism, it is necessary to choose a quantum st
tics for the relevant Fock states, and for energy scales
below the ones where the string was formed, it is reason
to consider a Fermi-Dirac distribution at zero temperat
@25,33#. In the following, the equation of state is first derive
for the lowest massive modes associated with theC andX
field, and simplified in the zero-temperature and infin
string limit. As a second step, these derivations are gene
ized to any number and kind of trapped fermionic mode.

A. Lowest massive modes

1. Energy per unit length and tension

In this section, we will only consider the lowest massi
modes belonging to theC and X mass spectrums, with
massesm̄c and m̄x , respectively. From Eqs.~73! and ~75!,
the full effective energy momentum tensor reads

^T̄ab&P5E r dr du~Tg
ab1Th

ab!1^T̄c
ab&P1^T̄x

ab&P ,

~80!

whereT̄x
ab takes the same form asT̄c

ab in Eqs.~73! and~74!
once theC relevant parameters have been replaced by thX
12350
-
e
n-
al

ro
-

y,
e
y

i-
gy
ch
s

t

or
he
re

k
-

-
s
-

o-
is-
ar
le
e

l-

ones. In the preferred frame where the stress tensor is d
onal, we can identify its timelike and spacelike eigenvalu
with energy per unit lengthU and tensionT. Upon using Eqs.
~73!, ~75!, and~80!, these read

UP5M21 (FP$C,X%
FEF2PF

2
uuSYF

2 uu1
ĒF1 P̄F

2
uuSXF

2 uuG
1F (FP$C,X%

~EF1PF!uuSYF
2 uu

3 (FP$C,X%
~ĒF2 P̄F!uuSXF

2 uuG1/2

, ~81!

for the energy per unit length, and

TP5M21 (FP$C,X%
FEF2PF

2
uuSYF

2 uu1
ĒF1 P̄F

2
uuSXF

2 uuG
2F (FP$C,X%

~EF1PF!uuSYF
2 uu

3 (FP$C,X%
~ĒF2 P̄F!uuSXF

2 uuG1/2

, ~82!

for the tension. It is interesting to note first thatUP1TP
Þ2M2, and thus the fixed trace equation of state previou
found for zero modes@25,33# is no longer verified by mas
sive modes, as expected since they are no longer eigens
of the g0g3 operator. Moreover, the expression of ener
density and tension does not seem to involve the conse
charge current magnitude, which played the role of a s
parameter in the case of a scalar condensate in a co
string @14,15#. In fact, as it was the case at zeroth order
the zero modes@25#, the charge currents are only involved
the stress tensor through their coupling to the gauge fi
@see Eq.~62!#. At zeroth order, when the back reaction
neglected, the only nonvanishing component of the ga
field is Bu , and it therefore couples only withj F

u , which
vanishes once the transverse coordinates have been
grated over. As a result, it is not surprising that the equat
of state does not involve the fermionic currents without ba
reaction. As a result, it is more natural from quantization
define the occupation numbers of the involved species
state parameters.

2. Zero-temperature and infinite string limit

Assuming a Fermi-Dirac distribution at zero temperatu
for the exitation states, the sums involved in Eq.~74! run
over the successive values of the allowed momentumki until
the Fermi level of the considered species is reached. W
periodic boundary conditions on spinor fields, the allow
momentum exitation values are discretized according to

kn5
2p

L
n, ~83!
5-14
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wheren is an integer, playing the role of a quantum exitati
number. As a result, in the relevantm̄ representation of eac
field, the exitation energiesv i are also discrete according t
Eq. ~38!, and for theC field, the parametersEc and Pc in
Eq. ~74! simplify to sums of radical function ofn, with n
running from the vacuum to the last filled state. In order
express them as explicit functions of the relevant Fe
level, it is convenient to consider the infinite string limitL
→`. In this limit one gets

lim
L→`

1

L (
i 52Nc

2

Nc
1

f ~ki !5
1

2pE22prc
2

2prc
1

dk f~k!, ~84!

