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Fermionic massive modes along cosmic strings
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(Received 15 June 2001; published 5 November 2001

The influence on the cosmic string dynamics of fermionic massive bound states propagating in the vortex,
and getting their mass only from coupling to the string-forming Higgs field, is studied. Such massive fermionic
currents are numerically found to exist for a wide range of model parameters and seen to modify drastically the
usual string dynamics coming from the zero mode currents alone. In particular, by means of a quantization
procedure, a new equation of state describing cosmic strings with any kind of fermionic current, massive or
massless, is derived and found to involve, at least, one state parameter per trapped fermion species. This
equation of state exhibits transitions from subsonic to supersonic regimes while the massive modes are filled.
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[. INTRODUCTION [12,13, a macroscopic formalism was introduced by Carter
[14] which permits a unified description of the string dynam-
Since it was realized that some early universe phase tranes through the knowledge of its energy per unit lendtand
sitions might lead to the formation of topological defddty  tensionT. These end up being functions of a so-called state
cosmic strings have been the subject of intense work withipparameterw, as the current itself, through an equation of
the context of cosmolog}2]. The large scale structure gen- state. Such a formalism is, in particular, well designed for
erated by an ordinary string network in an expanding uni-scalar currents, as shown in, e.g., R¢15,16: due to their
verse, as well as its imprint on the microwave backgroundbosonic nature, all trapped scalar particles go into the lowest
have thus been derivé8,4] in order to state on their signifi- accessible state, and thus can be described through the clas-
cance in the wide range of mechanisms in which they hagical values taken by the relevant scalar fidltig]. The in-
been originally involved5,6]. These predictions, compared duced gravitational fiel§18,19 or the back reaction effects
with the observations, therefore constrain the symmetry20] depend only on this state parameter. The classical string
breaking schemes effectively realized in the early Universestability [21,22] has already been investigated for various
These, associated with the most recent data for the micrequations of state relatirlg andT, on the basis of scalar and
wave background anisotropi¢g], even seem to show that chiral currents microphysick23,24. Moreover, it was also
such ordinary string networks could not have played theshown, through a semiclassical approach, that fermionic cur-
dominant role in the Universe evolution, thereby all the morerent carrying cosmic strings, even though in principle involv-
so constraining the particle physics symmetries leading ting more than one state paramet2], can also be described
their formation. However, as was recently shoh a non- by an equation of state of the so-called “fixed trace” kind,
negligible fraction of such defects could have contributed td.e., U+ T=2M?2. Such a relationship has the property of
the overall cosmic microwave backgrouf@MB) anisotro-  allowing stable loop configurations to exist, at least at the
pies. classical leve[22]. Nevertheless, these results have been de-
Meanwhile, it was shown by Wittef8] that in realistic  rived for fermionic currents flowing along the string in the
physical models, involving various couplings of the stringform of zero modes only, as they were originally introduced
forming Higgs field to other scalar or fermion fields, currentsby Witten [8], although it was shown that the fermions may
could build along the strings, turning them into “supercon-also be trapped in the vortex with nonvanishing ma§26k
ducting wires.” Without even introducing couplings with the hence the following work in which the influence of such
electromagnetic field®], the breaking of Lorentz invariance massive modes is studied for the simplest of all fermionic
along the vortex induced by such currents may drasticallyWVitten model.
modify the string properties, and thus the cosmological evo- In this paper, after deriving numerically the relevant prop-
lution of the associated networks. In particular, cosmic stringerties of the trapped massive wave solutions of the Dirac
loops can reach centrifugally supported equilibrium stategquation in the vortex, we show that the quantization proce-
called vortong 10], that would completely dominate the Uni- dure, originally performed to deal with the fermionic zero
verse[11]. Theories predicting stable vortons thus turn out tomodes[25], can be generalized to include the massive ones,
be incompatible with observational cosmology, hence theand leads to a new equation of state with more than one state
particular interest focused on “superconducting” models. parameter. In particular, it is found that the fixed trace equa-
Unfortunately, all the new properties and cosmologicaltion of state, that holds for massless fermionic currents alone,
consequences stemming from string conductivity have nois no longer verified. Besides, the massive modes are actually
yet been clearly established, because of the complicated, afidund to rapidly dominate the string dynamics, thereby
somehow arbitrary, microphysics possible in these modelsnodifying the classical vorton stability induced by the zero
However, although the microscopic properties induced bymodes alone.
such currents depend on the explicit underlying field theory Let us sketch the lines along which this work is made. In
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Sec. I, the model and the notations are set, while we derive

i — _
the equations of motion. Then, in Sec. lll, by means of a Ly=5[Vy*D, Y= (D, V) y*¥]
separation between transverse and longitudinal degrees of
freedom of the spinor fields, the massive wave solutions —1+ys —1—ys
along the string are computed numerically for a wide range —QV— Ve —gV——Td*, (4

of fermion charges and coupling constants. The constraint of
transverse normalizability is found to be satisfied only for

> i _
particular values of the trapped modes masssay, whose Ly=5[Xy"Dux=(D,X)y*A]
dependence with the model parameters is investigated. The
two-dimensional quantization of the normalizable massive A+t ys —1-vs

—gXTXCID*—gX X0, 5)

modes is then performed in Sec. IV, using the canonical pro-
cedure. In the way previously discussed in the case of zero
modeg 25], the conserved quantities, i.e., energy-momentunwhere theU (1) field strength tensor and the scalar potential
tensor and charge currents, are then expressed in their quadre

tum form. Their average values, in the zero-temperature

case, and infinite string limit, lead to macroscopic expres- H,=V,B,—-V,B,, (6)
sions for the energy per unit length and tensionT, which

end up being functions of the number densities of fermions I s os

propagating along the string. Their derivation and extension V(@)= g ([P[*=7)7 ™

to any kind and number of fermionic carriers is performed in

Sec. V, while the cosmological consequences of this newyhile covariant derivatives involve the field charges through
analysis are briefly discussed in the concluding section.

2

D,®=(V,+iqcyB,)®P, 8
IIl. MODEL
. o . Gyt Cyy
We shall consider here an Abelian Higgs model with sca- D,V=|V,+iq TB“

lar ® and gauge field,, , coupled, following Witter{8], to
two spinor fields,¥ and X say. Since we are only interested Cy.—Cy

in the purely dynamical effects the current may induce on the +iq Rt 75|3ﬂ) v, 9)
strings, we will not consider any additional electromagnetic- 2

like coupling of the fermion fields to an extra gauge field.

Thus we consider here the so-called “neutral limit’5]. Cy,tC

. XR XL
vV, tiq TB“

D, X=
A. Microscopic Lagrangian

The previous assumptions imply one needs one local +iq
U(1) symmetry which is spontaneously broken through the
Higgs mechanism, yielding vortices formation. The Higgs
field is chosen as complex scalar field with conserved charg
qc, under the local (1) symmetry, associated with a gauge c
vector fieldB,, . The two spinor fields acquire masses from a 8
chiral coupling to the Higgs field, and have opposite electro- ) )
magnetic charges in order for the fulfour-dimensiongl  Should hold in order for the Yukawa terms i), and £, to
model to be anomaly fref8]. Under the broken symmetry P& gauge invariant.
they also have conserved Charggg,R, acy, andchR, ac,,

for their right- and left-handed parts, respectively. With,
Lyand L,, L, the Lagrangian in the Higgs, gauge, and  This theory admits vortex solutions which are expected to

gnd the relation

—Cy=Cy=C\ .~ Cy (12

B. Basic equations

fermionic sectors, respectively, the theory reads form in the early Universe by means of the Kibble mecha-
nism[1]. A cosmic string configuration can be chosen to lie
L=Lyt Lyt Lyt Ly, (D along thez axis, and we will use Nielsen-Olesen solutions of
_ the field equation§27]. In cylindrical coordinates, the string
with forming Higgs and gauge fields thus read
1 d=¢(r)e"’, B,=B(r)d,, (12)
£h=§(DM<I>)*(D“<I>)—V(<I>), 2

where the winding numbenm is an integer, in order for the
Higgs field to be single valued under rotation around the
string. In such vortex background, the equations of motion in

1
= — nv
Ly H o HE @ the fermionic sector, for both spinor fieldsread(here and

4 K
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in various places throughout this paper, we shall denot& by In the same way, the spinorial components of théield are

an arbitrary fermion, namely a spindf or X)

iy*v F &j;B M zF (13
| = —— +
Y Vu OF N F
with the fermionic gauge currents
. Crat Cr— Cra™ Cr—
if=a— Py Fra— 5 Fy'ysF (19
and the mass terms
M,=g¢ cosnf+igeyssinnd, (15
M, =g¢ cosnd—igeyssinng. (16)

rescaled as
my ~ . my ~
51(9):\/7—77\/60"“'(041(9), 52(9):|\/T—7T\/w_ka2(9),
m - m -
&(e)z%ﬂ w—Kas(e), §4<e>=i?—“ﬁ¢w+ka4<e>.

