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Localization of massive fermions on the brane
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We construct an explicit model to describe fermions confined on a four dimensional brane embedded in a
five dimensional anti–de Sitter spacetime. We extend previous works to accommodate massive bound states on
the brane and exhibit the transverse structure of the fermionic fields. We estimate analytically and calculate
numerically the fermion mass spectrum on the brane, which we show to be discrete. The confinement lifetime
of the bound states is evaluated, and it is shown that existing constraints can be made compatible with the
existence of massive fermions trapped on the brane for durations much longer than the age of the Universe.
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I. INTRODUCTION

The idea that our universe may be a hypermembrane
five dimensional spacetime has received some attentio
the past few years after it was realized that gravity could
localized on a three-brane embedded in an anti–de S
spacetime@1#. Since then, much work has been done in
cosmological context@2# and there is hope that a consiste
~i.e., mathematically self-contained and observationally s
isfying! high dimensional model might soon be formulate
For instance, it has been proposed that a model@3# based on
such ideas could present itself as an alternative to the in
tionary paradigm, although for the time being the cont
versy as to whether or not such a model might have anyth
in common with our Universe is still going on@4#.

The idea is not new, however, but has evolved from
standard Kaluza-Klein approach to that of particle locali
tion on a higher dimensional defect@5,6#. In particular, it has
been shown that massless bulk scalars and gravitons s
the property to have a zero mode localized on the brane@7#
in the Randall-Sundrum model. Various mechanisms@8#
have been invoked according to which it would be possi
to confine massless gauge bosons on a brane, so that th
hope to achieve a reasonable model including all the kno
interactions in a purely four dimensional effective model.

A mechanism permitting localization of massless ferm
ons on a domain wall was described in Refs.@5,9#. However,
although appealing this mechanism might be, it should
emphasized that actual fermions, as seen on an ever
basis in whatever particle physics experiment, are mass
so that a realistic fermionic matter model on the brane m
accommodate for such a mass. The question of localiza
of massive fermions on the brane thus arises naturally, an
is the purpose of this work to provide the transverse br
and fermionic structure that leads to this localization. Up
now, fermions have been confined under the restricting
pothesis that the brane self gravity was negligible@10#, or
that it was embedded in a Minkowski spacetime with o
@11# or two @12# transverse dimensions~see also@13# for the
0556-2821/2002/65~4!/044016~14!/$20.00 65 0440
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localization of fermion on a stringlike defect in five dimen
sion!.

Our goal is to transpose the original work of Ref.@12# to
the brane context. For that purpose, we realize the brane
domain wall. Such domain wall configurations in anti–
Sitter space have already been studied@14,15#. We will as-
sume that five dimensional fermions are Yukawa-coupled
the domain wall forming Higgs field, as in the usual case
cosmic strings. In this respect, our work somehow exte
Ref. @10#, where the mass term was put by hand, and R
@11# where the gravity of the wall was neglected.

We start, in the following section, by recalling the doma
wall configuration of a Higgs field in a five dimension
anti–de Sitter spacetime and discuss briefly its properties
Sec. III, we describe the dynamical equations of fermio
coupled to this domain wall in order to show that they ob
a Schro¨dinger-like equation with an effective potential whic
can trap massive modes on the wall. The asymptotic st
ture, i.e., deep in the bulk~far from the brane!, is not
Minkowski space, so that the effective potential felt by t
fermions possesses a local minimum at the brane locat
but no global minimum, as first pointed out in Ref.@10#. As
a consequence, the bound states are metastable and ferm
can tunnel to the bulk.