whererc
65Nc

6/L are theC up and down mover densities
Nc

1 , Nc
2 standing for the number ofC particle moving in

the 1z or 2z directions, respectively. Note that the tot
number of particles of this kind is thusNc5Nc

11Nc
211

since there is the additional rest state obtained fork50. Af-
ter some algebra in Eq.~74!, using Eq.~84!, the parameters
for the C field, read

Ec5
m̄2

4p
$r̃c

12
2 r̃c

22
1@ r̃c

1A11 r̃c
12

1 r̃c
2A11 r̃c

22
#

1 ln@~A11 r̃c
12

1 r̃c
1!~A11 r̃c

22
1 r̃c

2!#%1~ r̃c
6↔ r̄̃c

6!,

~85!

Pc5
m̄2

4p
$r̃c

12
2 r̃c

22
1@ r̃c

1A11 r̃c
12

1 r̃c
2A11 r̃c

22
#

2 ln@~A11 r̃c
12

1 r̃c
1!~A11 r̃c

22
1 r̃c

2!#%1~ r̃c
6↔ r̄̃c

6!,

~86!

wherer̃c stands for the dimensionlessC mover density

r̃c5
2p

m̄
rc , ~87!

while r̄̃c is defined in the same way for theC antiparticle
states. Similarly, the two other parametersĒc and P̄c read

Ēc5
m̄2

4p
$2 r̃c

12
1 r̃c

22
1@ r̃c

1A11 r̃c
12

1 r̃c
2A11 r̃c

22
#

1 ln@~A11 r̃c
12

1 r̃c
1!~A11 r̃c

22
1 r̃c

2!#%1~ r̃c
6↔ r̄̃c

6!,

~88!

P̄c5
m̄2

4p
$r̃c

12
2 r̃c

22
2@ r̃c

1A11 r̃c
12

1 r̃c
2A11 r̃c

22
#

1 ln@~A11 r̃c
12

1 r̃c
1!~A11 r̃c

22
1 r̃c

2!#%1~ r̃c
6↔ r̄̃c

6!.

~89!

Note that these parameters depend differently on the up
down mover densities as expected for chiral coupling of
12350
i

nd
e

fermions to the string forming Higgs field. Recall that in th
massless case the zero modes associated with theC andX
fields can only propagate in the2z and 1z direction, re-
spectively@8,25,28#. The same relationships also hold for th
X field by using the relevant dimensionless mover densi

r̃x
6 and r̄̃x

6 . Although the equation of state can be derived
a function of these four parameters for each fermion fieldF,
it is convenient at this stage to perform some physical s
plifications. Contrary to the zero mode case, the coupl
between massive particles and antiparticles of the same
cies F does not vanish along the string. As a result, it
reasonable to consider that the only kind surviving at z
temperature corresponds to the one which was in exces
the plasma in which the string was formed during the ph
transition. On the other hand, the energetically favored d
tribution at zero temperature involves necessarily the sa
number ofF up and down movers, each filling the accessib
states living on each branch of the mass hyperbola~see Fig.
9!. As a result, in the considered energy scale, it seems
sonable to consider only one state parameter per mas
stead of the four initially introduced by quantization, name
r̃F5 r̃F

15 r̃F
2 , for a plasma dominated by particles, say.

Setting these simplifications in Eqs.~85!–~89!, by means
of Eqs. ~81! and ~82! the energy density and the tensio
associated with the lowest massive modes now read

U5M21
1

2p (F m̄F
2 ln@A11 r̃F

2 1 r̃F#

1
1

p F(F m̄F
2 uuSYF

2 uur̃FA11 r̃F
2

3(F m̄F
2 uuSXF

2 uur̃FA11 r̃F
2 G1/2

, ~90!

T5M21
1

2p (F m̄F
2 ln@A11 r̃F

2 1 r̃F#

2
1

p F(F m̄F
2 uuSYF

2 uur̃FA11 r̃F
2

3(F m̄F
2 uuSXF

2 uur̃FA11 r̃F
2 G1/2

. ~91!