(19

In the chiral representation, and with the metric signature
(+,—,—,—), in terms of these new variables, E¢53) and
(17) yield, for theW field,

A de; - -~
e"(ml‘””{d—gl—fl(e)al(e)}

Note the fermionic currents have an axial and vectorial com-
ponent because of the chiral coupling of the fermions to the
Higgs field, as can be seen through the mass tévimsin
Egs.(15) and(16). Moreover, since the Higgs field vanishes
in the string core while taking nonzero vacuum expectation

value, 7 say, outside, the mass term acts as an attractive €

potential. As a result, fermionic bound states, with energy
between zero and#, are expected to exist and propagate in
the string core.

Ill. FERMIONIC BOUND STATES
A. Trapped wave solutions

Since the string is assumed axially symmetric, it is con-
venient to look for trapped solutions of the fermionic equa-
tions of motion, by separating longitudinal and transverse
dependencies of the spinor fields. Using the same notations
as in Ref.[25], the two-dimensional plane-wave solutions
along the string, for both fermions, read

m . m .
=er e"”‘Z%(Q)—H:H(Q)e"(“‘““’%(g),

da, -~ -
@_fz(g)az(@

—i(my+1)0

m . m .
=o€ Ma(e)+ H(e)e M ag(e),

_ das - -~
e'<m31>"’{die3—f3<e)a3<e>}

m . m . ~
=—e e M, (0)+ #H(e)ef"mf“"’az(e),
h h

e i(my+1)0

da, -~ -~
%‘U(Q)CM(Q)

£y(r)e M m m .
£(r)e im0 —e—e Moy (0)——H(e)e (M MG, (o),
Po) = gei(ot—kg)| °2 _ my, my,
P E(r)e'ma? | (20)
£4(r)e 1Mt : : . . .
wheremy;=g7 is the fermion mass in the vacuum in which
{y(r)ei? tﬂe Higgs field takes its vacuum expectation vabgeand
“il,0 m=w?—k? is the mass of the trapped mode. The coupling
A = gei(wt—k2) gz(r)e_'l . 17) to th(igauge field®, appears through the purely radial func-
P {a(r)e"s tions f:
La(r)e e
= _Cl/’RQ_n my _ CirQ—n my
wheree=+1 labels the positive and negative energy solu- fl(Q)_C_¢ o o’ fo(e)=— < e + R

tions. Similarly to the Higgs field case, the winding numbers
of the fermionsm; andl;, are necessary integers. In order to
simplify the notations, it is more convenient to work with

dimensionless scaled fields and coordinates. With Cyp €@ e Cop €
= ny/\ the mass of the Higgs boson, we can write

The spinor fieldX verifies the same equations apart from the
fact that, due to its coupling t®' [see Eq(5)], it is neces-
sary to transforrn— —n.

¢=7nH, Q=n+qcyB, and r=— (18
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As was originally found by Jackiw and Rosis28] and  fermion vacuum massn;, as intuitively expectedfor m
Witten [8], there are always normalizable zero energy so- >, one recovers the oscillating behavior that is typical of
lutions of the Dirac operator in the vortex which allow fer- free particle solutions Moreover, from Cauchy theorem,
mions to propagate at the speed of light in the 2" and  two degrees of freedom can be set in order to keep only the
‘ +2,” say, directions, for thel' and X' fields, respectively. two well defined solution at infinity. On the other hand, by
These solutions are found to be eigenvectors of >  |ooking at the power-law expansion of both system and so-
operator and are clearly obtained from the above equationgitions near the string cor@5,28, only two such solutions
by setting the consistency angular relationships-1=m,;  are also found to be normalizable. More precisely, normaliz-
+nandm,+1=m;+n, those leading to the zero mode dis- apility of each eigensolution a=0 leads to one condition
persion relatiorm=0< = *k. Note that only one eigen- on the winding numbersy; of each spinorial componeit.
state ofy°y° end up being normalizable for each kind of Moreover, in order for the fermion field to be well defined by
chiral coupling to the Higgs field, and thus the relevant dis-rotation around the string, each spinorial comporgmith
persion relations reduce to= —k andw=Kk, for the¥ and  nonzero winding numbem; has to vanish in the string core,

X zero modes, respectivel25]. and so behaves like a positive power of the radial distance to

Such zero modes have a simple interpretation: since ththe core. The analytical expression of the eigensolutions near
Higgs field vanishes in the string core, the mass tbtmin 0=0 readq25]

Eq. (13) vanishes too, and the fermions trapped in have zero

mass. As a result, they propagate at the speed of light and &1 a0 "
they verify the dispersion relations=k or o= —k. & ay(a;) o ™1
-~ —m+n[+2 |1
B. Massive trapped waves & 3(a)e
- N & a(a)e Nt
However, it is also possibla priori, for the trapped fer- S1
mions, to explore outer regions surrounding the string core
where the Higgs field takes nonexactly vanishing values. In & a 0™t
practice, this is achieved by means of a nonvanishing fer- & az(al)gm+|“““+1
mion angular momentum, which will lead to a nonvanishing ~ m—n ;
. 22 2 . §3 a3(al)g
effective massn“= w“—k“#0. For theW¥ field, such mas- o1
sive solutions of the equations of moti¢A0) can only be €4 s, as(a,)e
obtained for four-dimensional solutions, in order to ease the
zero mode constrainb= *k. The required angular consis- & a o™
tency relations therefore read m-1
& ax(ay)e
m=m;=my+1=mg+n=my+n+1. (22 &l | ag(apem™l |
m+|n[+1
Similarly, the angular dependence affield has to verify € 5, \asae
analogous conditions with the transformation> — n. It was
previously shown numerically that the Abelian Higgs model & a,p " mtinl+n+2
with one Weyl spinor always admits such kind of normaliz- ¢ a,(ay) —m+|n|+n+1
able solutiong26]. In the following, massive solutions for 2| _| 2lade _ (24)
Dirac spinors are numerically derived for our model and &3 ag(a;)e ™"
shown to exist for a wide range of fermion charges and cou- & a,(a;) o M+t
pling constants. K

The normalizability condition for the four eigensolutions can

be summarized by
Some interesting analytical asymptotic behaviors of these

modes have been previously studigth,26. In particular, sup0,n)<m<inf(1,1+n), (25
there are only two degeneratermalizableeigensolutions of

Egs.(20) at infinity. Since the Higgs field goes to its constantand so, for any value o there are only two conditions
vacuum expectation value and the gauge coupling functionsatisfied. However, from the consistency angular conditions
vanish, we found the eigensolutions to scale as £Xg), on each spinorial components, only three pairs of solutions

1. Analytical considerations

with are acceptable near the string. Assumirrg0, if m=<0 then
only the pair §;,s,) is both normalizable and well defined
mg_az by rotation around the vortex, similarly fan=n+1 the
Q= > (23 relevant solutions aresg,s3), whereas for £m=n, they
my are (53,S4). As a result, the two remaining degrees of free-

) ) ) ) ~_dom can be set to get only these pairs near the string core for
First, note that in order to have decreasing solutions at infing given value ofm, but there is no reason that they should
ity, the mass of the trapped modeshas to be less than the match with the two normalizable solutions at infinity. In or-
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der to realize this matching we have to fine tune another &1(9):;[4(9) &2(9)233(9)

parameter which turns out to be the mass of the moutes, (29)
As expected for bound states, this mass is therefore neces- N ~ - ~
az(@)=ax(e), as0)=ai(0).

sarily quantized. Note at this point that=0 is, in such a
procedure, nothing but a particular case of the general solu- ) -
tion here presented. The three different pairs of well definedVote that the particular case, =c,, =c,/2 appears as a
solutions at the origin suggest that there are three kinds dfontier separating two symmetric kinds of solutions with
similar massive bound states in the vortex, according to théwo differents winding numbers lying on both sides rof
values of the winding numbem. Intuitively, the more the =(n+1)/2. As a result, the three different behaviors found
field winds around the string, the farther the particle exploresibove from normalization and angular consistency condi-
regions surrounding the core due to the higher values taketions seem to reduce to only two, since the domains where
by its angular momentum, meaning the largest the extensiom=0 andm=n+1 are actually connected by charge sym-
of its wave function is, the more it acquires mass from cou-metry in relation toc,/2.

pling to a nonexactly vanishing Higgs field. As a result, the On the other hand, due to its coupling to the antivortex
lowest massive modes will certainly be obtained from valuesnstead of the vortex, the equations of motion of tridield

of m which correspond to vanishing winding numbens. are simply obtained from Eq$20) by the transformations

ai—Bj, Corm ™ Cxumy andm;—1;. Thel,; are the winding

_ _ _ . numbers of the scaled” spinorial components, namely the
In the following, the equations of motiof20) will be 7. and they verify the angular consistency relatid@g)
summarized in the form&;)};=0, with implicit summa-  with n replaced by—n as previously discussed. Let us intro-

tion implied over repeated indices. duce one more transformation on ti#eparameters,

The first symmetry is obtained from the complex conju-
gation of the equations of motiof20). Since complex con-
jugation does not modify Eq$20), once the angular consis-
tency relations(22) are set, there is an arbitrary complex R
phase in the choice of solutions, and it will be sufficient to Cy, —Cy = Crp (30)

look for real rescaled spinorial componets.