We then provide an analytical approximation of the effe
tive potential, thanks to which we compute analytically,
Sec. IV, the mass spectrum of the fermions trapped on
brane. We obtain the mass of the heaviest fermion that
live on the brane and estimate its tunneling rate. This resu
compared to a full numerical integration, performed in S
V. In a last section, we investigate the parameter space
after having compared our results to previous ones, we c
clude that there exists a wide region in the parameter sp
for which the fermion masses can be made arbitrary low,
comparable to the observed small values~with respect to the
brane characteristic energy scale!, while their confinement
lifetime can be made much larger than the age of the U
verse. Such models can therefore be made viable as des
ing realistic matter on the brane.
©2002 The American Physical Society16-1
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II. MEMBRANE CONFIGURATION IN AdS 5

We consider the action for a real scalar fieldF coupled to
gravity in a five dimensional spacetime

S5E F 1

2k5
2 ~R22L!1

1

2
gAB]AF]BF2V~F!GAgd5x

[E Agd5x@Lgrav1LL1LF# ~1!

where gAB is the five dimensional metric with signatur
(1,2,2,2,2), R its Ricci scalar,L the five dimensional
cosmological constant andk5

2[6p2G5 , G5 being the five
dimensional gravity constant. Capital Latin indicesA,B . . .
run from 0 to 4. The potential of the scalar fieldF is chosen
to allow for topological membrane~domain wall like! con-
figurations,

V~F!5
l

8
~F22h2!2, ~2!

wherel is a coupling constant andh5^uFu& is the magni-
tude of the scalar field vacuum expectation values~VEV!.1

Motivated by the brane picture, we choose the metric
the bulk spacetime to be of the warped static form

ds25gABdxAdxB52dy21e22s(y)hmndxmdxn

52dy21gmndxmdxn, ~3!

wherehmn is the four dimensional Minkowski metric of sig
nature (1,2,2,2), and y the coordinate along the extr
dimension. Greek indicesm,n . . . run from 0 to 3.

With this metric ansatz, the Einstein tensor compone
reduce to

Gmn52gmn~6s8223s9!, Gyy526s82, ~4!

where a prime denotes differentiation with respect toy. The
non-vanishing components of the matter stress-energy te

TAB[2
dL F

dgAB
2gABLF ~5!

are given by

Tmn5
1

2
gmn~F8212V!, Tyy5

1

2
~F8222V!. ~6!

It follows that the five dimensional Einstein equations

GAB1LgAB5k5
2TAB ~7!

can be cast in the form

1Note, that, because of the unusual number of spacetime dim
sions, the fields have dimensions given by@R#5M2, @F#5M3/2,
@L#5M2, @l#5M 21, @h#5M3/2, and @k5#5M 23/2 (M being a
unit of mass!.
04401
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3

k5
2
s95F82 ~8!

6s825
k5

2

2
~F8222V!2L, ~9!

while the Klein-Gordon equation takes the form

F924s8F85
dV

dF
. ~10!

Equations~8!–~10! is a set of three differential equations fo
two independent variables (F ands). Indeed, as can easil
be checked, the Klein-Gordon equation stems from the E
stein equations providedF85” 0. To study the domain wal
configuration, we choose to solve the first Einstein equat
~8! together with the Klein-Gordon equation~10!.

This system of equations must be supplemented w
boundary conditions. By definition of the topological defe
like configuration, we require that the Higgs field vanish
on the membrane itself, i.e.,F50 for y50, while it recov-
ers its VEV in the bulk, so that limy→6`F56h. Note that
the sign choice made here is arbitrary and corresponds to
so-called kink solution; the opposite choice~i.e.,
limy→6`F57h) would lead to an anti-kink whose physica
properties, as far as we are concerned, are exactly equiva
As for the metric functions, it stems from the requiremen
that one wants to recover anti–de Sitter asymptotically,
that one demands thats8 tends to a constant fory→6`.
This constant can be determined using Eq.~9!, so that
limy→6`s856A2L/6. Note that asy changes sign at the
brane location, there is no choice for the sign of the funct
s in this case. Note also that, as is well known, the sta
hypothesis implies that the bulk cosmological constantL
must be negative, and therefore the five dimensional sp
time to be anti–de Sitter.