The sum runs over the two lowest massive bound states,
one being associated to the two fermion fields trapped in
vortex, namelyC andX, and havem̄c and m̄x masses, re-
spectively. As a result, the equation of state involves t
independent parameters,r̃c and r̃x , in the zero-temperature
and infinite string limit. The energy per unit length and t
tension have been plotted in Fig. 10, for the lowest mass
modes in the nonperturbative sector. The curves are es
tially the same in the perturbative sector, but the variatio
around the Goto-Nambu caseU5T5M2 are much more
damped. For reasonable values of the transverse norma
tions, e.g.,uuSX

2 uu;uuSY
2 uu;0.5, and for small values of the

dimensionless parametersr̃c and r̃x , the energy density is
5-15
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found to grow linearly withr̃c and r̃x , whereas the tension
varies quadratically. As can be seen in Eq.~90!, due to the
minus sign inT, all linear terms inr̃ vanish near origin,
whereas it is not the case for the energy density. Howe
for higher values of the densities, the quadratic terms do
nate and both energy density and tension end up being
dratic functions ofr̃. On the other hand, according to th
macroscopic formalism@14#, the string becomes unstab
with respect to transverse perturbations when the ten
takes on negative values, as in Fig. 10 for high densit
Moreover, the decrease of the tension is more damped in
perturbative sector, and the negative values cannot actu

FIG. 9. The filling of massive states trapped in the string,
expected in the zero-temperature limit, for a particular mass and
one species,C or X say. All antiparticles have disappeared by a
nihilation with particles during cooling, and the interactions b
tween particles moving in opposite directions, as their coupling
the gauge field, lead to the energetically favored configuration w
same number of up and down movers. Obviously, the Fermi lev
necessarily below the vacuum mass of the relevant fermion.
12350
r,
i-
a-

n
s.
he
lly

be reached for acceptable values ofr̃, i.e., r̃,mf /m̄. As a
result, the rapid decrease of the tension with respect to
fermion densities constrains the nonperturbative se
where the string is able to carry massive fermionic curren
For each mass, the higher acceptable value of ther̃ ensuring
transverse normalizability is roughlymf /m̄, and from Eq.
~90!, the tension becomes negative at this density formf

2

;4pM2. Much higher values ofmf will thus yield to empty
massive states.

As previously noted, the energy density and tension
massive modes no longer verify the fixed trace equation
state found with the zero modes alone. As a result, the
gitudinal perturbation propagation speedcL

252dT/dU is no
longer equal to the speed of light, and it is even no lon
well defined since the equation of state involves more th
one state parameter. A necessary condition for longitud
stability can nevertheless be stated by verifying that all
perturbation propagation speeds2(]T/]r̃)/(]U/]r̃) ob-
tained from variation of only one state parameter are posi
and less than the speed of light. The longitudinal and tra
verse perturbation propagation speeds,cL

2 andcT
25T/U, re-

spectively, have been plotted in Fig. 11 in the case wh
there is only one species trapped as massive mode,C or X
say. It is interesting to note that there is a transition betw
a supersonic regime obtained at low fermion density, an
subsonic at high fermion density. Moreover, the transit
density between the two regimes is all the more so high
the coupling constantmf /mh is weak. It is not surprising to
recover such zero-mode-like subsonic behavior@25,33# for
densities much higher than the rest mass, since in these c
the ultrarelativistic limit applies. On the other hand, since
mass of the massive mode decreases with the coupling
stant as in Fig. 5, the transition will occur earlier in th
nonperturbative sector, as can be seen in Fig. 12. Note
the subsonic region is also limited by the maximum allow
values of the massive fermion densities, i.e,;mf /m̄, and the
regions of transverse instabilities wherecT