There is another symmetry between the positive and nega-
tive energy solutions of the equations of moti(0) that
may be useful. With the label= = for particle and antipar- _
ticle states, respectively, one has Naming g; the scaled gauge coupling functions of the

spinor, the¥ ones are found to transform according ftp

2. Symmetries

m—m=Il+n,

Cl//R*) CwR: C)(L'

(Sl =0 = (S)ja; =0, (20 5., F,-T4, Ts—01, andT,—Ty. Thus, if thew are so-

ided lutions of theW equations of motior{20), with m winding
provide number anqlzwL charge, then there exigtsolutions for thet
@ =(y"y)]a; . (27)  field with same massn, providedl=m-n andc, =c,_

=Cy, —Cy, and they read
As a result, the negative energy solutions are obtained from
the positive ones by the action of thdy® operator, thereby

generalizing the properties of the zero modes which were Bile)=as(@), Ba(@)=—ase),
precisely found as eigenstates of this operfBo25,29. (32)
The last symmetry concerns the gauge coupling functions Ba(o)=a1(0), Bilo)=—ay0).

T,. Under the transformations
Owing to these symmetries, it is sufficient to study the

m—m=n+1—m, equations of motior{20), for various values of the winding
numberm and for left-handed part charges, namerL,
Cy,—Cy, = ~Cypy (28)  higher or equal thawe /2.

3. Numerical methods

CwRﬁewR: - CwL
In order to compute the relevant massive wave solutions

the gauge functions;, in Egs. (20), are simply swapped for the'W fermions on the string, it is necessary to solve first

according tof,«T, and?2<—>73. As a result, for every the vprtex backgroqnd_. At zeroth orde_r, neglecting thg back
solution found at givere, andm, there is another solution reaction of the fermionic currents, and in terms of the dimen-
-~ « t o A sionless fields and parameters, the equations of motion for
a, with chargec, =c4—c, and winding numbem=n  the string forming Higgs and gauge fields read, from

+1—m, namely Eqg. (D),
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m/mf

0.2

0
€0 0 2 4 6 8

mf/mh
FIG. 1. The solutions of the field equations for the vortex back-

ground. The Higgs fieldH takes its vacuum expectation value at
infinity and the gauge bosons condensate in the vortex.

FIG. 2. The mass of the lowest massive bound state, relative to
the fermion vacuum mass, plotted as function of the coupling con-
stant to the Higgs field, i.e., the fermion vacuum mass relative to the
mass of the Higgs boson.

d*H 1dH HQ* 1

—+——F—=——+=-H(H"-1), (32 . . .
de?2 edo p2 2 =0. Obviously, this component is chosen among those hav-
ing a nonzero winding number since, in order to be single

d?Q 1dQ m? valued by rotation around the vortex, it necessarily vanishes
T T o do —ZHZQ, (33)  at the string core. Once it is performed, the last divergent
de® ¢ de mj component ap =0 is regularized, its turn, by calculating the

mass of the modm leading to a convergent solution. For the
range of model parameters previously defined, the numerical
computations thus lead to the mass of the trapped wave so-
lutions as well as their components as function of the radial
distance to the string coi@,(0).

wherem,=qc,7 is the classical mass of the gauge boson
The solution of these equations is well knojir,17,29 and
shown in Fig. 1 for a specifitassumed genelicset of pa-
rameters.

The system of Eq920) being linear and involving only
first-order derivatives of the spinor components, a Runge-
Kutta numerical method of integration has been used. How-
ever, as noted above, since we are interested only in normal
izable solutions, it is more convenient to perform the
resolution from an arbitrary cutoff at infinity, toward the
string core. Let us introduce.., the cutoff value on the
dimensionless radial distance. From the asymptotic form of
Egs.(20) at infinity, and in order to suppress the exponential
growth, the spinorial componernig have to verify

m/mf

m m
A1(02) =~ g Aa02) [ dale),  (34)

m m
A3(02)= ~ Qg Ba(0) + grdalen). (39

These conditions constrain two degrees of freedom, and an 92 0 > 2 6
other one is fixed by normalization of the wave functions at mb/mh

0. . As a result, only one free parameter can be used yet in

order to achieve the matching between these well defined FIG. 3 The mass of the lowest massivg bound state, rglative to
solutions and the two normalizable ones near the string cord€ fermion vacuum mass, plotted as function of the coupling con-
It will be the case only for particular values of the mass stant to the Higgs field, for several values of the feLmlonlc charges.
Numerically, the matching is performed in two steps. First,The closestc, is to c,/2, the higher mode mass is. In the

by means of the last free parameter, one of the usually divegextreme case, ~C4/2, m~my there is no longer normalizable
gent component near the string core is made to vanigh at massive bound staie the perturbative sector
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0.15
m=0 m=0
0.02
0.1
mf/mh=0.3 mf/mh=0.3
c,=1 . c=1
i) 0.05 c, = [y c, =2
v 3 v
\ 0.01
.///
0
0 10 20 30 40 0 10 20 30
4 P

FIG. 4. The transverse spinorial components ofdhéeld, as functions of the distance to the string core, for the lowest massive bound
state. The transverse normalized probability density is also plotted and takes its maximum value nearby the string core, as expected for
massive bound states exploring the neighborhood of the core by means of nonvanishing angular momentum. Notm+h@t @ore
spinorial component behaves like a zero mode one, i.e., it condenses in the string core contrary to the others.

4. Numerical results thus, at this point, the “normalizable” winding numbers are
In what follows, the Higgs winding number is assumed ot well defined. Note that this is only truenfi# (n+1)/2
fixed to the valuen=1, and the range of,, restricted to as it is the case here in the perturbative sector witfl and
! L

Cy = c,/2, the other case being derivable from the symmet—mzo'

ric properties discussed above.

The first results concern the “perturbative sector” where
the fermion vacuum mass verifies<<mj,, or equivalently,
for a smaller Yukawa coupling constant than the Higgs self-
coupling, i.e.,g< . In this case, for reasonable values of
the fermion charges, i.e., of the same order of magnitude
than the Higgs one¢ch¢/2, only one normalizable mas-
sive bound state is found with null winding numbee=0. 08
As a result, by means of transformatiof@8), there are also
symmetric modes foc, <c,/2, with winding numberm

The normalized scaled spinorial componea{®) have
been plotted in Fig. 4 for the lowest massive bound state,
with the normalization

=2. The dependency of the mode massvith the fermion E 06
vacuum mass and chargése., the coupling constants to '€
Higgs and gauge fieldlss plotted in Figs. 2 and 3. The study

has been also extended to the nonperturbative sector where

this massive mode thus appears as the lowest massive bounc
state. First, it is found that the mass of the trapped mode

always decreases with respect to the coupling constant, i.e, c=1  m=0
with the fermion vacuum mass;. Moreover, for small val- 0.2

fme/ he derivati £ h en(m/ 1 2 3 4 5 6
ues ofm;/m,,, the derivative of the curven(m;/m,) van- mit/mh

ishes near the origifsee Fig. 2 As a result, the mass modes

in'the full perturbative _secto'r does not depend on the cou- FIG. 5. The evolution of the mass spectrum for-0 winding

pling Co_nstant to the Higgs field, at first order. On the Othernumber, as function of the coupling constants. Each main branch
hand, Fig. 3 shows that the mass of the bound state hardbépresents one massive mode whereas the substructures show its
depends at all on its coupling with the gauge fidlé., on  eyolution with respect to the fermion chargg . Five values of the

the charge$¢L) in the nonperturbative sector, where all the ¢tormion ch arge have been plotted, framLztho ¢, =10, and the
curves have the same asymptotic behavior. Near the origiRpectrum has been computed only in the nonperturbative sector,
the cIosest:Lh is to ¢ /2, the higher mode mass is. In the since only the lowest mode exists for lower valuesgim;, (see

particular limiting casec,, ~c4/2, there is no normalizable Fig. 3. As expected, all the modes have masglecreasing with

massive bound state, and as can be seen in Fig. 3, already ftI(SIF:ir coupling constant to the Higgs field. Moreover, the substruc-

¢ /c.=2 the mode mass is close It is not surorisin tures show that, for sufficiently large values rof/m;,, the mode
R Q. P 9 massisa decreasing function of the charge However, note that

since, as it was above notet); =c,/2 is a frontier between s hehavior can be inverted for some modes close to their appear-
two kinds of solutions with different winding numbers, and ance region, as it is the case for the second one.
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FIG. 6. The transverse spinorial components ofthéeld, plotted as functions of the distance to the string core, fonthe-1 lowest

massive bound state. The transverse normalized probability density is also plotted and vanishes in the string core. In this case, all compo-
nents of the spinor wind around the string and the corresponding mode is thus centrifugally confined in a shell nearby the core, as expected

for a nonzero angular momentum eigenstate.

f odoala=1.

0.2

(36)

m=-1

m/mf=0.965

mfimh=2
c°=1
-0.2 ch=2
0 10 15
]
0.08
m=-1

-0.04

-0.08

m/mf=0.996

20

30 40

function is larger around the string rather on it, as expected
for a nonvanishing angular momentum.

The nonperturbative cases with;>m,,, involve much
The corresponding transverse probability density has alsmore massive bound states. First, another mode appears in
been plotted in Fig. 4. Note that the massive mode waveddition to the previous one, with the same winding number.