With the convenient dimensionless rescaled variables

%[yAuLu, H[
F

h
, S[

ds

d%
, ~11!

the dynamical equations read

Ṡ5
a

3
Ḣ2, ~12!

Ḧ24SḢ54bH~H221!, ~13!

where a dot refers to a derivative with respect to% and the
two dimensionless~positive! parametersa andb are defined
by

a[k5
2h2, b[

lh2

8uLu
. ~14!

These parameters are not independent since, for an
trary value ofb say, there is only one value ofa for which
the boundary condition S(0)50, or equivalently

n-
6-2
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LOCALIZATION OF MASSIVE FERMIONS ON THE BRANE PHYSICAL REVIEW D65 044016
lim%→2`S(%)521/A6, is satisfied. This stems from the fa
that Eq.~12! is a first order equation inS, so that only one
boundary condition is freely adjustable, and we choose i
be at%→1`. Once this choice is made, the value ofS on
the brane is completely determined, and unless the par
eters are given the correct values, it does not vanish. As
solution must be symmetric with respect to the extra dim
sion coordinatey, one must tune the parameters in order
have a meaningful solution~i.e. for which the metric and its
first derivative are continuous at%50). This is reminiscent
of the relation that should hold between the brane and b
cosmological constants@15#.

Equations~12! and ~13! have been solved numericall
with the relevant boundary conditions. The field profiles a
depicted on Fig. 1 for two arbitrary values of the parame
b.

The relation between the parametersa and b such that
the metric is regular at the brane location is depicted on F
2. As can be seen on the figure, it consists essentially in
power laws. For small values ofb, one finds roughlya
;1/b, which becomes exact in the limitb→0, while for
large values ofb, one getsa; 4

3 b21/2, which is, again, exac
in the limit b→`. We were able to find the best fit

a25
1

b F 1

b
1S 4

3D 2G , ~15!

which, as can be seen on the figure, is almost exact ev
where. This translates into the relation

uLu5
1

9
lhSA11S 9k5

2h2

8 D 2

21D ~16!

between the 5 dimensional cosmological constant and
microscopic parameters, which corresponds to the usua
lations between brane and bulk cosmological constants.

FIG. 1. The rescaled Higgs field amplitudeH ~full line for b
50.01 and dashed line forb50.1) and warp factor derivativeS
~dotted line forb50.01 and dot-dashed line forb50.1) as func-
tions of the rescaled extra dimension coordinate%.
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III. LOCALIZATION OF FERMIONS ON THE WALL

This section is devoted to the description of the Dir
equation in five dimensions with the domain wall configur
tion obtained in the previous section.

The minimal representation of spinors in five dimensio
can be chosen to be four dimensional@16#. The five dimen-
sional Clifford algebra can then be constructed from
usual four dimensional one by adding theg5 matrix to close
the algebra. Ifgm design the usual four dimensional Dira
matrices in Minkowski space in the chiral representation,
Dirac matrices in five dimensional Minkowski space,GA, are

Gm5gm, G452 ig5 ~17!

and they satisfied the usual Clifford algebra

$GA,GB%52hAB ~18!

wherehAB stands for the five dimensional Minkowski me
ric. Since in this representation the Dirac matrices satisfy

G55 iG0 . . . G45Id ~19!

the five dimensional spinors have neither Weyl nor Majora
representation. It follows that the Dirac Lagrangian in fi
dimension for fermions coupled to the Higgs domain wall
necessary of the form

Lc5Ag~ i C̄GADAC2gFC̄FC!

5AgC̄@ ies(y)GmDm1 iG4]y2gFF#C ~20!

where the Lorentz covariant derivative with spin connect
is @17#

Dm[]m2
1

2
s8~y!e2s(y)GmG4. ~21!