2 becomes nega
tive. Inclusion of the other species does not change sign

s
or

-
o
h
is
the
, with
tically.
becomes
FIG. 10. The energy per unit length and the tension, in unit ofM2, for the lowest massive modes alone, plotted as function of
dimensionless effective densities of the two fermion fields,r̃c andr̃x . The parameters have been chosen in the nonperturbative sector
mf /mh;3 andm̄x;m̄c;0.6mf . Note the linear variation of the energy density near the origin whereas the tension varies quadra
Moreover, in the allowed range for fermion densities, i.e., less than the fermion vacuum mass, the tension vanishes and the string
unstable with respect to transverse perturbations.
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FIG. 11. The squared longitudinal and transverse perturbations propagation speeds for one massive species only, plotted as f
the dimensionless fermion densityr̃, for two values of the coupling constantmf /mh . Note the transition between subsonic and superso
behaviors takes place at a cross density,r̃3 say, which decreases with the coupling constant~see Fig. 12!.
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cantly these behaviors, the main effect being to lowercT
2

with respect to the other fermion density, as can be see
Fig. 10.

The current magnitude can also be derived from the a
aged current operators in the zero temperature and infi
string limit. From Eq.~76!, using Eqs.~39! and ~61!, once
the transverse coordinates have been integrated over
world sheet components read

^ j̄ 0&52(F
m̄F
p

~qcFR
uuā1

21ā2
2uu1qcFL

uuā4
21ā3

2uu!r̃F ,

~92!

^ j̄ 3&52(F
m̄F
p

~qcFR
uuā1

22ā2
2uu1qcFL

uuā4
22ā3

2uu!r̃F .

The current magnitudeC25^ j̄ 0&22^ j̄ 3&2 therefore reads

C254S (F m̄F
p

FYF r̃FD S (F m̄F
p

FXF r̃FD , ~93!

whereFXF andFYF denote the transverse effective charg

FYF5qcFR
uuā1

2uu1qcFL
uuā4

2uu,

~94!
FXF5qcFR

uuā2
2uu1qcFL

uuā3
2uu,

already introduced for the zero mode currents@25#. In the
case of one massive species only, the charge current ma
tude simplifies to

C254
m̄2

p2
FXFYr̃2, ~95!

and thus the sign ofC2 is only given by the sign ofFXFY ,
which is generally positive for reasonable values of the tra
verse normalizations, e.g.,uuSX

2 uu;uuSY
2 uu;0.5. As a result,

the charge current generated by only one massive speci
always timelike@26#, contrary to the zero mode charge cu
rent which was found to be possibly timelike, but also spa
like @25#, owing to the allowed exitations of antiparticle ze
mode states. As noted above, the antiparticle states ca
exist for massive modes due to the nonvanishing cross
tion along the string between massive particles and anti
12350
in

r-
ite

the

ni-

s-

is

-

not
c-
r-

ticles. Moreover, and as it was the case for the zero mo
unless there is only one massive species trapped in the st
the magnitude of the charge current is not a sufficient s
parameter, contrary to the bosonic current-carrier case@15#.

B. General case

From the numerical approach in Sec. III B 4, as soon
the nonperturbative sectors are considered, additional m
sive bound states become relevant, and it is reasonab
consider that, in the zero-temperature limit, all these acc
sible massive states will be also be filled. Moreover,
complete description of the string state also requires the
clusion of the zero modes in addition to the massive one

1. Full stress tensor

The effective two-dimensional energy momentum tens
involving all trapped modes in the cosmic string, can
obtained from Eq.~80! by replacing the sum over the tw
lowest massive modes with the sum over all the access
masses, plus the zero mode terms previously derived in
@25#. In the preferred frame where the stress tensor is d
onal, after some algebra, the energy density and ten
therefore read

FIG. 12. The cross dimensionless densityr̃3 , i.e., the dimen-
sionless fermion density for which the transverse and longitud
perturbation propagation speeds are equal, plotted as function o
coupling constantmf /mh , for one massive species only. The dash
curve shows the maximum allowed valuesmf /m̄ of the massive
fermion density ensuring transverse normalizability. The transit
from supersonic regime to subsonic can thus occurs only in
nonperturbative sector, below this frontier.
5-17



in

u
f
a

e
fa
r
n

g
e

-
p
a

iv
a
ih

. A
e
d

si

te
e

ex-

line
The

scale
ro-

ram-
de
e

CHRISTOPHE RINGEVAL PHYSICAL REVIEW D64 123505
U5M21
1

2p (F,l
m̄Fl

2 ln@A11 r̃Fl

2 1 r̃Fl
#1

1

p F S 4p2Rx
2

1(F,l
m̄Fl

2 uuSYFl

2 uur̃Fl
A11 r̃Fl

2 D S 4p2Rc
2

1(F,l
m̄Fl

2 uuSXFl

2 uur̃Fl
A11 r̃Fl

2 D G1/2

, ~96!