0.1

m=-1
0.08 /mf=0.965
0.06
mf/mh=2
:g c, ’=1
0.04
ch=2
0.02
0
0 5 10
[
0.015
m=-1
m/mf=0.996
0.01
mf/mh=2
?g c°=1
C. =
0.005 "
0
0 10 20 30

FIG. 7. The components of th& field as function of the radial distance, and the corresponding transverse probability densities. The
curves have been computed far= — 1 winding number, and for two additional incoming modes in the nonperturbative sector. As expected,
interferences fringes appear from the nonzero angular momentum eigenvalues of these modes.
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sity of the lowest massive bound state with next —1
winding number are plotted in Fig. 6. They are found to be
normalizable for coupling constanin;/m,=0.5 when
ch/c(/,:Z, as can be seen in Fig. 8. Contrary to the0

08 lowest massive state, all spinorial components wind around
the string, and the transverse probability of finding such a
mode vanishes in the string core, as expected for a nonzero

£ 06 angular momentum eigenstate. Obviously, this is also true for
IE all higher values ofm, as for them=—2 massive mode

which appears to be normalizable fioy /my=1.2.

It is clear from the numerical results that the fermions can
0.4 be trapped in the string in the form of massive bound states,
for a wide range of model parameters. The only exception
takes place for fermion charges close to the particular value
Cy, =Cy/2 Where there is no normalizable massive bound

02 0 5 ) 6 P state in the perturbative sector. Note, again, that all the pre-
mt/mh vious results are also relevant for the massive modes with

symmetric winding numbensi=n-+1—m, as well as for the

. X spinor field and for the antiparticle states of bdthand X
FIG. 8. The mass of then=—1 lowest massive bound state, fermions

relative to the fermion vacuum mass, with respect to the coupling

constant to the Higgs field. Note that the mode does not exist in the
perturbative sector. IV. FOCK SPACE FOR MASSIVE MODES

The existence of massive trapped waves requires that the
Because of the fact that decreases witin; (see Fig. 2, for quantum state spades] be enlarged to include them. For

higher values ofn;, another mode comes into the normaliz- eaCE normallzabk:e mode W'tr:j Bwams_ a t¥y()|;jd|men5|qnal
able mass range. Since normalizability at infinity requires 0CK SPace can be constructed by spinor field expansion over

o h b ¢ . des i th th the relevant massive plane waves. The full quantum theory
m<=my, the NUMDEr Ol Massivé modes INCreases wi %an therefore be obtained from tensorial product of the dif-

value ofm. Mo.reover., there are also solutions inv_olving all ferent Fock spaces belonging to their own mass representa-
the other pOSSIbf|e Wl_no(Ijl_ng numggi. The devqlrLitlon of thetion, together with the Fock space associated with the zero
mass spectrum, for winding number=0, and with respect  ,,4eq25]. As a first step toward a full theory, we will only

to the (_:oupling constant to the Higgs and gauge fields i%onsider the plane waves associated with one massive mode
plotted in Fig. 5. The behavior of each mass is the same as, —

that of the lowest mode previously studied, the new proper9 massm.
ties resulting only in the appearance of new states for higher

values of the fermion vacuum mass, as found for two- A. Quantum field operators

dimensional Weyl spinors in Ref26]. Quantization is performed through the canonical proce-
Physically, the additional massive modes at a given winddure by defining creation and annihilation operators satisfy-

ing number can be interpreted as normalizable eigenstates pfg anticommutation rules. However, the particular structure

the angular momentum operator in the vortex potential, withof the trapped massive waves yields relationships between

higher eigenvalues. From Figs. 4 and 6, one can see that f@sngitudinal quantum operators with nontrivial transverse de-

each value ofn, the lowest massive state is confined aroundpendencies.

the string with a transverse probability density showing only

one peak whereas the higher massive modes have transverse 1. Fourier transform

probability density profiles with an increasing number of In the previous section, it was shown that the fermions

maxima, as can be seen in Fig. 7. In fact, as for the structure t L L —

of atomic spectra, the two spatial degrees of freedom of thgoU!d Propagate along the string direction with given mass

attractive potential certainly lead to two quantum numberd€onging to the spectrum. From E@.7), setting

labeling the observable eigenstates, one of them being,(+)_ i(wt—kz (=) _ —i(wt—kZ

clearly m, and the other appearing through the number of ¥ =uy(kr, 0)ef g Py =vykr.0)e ( X

zeros of the spinorial components, or, equivalently, the num- (37)
ber of maxima of the associated transverse probability denyith
sity.

The massive modes with higher winding numbers behave 0=\Vm?+Kk?, (39)

in the same way. However, they exist only for nonzero val-

ues of the coupling constant;/m,,, this one increasing with and using the symmetry properties shown in Sec. Il B 2, the
the value of the winding numbemn. The scaled spinorial transverse parts of the massive trapped waves for particle
components and the transverse normalized probability derand antiparticle states can be written as

123505-9



CHRISTOPHE RINGEVAL PHYSICAL REVIEW D64 123505

Jo+Ka(r)eime af(kyu(k)=o"(K)v(k) =20 »(r),
. — o ime 44)
iVo—ka,(r)e(m=1)¢ ~ N (
Lk = e | () o~k =5 (u( k) =0,
Jo—Kag(r)e im=me
_ — L where the dependency with respect to transverse coordinates
iVo+kay(r)e M= have been omitted in order to simplify the notation, and
(ST (e e (39  where we introduced the function
ot+Ka(r)e
—iJo—K ay(r)e im-1¢ v(r)=ay(r)as(r)+as(r)ay(r). (45
k,x, )= _ ) , . -
vykX,) —Jo—k az(r)e (m-me From Egs.(41), (42), and (44), the Fourier coefficients are
— . found to be functions of th& field, and read
iVo+kag(r)e (m-n-1)0
1 : -
with the notations bT(k)zﬁf rdrdgdze 't kAyuT(k,x, )W,
— my -~ (46)
X, =(r,0), and a=-—a. (40

N

Contrary to the zero mode case, fermions can now propagate . o
in both directions of the string, so that the momentiuraf  Where we have defined the normalization factor

the massive waves can take positive and negative values. As

a result, the¥ field can be Fourier expanded over positive sz rdr d67(r)=f e do 7/(9). (47)
and negative energy states as

o||<=i dr dodz etk (k x, )W
()Nrr z v'(k,x )P,

Similarly, the expansion of thé " field on the same positive

dk .
P = J ﬁ[b*(k)u(k,xl)é(w“kz) and negative energy solutions leads to the definition of its
mew Fourier coefficients, namely(k) andd®(k). From Eqs(42)
+d(K)v(k,x, e (@t=ka] (41  and(44), they can also be expressed as function¥ 6f and
verify
where the subscripts have been omitted. The normalization - : :
convention of the Fourier transform is chosen as in the zero b(k)=[b'(k)]', and d'(k)=[d(k)]". (48

modes casg25], i.e., _ o
In order to perform a canonical quantization along the

(k-K')z ) string world sheet, let us postulate the anticommutation
f dze =2m5(k—k"). (42 rules,at equal timesbetween the spinor fields
Obviously, the X field verifies similar relations with the {9 (t,x), PT(t,x)}=8(z—2)(T)(x, ,x]), (49

transformatiom— —n, as was noted previously.
where T'° is a matrix with respect to spinor components
2. Commutation relations whose utility will be justified later, and which reads

In order to express the Fourier coefficiertgk) and 1
d'(k) as function of the spinor fieldF, let us introduce 0 Iy 0.3 t /
Znother unit SpInors P00 X0 =~ (ol =ky*y))lulkix)u"(k X))

\(1)+k;3(r)eilm6 +U(k1XL)vT(k1Xi)] (50)
x ) iVo—Kay(r)e (M1 Note thatI'® does not depend o andk. Explicit calcula-
uck,x, )= . —im-nyo |’ tions show that the first terms involving andk are mixed
Vo—Kay(r)e X . . : -
. _ 1 with u(kl andv(k), and yield Lorentz invariant quantities,
iVo+kay(r)e (mn-b such asm. Moreover,I'? has the following orthonormaliza-
_ (43 tion properties
Vo+kag(r)e'm?
o o —Kay(r)e i(m-1)s uT(k,x )TO(x, ,x)U(k,x]) =2 v(r)u(r’), o
v(K, X, )= — L . R . 51
—Vo—kay(re 0T(k,x)TO(x, X))o (—k,x})=0,
iVo+kay(r)e(mn-1e ) )
and similar relationships are obtained forby swappingu
They clearly verifyu=y°y%0 and from Eq.(39) ando.
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The anticommutation rules for th& Fourier coefficients
are immediately obtained from Eq&l2), (46), (48), and Eq.
(49), using the properties df® in Eq. (51), and read

{b(k),b"(K")}={d(K),d"(K')} =220 5(k—K'),
(52)

with all the other anticommutators vanishing. As a result, th
Fourier coefficients’ and d™ behave as well defined cre-
ation operators, whereas their complex conjugatesnd d,

act as annihilation operators of a particle and antiparticl

massive state, respectively.