FIG. 2. Relation between the dimensionless constantsa andb.
The thick curve represents the result of the numerical integrat
while the ~hardly distinguishable! thin curve is the best analytica
fit.
6-3
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RINGEVAL, PETER, AND UZAN PHYSICAL REVIEW D65 044016
We emphasize that the sign of the couplinggF of the spinor
C to the Higgs field is arbitrary and represents a coupl
either to kink or to anti-kink domain wall. For definitenes
we shall consider in what follows only the case of a ki
coupling, and thus assume without lack of generality t
gF.0.2

The variation of the Lagrangian~20! leads to the equation
of motion of the spinor field, namely the Dirac equation
five dimensional anti–de Sitter space for a fermionic fie
coupled to a Higgs field,

@ iG4
„]y22s8~y!…1 ies(y)Gm]m2gFF#C50. ~22!

This equation involves the matrixg5 ~throughG4) and it is
thus convenient to split the four dimensional right- and le
handed components of the five dimensional spinor and
separate the variables as

C~xm,y!5F11g5

2
UR~y!1

12g5

2
UL~y!Gc~xm!, ~23!

wherec(xm) is a four dimensional Dirac spinor, whileUR(y)
andUL(y) are yet-undetermined functions ofy. In what fol-
lows, we want the five dimensional Dirac equation to yie
an effective four dimensional massive Dirac equation, w
an effective massm ~energy eigenvalue of the bound state!.
Such a requirement implies that

igm]mc5mc, ~24!

or, equivalently, in terms of the right- and left-handed co
ponents

igm]mcR5mcL , igm]mcL5mcR, ~25!

where the right- and left-handed components of the four
mensional spinor are defined as

cR[
11g5

2
c and cL[

12g5

2
c. ~26!

Contrary to the case studied in Ref.@10#, the massm is not
an arbitrary parameter and will be determined later.

ChoosingcR andcL as the independent variables inste

of C and C̄, and inserting Eq.~25! into the equation of
motion ~22! while using the splitting ansatz~23! yields the
differential system for the two functionsUR/L(y),

@]y22s8~y!2gFF#UR~y!52mes(y)UL~y!, ~27!

@]y22s8~y!1gFF#UL~y!5mes(y)UR~y!.
~28!

To simplify the notations, it is convenient to introduce t
dimensionless rescaled bulk components of the fermions

2Note also that the dimensions are given by@C#5M2 and @gF#
5M 21/2.
04401
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Ũ~% ![e2(3/2)s(%)
U~% !

uLu1/4
, ~29!

in terms of which the system~27!,~28! takes the form

S ]%2FgFH1
1

2
SG D ŨR52mesŨL , ~30!

S ]%1FgFH2
1

2
SG D ŨL5mesŨR, ~31!

with the dimensionless rescaled mass and coupling cons

m[
m

AuLu
and gF[

gFh

AuLu
. ~32!

Let us first concentrate on the special casem50. The system
~30!,~31! then consists in two decoupled differential equ
tions and the zero mode states@18# are recovered. Asymp
totically, these functions behave as

ŨR~%→6`!;e(gF11/2A6)u%u, ~33!

ŨL~%→6`!;e2(gF21/2A6)u%u. ~34!

Thus, only the left-handed solutionŨL may remain bounded
@7,9#, and yet provided

gF.
1

2A6
. ~35!

Indeed, the right-handed zero modes could have been
tained by considering the coupling of fermions to the an
kink Higgs profile.3 We thus recover the well-known fact tha
massless fermionsmustbe single-handed in a brane mode
contrary to the ordinary four dimensional field theory
which they simplycan.

Let us now focus on the more interesting massive case
which m5” 0. Then the system~30!,~31! can be decoupled by
eliminating ŨR say. For that purpose, we differentiate E
~31! with respect to% and express]%ŨR using Eq.~30! and
ŨR using Eq.~31! again to get

F]%
222S]%1S m2e2s1

3

4
S22gF

2H22gFSH2
1

2
]%S

1gF]%H D G ŨL50, ~36!