T5M21
1

2p (F,l
m̄Fl

2 ln@A11 r̃Fl

2 1 r̃F#2
1

p F S 4p2Rx
2

1(F,l
m̄Fl

2 uuSYFl

2 uur̃Fl
A11 r̃Fl

2 D S 4p2Rc
2

1(F,l
m̄Fl

2 uuSXFl

2 uur̃Fl
A11 r̃Fl

2 D G1/2

. ~97!

The sums run over all accessible massive bound statesl with
massesm̄Fl

of each fermionF, i.e.,C andX. The additional

parametersRx and Rc are the particle densities trapped
the string in the form of zero modes, for theX andC field,
respectively, with same notation as in Ref.@25#. Note that the
zero mode contribution can also be obtained from the n
mass limit in Eq.~90!. As a result, the full expression o
energy per unit length and tension seems to involve as m
state parameters as trapped modes in the string.

2. Equation of state

As for the lowest massive modes, it is convenient to p
form some approximations owing to the energetically
vored filling of the involved states, in the zero-temperatu
limit. In particular, it is reasonable to consider that the no
vanishing cross sections between massive modes, and
tween zero modes and massive modes, lead to the fillin
all the accessible states with energy lower than a Fermi
ergy,EF say, for each fermion fieldF. As a result, the ener
getically favored filling takes place by successive jum
from the lower masses to the highest ones, until the last m
hyperbola withm̄Fl

;EF is reached. Obviously, this filling
begins with the zero modes, next with the lowest mass
modes and so on. On the other hand, only the particle st
are assumed to be relevant because of the assumed ann
tion of the antiparticle states, as discussed in Sec. V A 2
a result, the Fermi levels,nF say, can be defined through th
zero modes filling only, as the line densities of zero mo
exitations trapped in the string~see Fig. 13!, and thus play
the role of state parameters.

According to the so-defined state parameters the mas
exitation densities,rFl

, in Eqs.~96! and ~97!, reduce to

rFl
5S nF2

m̄Fl

2p
DQFnF2

m̄Fl

2p
G , ~98!

with Q function is the Heavyside step function, as expec
for energy scales less than the rest mass of the consid
massive mode. The zero mode density simply reads
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RF5nF ~99!

for zero mode particle states alone. From Eqs.~98! and~99!,
and the definition of the dimensionless densities in Eq.~87!,

r̃Fl
5

2p

m̄Fl

rFl
, ~100!

the energy per unit length and the tension now depend
plicitly of the two state parameters only, namelync andnx .
By means of Eq.~96!, the energy density reads

U5M21
1

2p (
m̄Fl

<2pnF
m̄Fl

2 lnFA11S 2p

m̄Fl

nF21D 2

1
2p

m̄Fl

nF21G1
1

p F ~2pnx!21 (
m̄Fl

<2pnF
m̄Fl

2 uuSYFl

2 uu

3S 2p

m̄Fl

nF21DA11S 2p

m̄Fl

nF21D 2G 1/2

3F ~2pnc!21 (
m̄Fl

<2pnF
m̄Fl

2 uuSXFl

2 uu

3S 2p

m̄Fl

nF21DA11S 2p

m̄Fl

nF21D 2G 1/2

, ~101!

while the tension is obtained from Eq.~97!