In order to verify the microcausality of the theory and to

justify, a posteriori the ansatz of Eq49), let us derive the
anticommutator between the quantum field operatorand

¥T at any time The ¥ expansion in Eq(41) and its com-
plex conjugate yield

w000y = [ S0

(2m) 2w’
X[{bT(k),b(k")}uj(k,x, )uT(k’,x])
w@l(wt—o't")=(kz=k'z")]
+{d(k),d"(k")}oi(k,x, oMk’ ,x])
Xe*i[(wt*w’t’)*(szk’Z’)]]_ (53

Using Eg.(52), this equation simplifies to involve tensorial
products of unit spinors evaluated at the same momentum.

is therefore convenient to introduce two additional matrices

namelyl'3(x, ,x|) and M(x, ,x|), which verify
u(k,x Hu'(k,x])=wl%x, ,x|)—kI'3(x, ,x|)
_M(XJ_ lXJ,_)l
(54
U(k:XL)UT(kvXDZwFO(XL X)) —KI3(x, ,x)
+ M(x, ,X]).
From Eq.(39), these matrices are simply relatedItd by
Fs(xl 1XJ,_):FO(XL ,Xi)y370,
! 0 ! ! 0 (55)
M(XJ_ ,XJ_)=F (XJ_ !XJ_)Md(XJ_)y )

where My(x, ) is the diagonal matrix

—fas(n) . a(r) . ag(r)
M =mDiagl = mH,_ ema,_
) 'g(alm W) ()
s gno 2200 ei"") . (56)
ay(r)

From Egs.(54) and(55), the anticommutatof53) reduces to
{w(x), ¥ (x)}=[TOx, x| )idg+T3(x, X )ids

+ M(X, ,xi)]iA(x”—x”’), (57)

PHYSICAL REVIEW B4 123505

wherex = (t,z), andA is the well-known Pauli Jordan func-
tion which reads

iA(xH—xﬁ)zf szw[e*‘k(xwrxu')—é"(XH*X\D], (58)

and vanishes outside the light cone. As a result, the quantum

efields indeed respect microcausality along the string. The

matricesl'* appear as the analogues of the matrigésfor

éhe Dirac spinors living in the vortex. The two-dimensional

quantization along the string is thus not independent of the
transverse structure. It is all the more manifest in the anti-

commutator expression betwedn and V: from Eq. (57),
and using Eq(55), one gets

{W (), W(xX)}=T%x, X )[i1°d0+iv3dq

+ My(x ) TTAX=X]). (59

The matrixI'® now appears clearly as a local transverse nor-
malization of the longitudinal quantum field operators. Note
that the mass term also depends on the transverse coordinates
due to the nontrivial profile of the Higgs field around the
string. Moreover, setting=t’ in Eq. (57), leads to the pos-
tulated anticommutator at equal tim@s), and therefore jus-
tifies the introduction of thé&° term.

3. Fock states

¢ In the following, |P) will design a Fock state constructed
[)y applying creation operators associated with a massive

mode m, on the relevant string vacuum. Such a state was
similarly defined for zero modes in Rg25]. From the an-
ticommutators(52), a massivel' state with momentunk is
now normalized according to
(k'|ky=2m2w(k—k"). (60
Similarly, it will turn out to be convenient to derive the av-
erage of the occupation number operator since it will appear
in the derivation of the equation of state. From E&p), and
for a ¥ massive mode, it reads

T !
(Plb (<';)|t;)(>k L =2—7Tzw2w§_‘, S(k—ki) o(k" —ki),

L
(61)

where the summation runs over &l massive particle states
present in the relevamh Fock statd P), andL is the physi-

cal string length, coming from thé(0) regularization by
means of Eq(42).

B. Stress tensor and Hamiltonian

The classical stress tensor can immediately be derived
from variation of the full Lagrangiail) with respect to the
metric, and theV fermionic part thus read5]

i — i ,
T =5% Y GV — E[aw\p]w)\p— Bj)). (62
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1. Hamiltonian quantities with no explicit dependence in the microscopic

The quantum operators associated with the classicalljtructure. The relevant two-dimensional fermionic energy
pmentum tensor can be identified with the full one in Eq.

conserved charges can be obtained by replacing the classi . )
fields by their quantum forms involving creation and annihi- (62, once the transverse coordinates have been integrated

lation operators. In this way, the Hamiltonian appears, fronPVer- Due to the cylindrical symmetry around the string di-

Noether theorem, as the charge associated with the timf&Cction,z say, all nondiagonal components, in a Cartesian
component of the energy momentum tensor basis, involving a transverse coordinate vanish after integra-

tion. Moreover, since the fermion fields are normalizable in
L= = the transverse plane, the diagonal terig, and T, are
tt_ 0 _ 0 ) ) Fo
Ty=i¥y ¥ =i(a¥)y"¥. (63 also well defined, and by means of local transverse stress

Using Eqs.(39) and (41) in the previous equation, and per- tensor conservation, the integrated diagonal compon&fits,

forming a spatial integration, the Hamiltonian operator readsand T%', also vanish[19]. As expected, the only relevant
after some algebra, terms in the macroscopic formalism are thT{#; with «,f

e{t,z}, i.e., the ones that live only in the string world sheet.

. dk ) : On the other hand, the macroscopic limit of the involved
Py= J mf dx, [ —b(k)b'(k) quantum operators is simply obtained by taking their average
over the relevant Fock states.
+dT(k)d(k) Tu(k,x, ) Yu(k,x, ). (64) Replacing the quantum fields in E?2) by their expan-

sion (41), and using Eq(39), one gets the quantum expres-
In order to simplify this expression, let us introduce the pa-sion of the energy momentum tensor. Averaging the relevant
rameters componenté’f in the Fock statéP), by means of Eq$39)
and(61), one obtains

S2=02+a%, and Si=al+al. (65) B
N N
T 1| ¢ — v
From EQ.(39), the Hamiltonian now reads <3T$3)7>: C Z U(ki)you(ki)+; U(kj)you(kj)l,
P‘—J K kb (k) +d (k) (k k)||2% ©9
b= | 32aL  PIODIK)+dI(K)A(K) ][(w— )2
2 e UL k—
o+ K2V, (66) (TP =] 2 5 utk) Y uk)
with _
Ny, ki —
_ - + 2 —u(ky) yulk) |, (70
||22||=frdr d022=f o do 3%(p). (67) [
N
Analogous relations also hold for ti#field. It is interesting otz V= ki—
to note that Eq(66) generalizes the expression previously ¢ 147~ 5[ Z uki)y u(ki)+; u(ki)y"u(ki)
derived in the zero modes cafg25], being found again by
setting w= —k for the ¥ zero modes, ow=Kk for the X ) _
ones. The normal ordered Hamiltonian is obtained if one (1N = (1,Ny) [, (71
uses the anticommuting normal ordered product for creation
and annihilation operators, i.e., where thei summations run over th,, particle states with
momentumk; involved in the Fock stat¢P), while thej
dk . — - :
;p&::f [bT(k)b(k)+dT(k)d(k)][(a)—k)||2>2(|| summations take care ofih@, antiparticle states with mo-
2m2w mentumk; , all with massm. In order to simplify the nota-
+(w+k)[|22 1. (68  tion, the transverse dependence of the unit spinors have not

been written, and the averaged operators stand for

Sincew=Kk, this Hamiltonian is always positive definite and
is thus well defined. Note that, as in the zero mode case, such (P|T*A|P)
a prescription overlooks the energy density difference be- (TP >P:W- (72
tween the vacuum on the string and the usual one, but it can
be shown to vary as Il and therefore goes to zero in the similarly, the same relationships can be derived for fhe
infinite string limit [25,30,31. field, by replacing thel unit spinors by theY ones with the
correct angular dependence, and certainly, in another mass
representatiorm, . Once the transverse coordinates have

In order to make contact with the macroscopic formalismbeen integrated over, Eq&9), (70), and (71), lead to the
[14], it is necessary to express the classically observablevo-dimensional¥ stress tensor.

2. Effective stress tensor
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Ey |23+ Ey 12Xl

<?$B>7>= —
Ey,t Py, v Pwp
—IIEYII— |I=X]]
with the notations
1 Ny
E¢’P:E Z (o +k)+2 (] +k) ,
I A Ny
By, =T | 2 (@i k) + 2 (0=,
_ (74)
1[N i
Py,=T 2 —(w +k)+2 wj+k) |,

Py,=

P

" Ny K;
{EI o (@ —k)+$zj(wj—kj) :
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Ey,t Pwp p‘ Py,

12311 - 3]
: (73)

Pyl I3l Py JIZX]

with « e {t,z}, and once again, the sums run over or X,
particle and antiparticle states. The are the unit spinors
associated with the field dealt with. Concerning the trans-
verse components, due to the properties of the unit spinors
andv in Eq. (39), only the orthoradial one does not vanish
and reads

Ny 0 Np 10

E Uiy Ui+2 UJ’)/ Uj

i (OF i (1)]'

0 CrrtCr 1
(itypm—q T

(77

whereag:j'z:)=0 due to the bound state nature of the stud-
ied currents. As expected, the gauge charges carried by each