ŨR5
e2s

m F]%1S gFH2
1

2
SD G ŨL .

~37!

3The coupling with and anti-kink for whichgF,0 would yield the
right-handed solution with the constraintgF,21/2A6.
6-4
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LOCALIZATION OF MASSIVE FERMIONS ON THE BRANE PHYSICAL REVIEW D65 044016
This system is strictly equivalent to the initial syste
~30!,~31! since differentiating Eq.~37! and then using Eq
~36! gives back Eq.~30!. It is thus important to keep both
equations. Note that the integration of the first equation~36!

will require two initial conditions but thatŨR will then be
completely determined and thus requires no extra consta
integration. As a consequence, it is sufficient to solve
second order equation~36! for ŨL in order to fully determine
the left- and right-handed bulk fermion profiles.

Equation~36! can be recast into a Schro¨dinger-like sec-
ond order differential equation

]%
2 ÛL1v2~% !ÛL50, ~38!

where the functionv is defined by

v2~% ![m2e2s(%)1]%S gFH1
1

2
SD2S gFH1

1

2
SD 2

~39!

with the new function

Û~% ![e2s(%)Ũ~% !. ~40!

Our aim will now be to find the zero modes of this ne
equation; as previously discussed, they will be equivalen
the massive bound states we are looking for on the bran

In order for the fermions to be confined on the brane,
minimum ofv2 needs to be negative to imply an exponent
decrease ofÛL in the bulk. This is essentially equivalent t
the condition~35! that was obtained for the case of ze
modes. We shall assume henceforth that this condition
holds for massive modes, i.e., that the value ofgF necessary
to bind massive fermions on the brane is at least that to b
massless ones. Indeed, Eq.~39! shows that the minimum o
v2 can only be negative for large values of the parame
gF . However, since the first term of Eq.~39! increases ex-
ponentially at large distance from the brane, then, ifm
Þ0, v2 will necessarily become positive. This will yiel
asymptotic radiative behaviors of the spinor bulk comp
nents. Physically, it can be interpreted as a tunneling of
fermions from the brane to the bulk@10#. On the other hand
on the brane, the Higgs fieldH and the derivative of the warp
factor S vanish, so thatv2(0) is positive. As a result, the
fermions can freely propagate in a tiny region around
brane, but certainly only for particular values ofv2 ~and thus
of m) satisfying the boundary conditions with the surroun
ing exponential decreasing regions. The effective poten
Veff52v2, depicted in Fig. 3, exhibits a local minimum o
the brane and minima at infinity. The modes trapped on
brane are thus expected to have discrete massesm on the
brane and non-zero probability of tunneling into the bulk

IV. ANALYTIC ESTIMATE OF THE MASS SPECTRUM
AND OF THE TUNNELING RATE

Since the Higgs and warp factor profiles are not kno
analytically, it isa priori impossible to solve Eq.~38! ana-
lytically. Nevertheless, since the fermions are expected to
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trapped in a neighborhood of the brane, we can look
series solutions in%.

In Sec. IV A, we give an approximation of the effectiv
potentialVeff which will then be used to determine the boun
states and the mass spectrum in Sec. IV B. We end this
tion by determining in Sec. IV C the tunneling rate in th
approximation. The validity of this approach is difficult t
assess and it will be justifieda posteriorion the ground of a
full numerical integration of the system in the following se
tion. In the whole section, it is assumed thatm.0.

A. Approximation of the effective potential

In a neighborhood of the brane we can expand the Hi
and warp factor profiles as

H~% !5H1%1H3%
31O~%4!, ~41!

S~% !5S1%1S3%
31O~%4!, ~42!

where both the constant and quadratic terms vanish for s
metry reasons. To simplify the analysis, we shall make us
the equations of motion in the form

Ṡ5
2

3
F~S,H !, ~43!

and

Ḣ56A2

a
F~S,H !, ~44!

where the functionF(S,H) is defined as

F~S,H ![6S21ab~H221!221 ~45!