FIG. 13. The accessible states, for theX fermions, in the zero-
temperature limit. The zero modes are represented by the chiral
v5k, while the massive modes appear as mass hyperbolae.
Fermi levels are therefore dependent of the considered energy
E, since the filling is performed by successive jumps from the ze
modes to the massive ones, withm̄l;E. As a result, under these
approximations, each trapped species leads to only one state pa
eter which can be identified with the Fermi level of the zero mo
exitations, namelyn5E/2p. Note that the antiparticle states hav
not been represented due to their assumed annihilation.
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FIG. 14. The energy per unit length and the tension plotted as function of the two state parameters, i.e., the zero mode densit
nonperturbative sectormf /mh;4. Two additional massive bound states have been considered with respective massesm̄/mf;0.4 and
m̄/mf;0.6. In the zero-temperature limit, the filling of the accessible states is performed by successive jumps as soon as the Fe
reaches one mass hyperbola~see Fig. 13!. As a result, for the lowest values of the state parameters, only the zero modes are relevant
fixed trace equation of state,U1T52M2, is verified, then the first and second massive modes are successively reached and become
dominant. As can be seen near the origin, the smooth variations induced by the zero modes appear completely negligible compa
massive ones. In the perturbative sectors, these behaviors are essentially the same, but the induced variations of the density ene
tension are all the more small.
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T5M21
1

2p (
m̄Fl

<2pnF
m̄Fl

2 lnFA11S 2p

m̄Fl

nF21D 2

1
2p

m̄Fl

nF21G2
1

p F ~2pnx!21 (
m̄Fl

<2pnF
m̄Fl

2 uuSYFl

2 uu

3S 2p

m̄Fl

nF21DA11S 2p

m̄Fl

nF21D 2G 1/2

3F ~2pnc!21 (
m̄Fl

<2pnF
m̄Fl

2 uuSXFl

2 uu

3S 2p

m̄Fl

nF21DA11S 2p

m̄Fl

nF21D 2G 1/2

. ~102!

The full energy per unit length and tension have been plo
in Fig. 14 for a configuration including two massive bou
states, in addition to the zero mode ones. Due to the z
temperature limit, for densities smaller than the first acc
sible mass, the Heavyside functions in Eq.~98! vanish, as a
result, from Eqs.~101! and~102! the fixed trace equation o
state is recovered@25# with

U5M21 4p nxnc , T5M22 4p nxnc . ~103!

Once the first mass hyperbola is reached, the behaviors o
energy per unit length and tension are clearly modified
become very rapidly dominated by the mass terms, and
found for the lowest massive modes alone, the energy d
sity begins to grow linearly with respect to the state para
eters, whereas the tension decreases quadratically. Actu
the plotted curves in Fig. 14 show slope discontinuities e
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time the phase space is enlarged due to the income of ac
sible massive bound states~see Fig. 13!.

On the other hand, it is reasonable to expect competi
between the subsonic regimes induced by zero mode
rents, or ultrarelativistic massive modes, and the supers
ones coming from massive currents. In all cases, when
state parameters remain small, only the chiral massless s
are accessible and the regime is obviously subsonic, as
be seen in Fig. 15. However, the massive mode filling mo
fies radically this behavior, and as found for the lowest m
sive modes alone, as soon as a mass hyperbola is rea
the longitudinal perturbations propagation speed falls dra
cally and ends up being less than the transverse perturba
velocity. There is a rapid transition from the subsonic to t
supersonic regime. For higher densitiesn, the behavior de-
pends on the coupling constant. More precisely, in the n
perturbative sector, the ultrarelativistic limit can be appli
before the energy scales reach the fermion vacuum mas
and thus the subsonic regime is recovered, whereas it is
the case in the perturbative sector, as can be seen in Fig