Recall that the full effective energy momentum tensor alsarapped fermion in the form of massive mode, generate only
involves the Higgs and gauge fields of the vortex back-macroscopic charge and current densities along the string, as
ground. Since they essentially describe a Goto-Nambu stringias the case for the zero mod@$]. However, the nonvan-
[32], their transverse integration yields a traceless diagonakhing orthoradial component shows that the local charges
tensor also wind around the string while propagating in thdirec-
tion, as suggested by the above numerical studies. However,
this component will be no longer relevant in the macroscopic
formalism, since it vanishes in a Cartesian basis, once the
transverse coordinates have been integrated over.
Nevertheless, this nonzero angular momentum of the mas-
Note that the full stress tensor may also involve several massive modes is found to generate new properties for the lon-
sive ¥ and X states, with different masses belonging to thegitudinal currents. Let us focus on the vectorial gauge cur-
spectrum. In this case, there will be as many additional termgents generated by one exitation state, with enasggand
in the form of Eq.(73), as different massive states there aremomentumk, of a ¥ massive modeq say. From Eq(76),
in the chosen Fock states. using Eqgs.(39) and (65), the world sheet vectorial charge
current reads

f rdr do(Ty+Ty )——J’rdr do(T3+ TR =M?2.
(75

C. Fermionic currents

The quantum current operators can be derived from their (: Jo = — “’R+ Cu i n E)§2+ 1— 5)?
classical expressior(d44) by using Eq.41), while the corre- 2 L w) 7Y w) X
sponding conserved charges are obtained from their spatial (78
integration. By means of Ed61), the current operator, av- )
eraged in the relevant Fock stdi®), reads 3 CugtCy & Kls Kle
_ (tlpvi)e=—4 — 1ty 35— 1_5 5|
CrtCr 1| NFuyou N7 uyou; ) (79
<J]: >P q—LE _Z |7. |+2 17. j (79
! @i ! @] wheree =+ 1 stands a one particle or antiparticle exitation
cr—cy 1| Nr U state. Now, even setting=0 in the previous equations
+q# 2 7’ Ysti yields a nonvanishing spatial current. Physically, it can be
2 . simply interpreted as an anomalous magneticlike moment of
Ny — the considered massive mode in its rest frame. Examining
S Uj ¥ s (76)  EQ. (79 shows that it could be null only B2(r)=32(r),
] (oF ' which is generally not satisfied due to the particular shapes

123505-13



CHRISTOPHE RINGEVAL PHYSICAL REVIEW D64 123505

of massive spinor components trapped in the sttggg Sec. ones. In the preferred frame where the stress tensor is diag-
[II'). These ones being associated with nonzero winding numenal, we can identify its timelike and spacelike eigenvalues
bers, it is therefore not surprising that, even for a massivavith energy per unit length) and tensiorT. Upon using Egs.
stationary state along the string, the nonvanishing charge ari73), (75), and(80), these read

gular momentum around the string generates such additional
magneticlike moment. Note that it does not concern the zero

: L O oIS £ E—P E+P
modes, first because they precisely involve vanishing wind- U,=M2+ >, uHE%AH 7 f||g§(}4|}
ing numbers[25], and then because for them, there is no Fe{v, A 2 2
defined rest frame due to their vanishing mass. Obviously,

this property can be generalized for the axial part of the +
current, and thus is also valid for the total current of any
massive spinor field trapped in the string.

All the above construction of the Fock space and the deri- X > (Ex~Pp|224l
vation of the quantum operators associated with the energy Felv, )
momentum tensor and gauge currents remains valid for each
¥ and X massive mode. More precisely, the other masse$or the energy per unit length, and
belonging to the¥ spectrum verify analogous relationships

provideda is replaced by the relevant one, as for the unit
spinors. In addition, thet massive states require to trans- Tp=M?+ >

fe{EWV (Ex+Pol|S5Al

P

112
: (81

E~~P Es+P,
TS A5 IR A

form n— —n in Eq. (56), due to their coupling to the anti- Fetv. 4y

vortex. At this stage, the averaged values of the stress tensor

and currents have been obtained, and therefore allow the —[ 2 (Ext P]—')||2\2(]-'||
derivation of an equation of state, once the Fock states are Fetr. )

known. 1/2

, (82

>
Fel{¥,

4 (Ez—P|Z4A
V. EQUATION OF STATE

The energy per unit length and tension in a given Fockfor the tension. It is interesting to note first thidt,+ T
state|P) are basically the eigenvalues associated with time==2M?, and thus the fixed trace equation of state previously
like and spacelike eigenvectors of the effective two-found for zero mode$25,33 is no longer verified by mas-
dimensional full stress tensor. Obviously this one includessive modes, as expected since they are no longer eigenstates
the classical Goto-Nambu term resulting of the string form-of the y°y® operator. Moreover, the expression of energy
ing Higgs and gauge fieldsee Eq(75)], with the fermionic  density and tension does not seem to involve the conserved
part generated by the massive currgstse Eq(73)]. More-  charge current magnitude, which played the role of a state
over, in order to describe the string by an adequate macrgarameter in the case of a scalar condensate in a cosmic
scopic formalism, it is necessary to choose a quantum statistring[14,15. In fact, as it was the case at zeroth order for
tics for the relevant Fock states, and for energy scales fathe zero modef25], the charge currents are only involved in
below the ones where the string was formed, it is reasonablghe stress tensor through their coupling to the gauge field
to consider a Fermi-Dirac distribution at zero temperaturgsee Eq.(62)]. At zeroth order, when the back reaction is
[25,33. In the following, the equation of state is first derived neglected, the only nonvanishing component of the gauge
for the lowest massive modes associated withtthand X field is B,, and it therefore couples only Withff, which
field, and simplified in the zero-temperature and infiniteyanishes once the transverse coordinates have been inte-
string limit. As a second step, these derivations are generagrated over. As a result, it is not surprising that the equation
ized to any number and kind of trapped fermionic mode.  of state does not involve the fermionic currents without back

reaction. As a result, it is more natural from quantization to
A. Lowest massive modes define the occupation numbers of the involved species as

1. Energy per unit length and tension state parameters.

In this section, we will only consider the lowest massive 2. Zero-temperature and infinite string limit
modes belonging to th& and X mass spectrums, with

massesn, andm, , respectively. From Eq€73) and (75),
the full effective energy momentum tensor reads

Assuming a Fermi-Dirac distribution at zero temperature
for the exitation states, the sums involved in E@4) run
over the successive values of the allowed momerkuomtil
the Fermi level of the considered species is reached. With
<?a/3>7>:f rdr dg(Tgﬁ+ Tﬁﬁ)+<?gﬁ>7)+ <?;*B>p, periodic boundary conditions on spinor fields, the allowed

momentum exitation values are discretized according to

(80)
Wheref‘:ﬁ takes the same form a_'sﬁj’g in Egs.(73) and(74) K :Z_Wn 83
once theW relevant parameters have been replaced bytthe noL
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wheren is an integer, playing the role of a quantum exitationfermions to the string forming Higgs field. Recall that in the
number. As a result, in the relevamtrepresentation of each massless case the zero modes associated with' taad X’

field, the exitation energies; are also discrete according to fields can only propagate in thez and +z direction, re-

Eq. (38), and for theWV field, the parameterg, andP, in
Eq. (74) simplify to sums of radical function of, with n

spectively[8,25,2§. The same relationships also hold for the
X field by using the relevant dimensionless mover densities

running from the vacuum to the last filled state. In order torﬁ; andg)f . Although the equation of state can be derived as
express them as explicit functions of the relevant Fermi function of these four parameters for each fermion figld

level, it is convenient to consider the infinite string linhit
—o0. In this limit one gets

.
Ny

. 1 _ 1 271'p+
lim - 2_ f(ki)—ﬁfzﬂzwdkf(k), (84)

L—o i:_Nl/l

wherep; =Ny /L are the¥ up and down mover densities,

NJ, N, standing for the number o particle moving in

the +z or —z directions, respectively. Note that the total

number of particles of this kind is thU§¢=N;+N¢‘,+1
since there is the additional rest state obtainedkfef. Af-
ter some algebra in Eq74), using Eq.(84), the parameters,
for the W field, read

2

et~
Ey=1. 1Py —Py

HILOVLH 5+ 50 (V15,450 1+ (<),

(89)

2 — — 12 2
B N1I+B; By N1+B, ]

2
Py,=2-1Py — Py By NL+By Py N1+By, ]

—In[(N1+7, +5,) (N1, +D,) 11+ () <),

(86)

wherep,, stands for the dimensionleds mover density

2

Py=="y,
vT Py

(87

while Tp:,, is defined in the same way for thE antiparticle
states. Similarly, the two other parametérs and P, read

2
— m a2 2 — 2 __ —_2
Ey=g-{Py Py HByNL+B, + By N1+P, ]

HINL5, 4B (V14 45,1+ (55 <y ),

(88)
__az ~t2 ~-2 ~+\/ ~ 2 ~—\/ ~-2
Pz//_ﬂ{l)l// Py _[P.,/, 1+P¢, tpy 1+P¢, ]
HINL(VL+5, + B (V145 + 5,011+ (55 < Pe)-
(89)

it is convenient at this stage to perform some physical sim-
plifications. Contrary to the zero mode case, the coupling
between massive particles and antiparticles of the same spe-
cies F does not vanish along the string. As a result, it is
reasonable to consider that the only kind surviving at zero
temperature corresponds to the one which was in excess in
the plasma in which the string was formed during the phase
transition. On the other hand, the energetically favored dis-
tribution at zero temperature involves necessarily the same
number of 7 up and down movers, each filling the accessible
states living on each branch of the mass hyperksde Fig.
9). As a result, in the considered energy scale, it seems rea-
sonable to consider only one state parameter per mass in-
stead of the four initially introduced by quantization, namely
Pr=Ppr=pr, for a plasma dominated by particles, say.
Setting these simplifications in Eq®85)—(89), by means
of Egs. (81) and (82) the energy density and the tension
associated with the lowest massive modes now read