FIG. 3. The effective potentialVeff52v2 felt by ÛL . We chose
the parametersgF5100 andm50.5gF ~an illustrative value, not
necessarily leading to a bound state! in the Higgs and gravity back-
ground similar to those of Fig. 1, and we have assumed, for d
niteness, the valuesa51.63,b51.23. The fermions are trapped o
the brane whereVeff is negative and have a non-zero probability
tunneling into the bulk due to combined effects of the Higgs fie
and gravity which produce a finite potential barrier.
6-5
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RINGEVAL, PETER, AND UZAN PHYSICAL REVIEW D65 044016
~recall thatL,0).
Plugging the expansions~41! and ~42! into Eqs.~43! and

~44!, it follows that the functionF(S,H) can be expanded u
to third order as

F~S,H !;ab211~6S1
222abH1

2!%21O~%4!. ~46!

Inserting this expression back into the equations of mot
yields the three coefficients

S15
a

3
H1

2 , ~47!

S35
4

9
aH1

2Fa3 H1
22bG , ~48!

H35
2

3
H1Fa3 H1

22b G ~49!

in terms of the coefficientH1

H1[]%Hu%505A2

a
~ab21!. ~50!

Then, the frequencyv2 can be expanded as an harmon
oscillator potential

v2~% !5vb
2~% !1O~%4! with vb

2~% ![v0
22V%2

~51!

wherev0
2 andV are given by

v0
2[m21gFH1S 11

a

6gF
H1D ~52!

V[H1gF
2FH11

2

gF
S b2

a

6
H1

2D
1

a

3gF
2

H1S 2b2m22
7a

12
H1

2D G . ~53!

The functionv2 is well approximated byvb
2 only near the

brane and the expansion~51! is no longer valid at large dis
tance where the exponential term dominates@see Eq.~39!#.
Once the fixed asymptotic values of the Higgs and w
factor are reached, the frequency~39! behaves as

v2;v`
2 ~% ! with v`

2 5m2e2u%u/A62S gF1
1

2A6
D 2

.

~54!

The analytical estimate of the functionv2 is thus obtained by
matching the two limiting asymptotic behaviors~51! and
~54!, respectivelyvb

2 closes to the brane andv`
2 far from it,

as

v2~r!5H vb
2 , uru,rm,

v`
2 , uru.rm.

~55!
04401
n

p

The dimensionless matching distance%m has to be solution
of

vb
2~%m!5v`

2 ~%m!, ~56!

in order to get a continuous function. Note that, because
the symmetry on both sides of the wall, we can assume%m
.0 without lack of generality. For large values ofgF , and
using Eq.~53!, we get

AV;gFH1 , ~57!

leading to

%m;
1

H1
. ~58!

As it turns out, the faster the asymptotic solution is reach
the better the approximation works. This is the case in p
ticular for H1.1,

The exact~numerically integrated! effective potential and
its approximation are compared in Fig. 4. The global sha
are effectively the same, and in spite of uncertainties at
termediate regions due to this crude approximation, it is r
sonable to expect the same fermion physical behaviors
both potentials. Note that for~cosmologically favored!
higher value ofab, the Higgs field and the warp factor reac
more rapidly their asymptotic values leading thus to a be
agreement between the two potentials, as can be see
Fig. 4.

B. Determination of the bound states

Given the approximate frequency~55!, the equation of
motion for the left-handed bulk spinor componentÛL re-
duces to

%.%m: F ]%
21m2e2u%u/A62S gF1

1

2A6
D 2G ÛL50, ~59!

%,%m: @]%
21v0

22V%2#ÛL50, ~60!

with the requirement thatÛL and its derivative are continu
ous at%m. Note also that we consider only the case%.0,
physics on both sides of the brane being completely symm
ric under the transformation%→2%. Let us consider the
solutions in each region separately.