3. Discussion

All these results have been derived without consider
the back reaction effects induced by the trapped charge
rents along the string@see Eq.~92!#. As was already dis-
cussed for the zero modes in Ref.@25#, these currents yield
back reacted gauge field,Bt andBz , which might modify the
vortex background and the fermionic equations of motio
However, such perturbations of the Higgs and orthorad
gauge field profiles~see Fig. 1! can be neglected forBtB

t and
BzB

z small compared to the string forming gauge fie
BuBu;mb

2 . Using Eqs. ~40! and ~92!, the dimensionless
charge currents associated with one massive bound state
generating the dimensionless gauge fieldsBa /mb , roughly
read
5-19
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FIG. 15. The squared longitudinal and transverse perturbation propagation speeds for a spectrum involving two massive states
to the zero mode, plotted as functions of the state parameternF of one species, the other being fixed to a particular value. The curves
been plotted for two values of the coupling constant to the Higgs field,mf /mh;1 andmf /mh;4. Note the successive transitions betwe
subsonic and supersonic behaviors according to the allowed jumps to the mass hyperbolae. However, the fermion vacuum mass
not allow the ultrarelativistic limit to take place in the perturbative sector, as it was the case for the lowest massive modes alone. In
the string dynamics follows a supersonic regime as soon as the first massive bound state is filled.
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, ~104!

with cF the fermion charges, i.e.,cFR
or cFL

. As a result, the
back reaction on the vortex background is negligible as lo
as m̄,2p2h, which is clearly satisfied in the full perturba
tive sector. Moreover, sincemh5hAl, the previous deriva-
tions of the equation of state are also valid in the nonper
bative sector providedm̄,2p2mh /Al, and thus depend on
the values of self-coupling constant of the Higgs fieldl, but
also on the mass spectrum. As can be seen in Fig. 5, the
m̄/mf decreases with the fermion vacuum massmf , as a
result m̄/mh increases all the more slowly, which allows
have bothmf.mh andm̄,2p2mh /Al.

Moreover, in order for the new gauge fieldsBt andBz to
not significantly modify the fermionic equations of motio
from Eq. ~13!, they have to verifyqcfBa,v;m̄F . As a
result, Eq.~104!, andBa /mb; j̃ a yield the condition

mb
2

h2

cF
cf

,1. ~105!

As expected, it is essentially the same condition as the
previously derived for the zero modes alone@25#. On the
other hand, although the back reaction on the fermio
equations of motion can deeply modify the zero mode c
rents @34#, since the massive bound states are no lon
eigenstates of theg0g3 operator, it is reasonable to assum
that rather than modify their nature and existence sign
cantly, the back reaction gauge fields may only modify th
mass spectrum. In this sense, back reaction would indee
a correction.

VI. CONCLUSION

The relevant characteristic features of Dirac fermio
trapped in a cosmic string in the form of massive bou
states have been study numerically, in the framework of
Witten model, and in the neutral limit. By means of a tw
dimensional quantization of the associated spinor fie
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along the string world sheet, the energy per unit length a
the tension of a cosmic string carrying any kind of fermion
current, massive or massless, have been computed,
found to involve as many state parameters as differ
trapped modes. However, in the zero-temperature limit, o
two have been found to be relevant and they can be defi
as the density numbers of the chiral zero mode exitati
associated with the two fermionsC and X coupled to the
Higgs field.

As a result, it was shown that the fixed trace equation
state no longer applies as soon as massive states are fi
i.e., for energy scales larger than the lowest massive m
belonging to the mass spectrum. Moreover, the filling
massive states leads to a rapid transition from the subs
regime, relevant with massless, or ultrarelativistic curren
to supersonic. Such properties could be relevant in vor
evolution since it has been shown that supersonic regi
generally lead to their classical instabilities@21#. As a result,
in the perturbative sectors for whichmf,mh , the protovor-
tons could be essentially produced at energy scales nece
ily smaller than the lower mass of the spectrum, where
fermionic currents consist essentially in zero modes. In t
way, vortons with fermionic currents could be included in t
more general two energy scale models@11#. However, the
present conclusions are restricted to parameter domain
the model where the back reaction can be neglected.
though it is reasonable to consider that the back reac
effects may simply modify the massive bound states thro
their mass values, their influence on zero modes are expe
to be much more significant. In particular, the modified ze
modes cannot be any longer eigenstates of theg0g3 operator
@25#, so one may conjecture that they acquire an effect
mass, leading to massive states potentially instable for c
mic string loops.
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