1
U=M2+ o > mIn[V1+p2+7 4]
F

1 — ~ ~
+— ; M3 AP \1+5%

12

X 3 IS EA P15 (90
1
T=M2+ﬂ > m2In[V1+p2+5 4]
]_‘
1 - ~ ~

— | 2 MARYABAL B
1/2

X 2 MAIX3AB AL +55 (91)

The sum runs over the two lowest massive bound states, each
one being associated to the two fermion fields trapped in the
vortex, namely¥ and X, and havem, andm, masses, re-
spectively. As a result, the equation of state involves two
independent parameteig, andp, , in the zero-temperature
and infinite string limit. The energy per unit length and the
tension have been plotted in Fig. 10, for the lowest massive
modes in the nonperturbative sector. The curves are essen-
tially the same in the perturbative sector, but the variations
around the Goto-Nambu casé=T=M? are much more
damped. For reasonable values of the transverse normaliza-

Note that these parameters depend differently on the up arfibns, e.g.,||22||~||=2||~0.5, and for small values of the
down mover densities as expected for chiral coupling of thedimensionless parametégs, andp, , the energy density is
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be reached for acceptable valuespofi.e., p<m;/m. As a

result, the rapid decrease of the tension with respect to the
fermion densities constrains the nonperturbative sector
where the string is able to carry massive fermionic currents.
For each mass, the higher acceptable value opteasuring
transverse normalizability is roughly:/m, and from Eq.
(90), the tension becomes negative at this density rfigr
~47M?2. Much higher values ofn; will thus yield to empty
massive states.

As previously noted, the energy density and tension for
massive modes no longer verify the fixed trace equation of
state found with the zero modes alone. As a result, the lon-
gitudinal perturbation propagation spea{d: —dT/dU is no
longer equal to the speed of light, and it is even no longer
well defined since the equation of state involves more than
one state parameter. A necessary condition for longitudinal
stability can nevertheless be stated by verifying that all the

FIG. 9. The filling of massive states trapped in the string, asperturbation propagation speeds(dT/dp)/(dU/dp) ob-
expected in the zero-temperature limit, for a particular mass and fotained from variation of only one state parameter are positive
one speciesW¥ or X say. All antiparticles have disappeared by an- and less than the speed of light. The longitudinal and trans-
nihilation with particles during cooling, and the interactions be-verse perturbation propagation speemf_sand c$:T/U, re-
tween particles moving in opposite directions, as their coupling tospectively, have been plotted in Fig. 11 in the case where
the gauge field, lead to the energetically favored configuration withhere is only one species trapped as massive méder X
same number of up and down movers. Obviously, the Fermi level iy |t is interesting to note that there is a transition between
necessarily below the vacuum mass of the relevant fermion. a supersonic regime obtained at low fermion density, and a

subsonic at high fermion density. Moreover, the transition
found to grow linearly withp , andp, , whereas the tension density between the two regimes is all the more so high as
varies quadratically. As can be seen in Eg0), due to the the coupling constar:/my, is weak. It is not surprising to
minus sign inT, all linear terms inp vanish near origin, recover such zero-mode-like subsonic behayR#,33 for
whereas it is not the case for the energy density. Howevegensities much higher than the rest mass, since in these cases
for higher values of the densities, the quadratic terms domithe ultrarelativistic limit applies. On the other hand, since the
nate and both energy density and tension end up being quarass of the massive mode decreases with the coupling con-
dratic functions ofp. On the other hand, according to the stant as in Fig. 5, the transition will occur earlier in the
macroscopic formalisnj14], the string becomes unstable nonperturbative sector, as can be seen in Fig. 12. Note that
with respect to transverse perturbations when the tensiothe subsonic region is also limited by the maximum allowed
takes on negative values, as in Fig. 10 for high densitiesvalues of the massive fermion densities, an:/m, and the
Moreover, the decrease of the tension is more damped in thregions of transverse instabilities whetg becomes nega-
perturbative sector, and the negative values cannot actualljve. Inclusion of the other species does not change signifi-

FIG. 10. The energy per unit length and the tension, in uniMdf for the lowest massive modes alone, plotted as function of the
dimensionless effective densities of the two fermion fi€idsandp, . The parameters have been chosen in the nonperturbative sector, with
m¢/m,~3 andm,~m,~0.6m;. Note the linear variation of the energy density near the origin whereas the tension varies quadratically.
Moreover, in the allowed range for fermion densities, i.e., less than the fermion vacuum mass, the tension vanishes and the string becomes
unstable with respect to transverse perturbations.
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FIG. 11. The squared longitudinal and transverse perturbations propagation speeds for one massive species only, plotted as functions of
the dimensionless fermion densfiy for two values of the coupling constami /m;,. Note the transition between subsonic and supersonic
behaviors takes place at a cross denity,say, which decreases with the coupling constare Fig. 12

cantly these behaviors, the main effect being to Iow%r ticles. Moreover, and as it was the case for the zero modes,
with respect to the other fermion density, as can be seen iHnless there is only one massive species trapped in the string,
Fig. 10. the magnitude of the charge current is not a sufficient state
The current magnitude can also be derived from the aveParameter, contrary to the bosonic current-carrier ¢aSg
aged current operators in the zero temperature and infinite
string limit. From Eq.(76), using Eqs.(39) and (61), once
the transverse coordinates have been integrated over, the
world sheet components read From the numerical approach in Sec. Ill B 4, as soon as
o the nonperturbative sectors are considered, additional mas-
O\ mgx — o N T sive bound states become relevant, and it is reasonable to
(5= _; 7(qch||al+a2||+qch||a4+a3||)pf, consider that, in the zero-temperature limit, all these acces-
(92) sible Imasz,ive states v]:/illh be glso be fillclad. Morgoverr,] the
_ m complete description of the string state also requires the in-
(i%)= —; f(qchllgi—Egll+qch||Z§—E§||)T);. clusion of the zero modes in addition to the massive ones.

B. General case

. =0 3 1. Full stress tensor
The current magnitudé?®= (j%2—(j*)? therefore reads

The effective two-dimensional energy momentum tensor,
mrg_ involving all trapped modes in the cosmic string, can be
; 7FX}‘pf)i 93 obtained from Eq(80) by replacing the sum over the two
lowest massive modes with the sum over all the accessible
whereFy - and Fy » denote the transverse effective chargesmasses, plus the zero mode terms previously derived in Ref.
[25]. In the preferred frame where the stress tensor is diag-
va:quR”EiH"‘quLHZiH, onal, after some algebra, the energy density and tension
therefore read

mz
_F iy
; p YFPF

C’=4

- — 49
Fxr=qcgllasll+acs|[agll, _
mg/m
3 -
already introduced for the zero mode curref2§]. In the
case of one massive species only, the charge current magni- 23
tude simplifies to 2
mz 1.5
C?=4— FxFyp?, (99) 1
T
0.5
and thus the sign of? is only given by the sign oFyFv,

. . - 2 4 6 g mg/my
which is generally positive for reasonable values of the trans-

verse normalizations, e.d/2%||~||=2||~0.5. As a result, FIG. 12. The cross dimensionless dengity, i.e., the dimen-

the charge current generated by only one massive speciess®nless fermion density for which the transverse and longitudinal
always timelike[26], contrary to the zero mode charge cur- perturbation propagation speeds are equal, plotted as function of the
rent which was found to be possibly timelike, but also spacecoupling constantn;/my,, for one massive species only. The dashed
like [25], owing to the allowed exitations of antiparticle zero curve shows the maximum allowed valueg/m of the massive
mode states. As noted above, the antiparticle states cannfgfmion density ensuring transverse normalizability. The transition
exist for massive modes due to the nonvanishing cross sef©m supersonic regime to subsonic can thus occurs only in the
tion along the string between massive particles and antipafionperturbative sector, below this frontier.
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1/2
+ 2 IS5 Al AVI+T5 || (96) |
' i 2mv
T=M2+i2 m2 In[\/1+p%+p ]—i A7*R2
20 = A p]-'l PF T X
k

4772’R2,/,
FIG. 13. The accessible states, for thifermions, in the zero-
1/2 temperature limit. The zero modes are represented by the chiral line

=2 1152 ||~ ~
+; M |29 £ 1[5 71455
(970 o=k, while the massive modes appear as mass hyperbolae. The
Fermi levels are therefore dependent of the considered energy scale

—2 2 ~ ~
+Ef| M |25 £ 1P 71455
&, since the filling is performed by successive jumps from the zero-

The sums run over all accessible massive bound statés  modes to the massive ones, with~&. As a result, under these
massesng, of each fermion7, i.e., ¥ andX. The additional  approximations, each trapped species leads to only one state param-
parametersk, and R, are the particle densities trapped in eter which can be identified with the Fermi level of the zero mode
the string in the form of zero modes, for théand ¥ field, exitations, namely=&/27. Note that the antiparticle states have
respectively, with same notation as in Ré5). Note that the ~ not been represented due to their assumed annihilation.

zero mode contribution can also be obtained from the null

mass limit in EqQ.(90). As a result, the full expression of Rr=vr (99)
energy per unit length and tension seems to involve as many

state parameters as trapped modes in the string.

for zero mode particle states alone. From E§8) and(99),

2. Equation of state and the definition of the dimensionless densities in Bd),

As for the lowest massive modes, it is convenient to per-
form some approximations owing to the energetically fa- ~ :2_77 (100
vored filling of the involved states, in the zero-temperature P7 my P
limit. In particular, it is reasonable to consider that the non- !
vanishing cross sections between massive modes, and be- ] ]
tween zero modes and massive modes, lead to the filling dP€ e€nergy per unit length and the tension now depend ex-
all the accessible states with energy lower than a Fermi erlicitly of the two state parameters only, namely and v, .
ergy, £+ say, for each fermion fiel&F. As a result, the ener- BY means of Eq(96), the energy density reads

getically favored filling takes place by successive jumps
2 :
1+ _—V]:—l
Mz

from the lower masses to the highest ones, until the last mass 1
hyperbola withm;~¢& is reached. Obviously, this filling U=M2+_—— E me In
. . | . . 2 me<2mv l
begins with the zero modes, next with the lowest massive 5 4
modes and so on. On the other hand, only the particle states

are assumed to be relevant because of the assumed annihila- 2m 1 2 —2 g2

. o ) : +—uv—1|+— +

tion of the antiparticle states, as discussed in Sec. V A 2. As M vl T (2mvy) mf;hyf mﬁ“EYﬁ“
a result, the Fermi levels; - say, can be defined through the ! !

zero modes filling only, as the line densities of zero mode om 20 2712
exitations trapped in the stringee Fig. 13 and thus play X|—wv—1 1+ —v—1

the role of state parameters. mx mg,

According to the so-defined state parameters the massive

exitation densities,pfl, in Egs.(96) and(97), reduce to

x| @mvy)?+ > W35

mf‘é271'v;

, (98) o o 21172

with ® function is the Heavyside step function, as expected
for energy scales less than the rest mass of the considered
massive mode. The zero mode density simply reads while the tension is obtained from E@7)

Mz

7 2

My,
prR=\vim 5 Olv
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FIG. 14. The energy per unit length and the tension plotted as function of the two state parameters, i.e., the zero mode densities, in the
nonperturbative sectom;/my~4. Two additional massive bound states have been considered with respective masse9.4 and
m/m;~0.6. In the zero-temperature limit, the filling of the accessible states is performed by successive jumps as soon as the Fermi level
reaches one mass hyperb@ae Fig. 18 As a result, for the lowest values of the state parameters, only the zero modes are relevant and the
fixed trace equation of statd,+ T=2M?2, is verified, then the first and second massive modes are successively reached and become rapidly
dominant. As can be seen near the origin, the smooth variations induced by the zero modes appear completely negligible compared to the
massive ones. In the perturbative sectors, these behaviors are essentially the same, but the induced variations of the density energy and the

tension are all the more small.

time the phase space is enlarged due to the income of acces-

2
T=M2+ 1 > mzln \/1+ ilvf,l sible massive bound statésee Fig. 13

2m my<2mvy Mgz On the other hand, it is reasonable to expect competition

between the subsonic regimes induced by zero mode cur-

2 1 ) s rents, or ultrarelativistic massive modes, and the supersonic

+mi”f_l = (27vy) +m ;217» mf|||EYf||| ones coming from massive currents. In all cases, when the
i % ’ state parameters remain small, only the chiral massless states

o o 27112 are acce_ssib_le and the regime is obvic_)usly subs_onic, as can

X| — w1 \/1+ — 1 be seen in Fig. 15. However, the massive mode filling modi-

Mg, Mg, fies radically this behavior, and as found for the lowest mas-
sive modes alone, as soon as a mass hyperbola is reached,

w| 2w+ E =2 sz I the longitudinal pertu_rbations propagation speed falls dras_ti—
Vo 5, S, XA cally and ends up being less than the transverse perturbation

! velocity. There is a rapid transition from the subsonic to the

o \/ o 2]1/2 supersonic regime. For higher densitiesthe behavior de-
X| —vs—1 1+ —wve1 . (102 pends on the coupling constant. More precisely, in the non-
mx mg, perturbative sector, the ultrarelativistic limit can be applied

before the energy scales reach the fermion vacuum masses,
. . nd thus the subsonic regime is recovered, whereas it is not

The full energy per unit length and tension have been plotteﬁ1 : : N

in Fig. 14 for a configuration including two massive bound e case in the perturbative sector, as can be seen in Fig. 15.

states, in addition to the zero mode ones. Due to the zero-

temperature limit, for densities smaller than the first acces-
sible mass, the Heavyside functions in E@8) vanish, as a
result, from Eqs(101) and (102 the fixed trace equation of All these results have been derived without considering
state is recoveref®5] with the back reaction effects induced by the trapped charge cur-
rents along the strinsee Eq.(92)]. As was already dis-
a2 a2 cussed for the zero modes in RE25], these currents yield
U=Mtamvp,, T=M"—dmvw,. (103 back reacted gauge fielB, andB,, which might modify the
vortex background and the fermionic equations of motion.
Once the first mass hyperbola is reached, the behaviors of théowever, such perturbations of the Higgs and orthoradial
energy per unit length and tension are clearly modified an@auge field profilegsee Fig. 1 can be neglected fd,B' and
become very rapidly dominated by the mass terms, and, &@,B* small compared to the string forming gauge field
found for the lowest massive modes alone, the energy derBGB"~m§. Using Egs.(40) and (92), the dimensionless
sity begins to grow linearly with respect to the state param-<charge currents associated with one massive bound state, and
eters, whereas the tension decreases quadratically. Actuallyenerating the dimensionless gauge fidklsg'm,, roughly
the plotted curves in Fig. 14 show slope discontinuities eaclhead

3. Discussion
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FIG. 15. The squared longitudinal and transverse perturbation propagation speeds for a spectrum involving two massive states in addition
to the zero mode, plotted as functions of the state parametef one species, the other being fixed to a particular value. The curves have
been plotted for two values of the coupling constant to the Higgs fieldm,~1 andm;/m,~4. Note the successive transitions between
subsonic and supersonic behaviors according to the allowed jumps to the mass hyperbolae. However, the fermion vacuum mass limit does
not allow the ultrarelativistic limit to take place in the perturbative sector, as it was the case for the lowest massive modes alone. In this case,
the string dynamics follows a supersonic regime as soon as the first massive bound state is filled.

~ Cr my along the string world sheet, the energy per unit length and
P ) (104 the tension of a cosmic string carrying any kind of fermionic
current, massive or massless, have been computed, and
with ¢ the fermion charges, i.ecs. of ¢5 . As a result, the found to involve as many state parameters as different
s PR AL R trapped modes. However, in the zero-temperature limit, only
bac_k reaction on the vortex background is negligible as longy,o have been found to be relevant and they can be defined
asm<2w?7, which is clearly satisfied in the full perturba- a5 the density numbers of the chiral zero mode exitations
tive sector. Moreover, sincen,= 7, the previous deriva- associated with the two fermion¥ and X’ coupled to the
tions of the equation of state are also valid in the nonperturyjggs field.
bative sector providedh<27?m,//\, and thus depend on As a result, it was shown that the fixed trace equation of
the values of self-coupling constant of the Higgs fieldout  state no longer applies as soon as massive states are filled,
also on the mass spectrum. As can be seen in Fig. 5, the rati@., for energy scales larger than the lowest massive mode
m/m; decreases with the fermion vacuum masg as a belonging to the mass spectrum. Moreover, the filling of
resultm/my, increases all the more slowly, which allows to massive states leads to a rapid transition from the subsonic
have bothmy>m;, andm<2z?m;/\. regime, relevant with massless, or ultrarelativistic currents,
Moreover, in order for the new gauge fielBsandB, to  to supersonic. Such properties could be relevant in vorton
not significantly modify the fermionic equations of motion, evolution since it has been shown that supersonic regimes
from Eg. (13), they have to verifygc,B,<w~mz. As a  generally lead to their classical instabilitigxl]. As a result,

result, Eq.(104), andB,,/m,~]“ yield the condition in the perturbative sectors for whichy<m,,, the protovor-
tons could be essentially produced at energy scales necessar-
m2 ¢ ily smaller than the lower mass of the spectrum, where the
b “F . . . . .
— <L (105  fermionic currents consist essentially in zero modes. In this
7° Co way, vortons with fermionic currents could be included in the

o ) - more general two energy scale modgld]. However, the
As expected, it is essentially the same condition as the ONgresent conclusions are restricted to parameter domains of

previously derived for the zero modes alofb]. On the  the model where the back reaction can be neglected. Al-
other hand, although the back reaction on the fermionighoygh it is reasonable to consider that the back reaction
equations of motion can deeply modify the zero mode CUrgftects may simply modify the massive bound states through
rents [34], since tgesmasswe bound states are no longefeir mass values, their influence on zero modes are expected
eigenstates of the”y” operator, it is reasonable 0 assume, pe much more significant. In particular, the modified zero
that rather than modify their nature and existence signifiy,odes cannot be any longer eigenstates ofythg® operator
cantly, the back reaction gauge fields may only modify their[25], so one may conjecture that they acquire an effective

mass spectrum. In this sense, back reaction would indeed bass Jeading to massive states potentially instable for cos-
a correction. mic string loops.

VI. CONCLUSION
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