%.%m: we introduce the new variable

z[A6meu%u/A6, ~61!

in terms of which Eq.~59! reduces to a standard Bessel d
ferential equation

F d2

dz2
1

1

z

d

dz
1S 12

l 2

z2D G ÛL50, ~62!

the order of which being given by
6-6
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FIG. 4. The effective potentialVeff52v2 and the approximate analytic effective potential~dashed curve! obtained from the matching o
its two asymptotic expansions near the brane and at infinity. On the left panel, the parameters are the same as on Fig. 3, i.e.,gF5100 and
m50.5gF . As the asymptotic solution is not reached very close to the brane, the approximation is rather poor and the two solution
in good agreement at intermediate regions. On the right panel, we use the new parameter valuesgF5100 andm50.6gF , obtained fora
50.1865 andb553.62; a much better approximation is obtained around the potential barrier provided the Higgs field and warp fact
their vacuum value rapidly, i.e., for larger value ofab. As in Fig. 3, the parameters are chosen to illustrate the point and do not neces
correspond to existing bound states.
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1

2
. ~63!

Sincev2 is positive at infinity, the asymptotic form of th
solution is necessary radiative, as was already pointed o
the previous section. The most general solution of the Be
equation~62! is a linear superposition of Hankel function
Since we are interested only in ingoing waves in order
study a tunneling process, the most general solution take
form

ÛL~z!5BHl
(1)~z!, ~64!

whereHl
(1)(z) is the Hankel function of the first kind, propa

gating towards the brane at infinity@19#

Hl
(1)~z→`!;A 2

pz
ei (z2 lp/22p/4) ~65!

andB is an arbitrary complex constant.
%,%m: performing operations similar to those of the pr

vious case, we cast Eq.~60! on the form

F d2

dx2
2S 1

4
x21aD G ÛL50, ~66!

in which we have introduced the new variable and param

x[~4V!1/4%, a[2
v0

2

2AV
. ~67!

The general solutions of Eq.~66! are the parabolic cylinde
functions, namelyU(a,x) andV(a,x), of which ÛL(x) can
be expressed as linear superpositions. In the limitx@uau,
these solutions scale as@20#
04401
in
el

o
he

er

U~a,x!;e2(1/4)x2
x2a21/2, and

V~a,x!;A2

p
e(1/4)x2

xa21/2. ~68!

Since we are interested in confined fermion states on
brane, only the exponentially decreasing function is releva
so that the general solution near the brane reads

ÛL~x!5AU~a,x!, ~69!

whereA is a complex integration constant.
The general solutionÛL(%) for all % is obtained by

matching the two different solutions at%5%m. Since%m
corresponds to the maximum positive value of the effect
potential ~see Fig. 4!, it is reasonable to consider that th
Hankel function at that point can be expanded around sm
values of their argument with respect to their order@19#, i.e.,

Hl
(1)~zm!;2

2l

p
G~ l !zm

2 l , ~70!

while the parabolic cylinder functions can be taken in th
large argument asymptotic limit~68!. This is the same kind
of approximation as that made to derive the effective pot
tial. Physically, the initial conditions on the brane, i.e.,ÛL(0)
and ]%ÛLu0, are chosen in such a way that the asympto
exponentially growing functionV(a,x) contribution is ev-
erywhere negligible. Once these initial conditions are fix
they fully determine the solution on the other side of t
brane, i.e., forx,0. The asymptotic expansion~68! can be
analytically extended to2uxu5uxueip and yields@21#

U~a,2uxu!;e2(1/4)uxu2uxu2a21/2e2 ip(a11/2). ~71!
6-7
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Thus, onceÛL(0) and]%ÛLu0 are fixed, the matchings be
tweenHl

(1)(zm) andU(a,2uxmu) on one side, andU(a,uxmu)
on the other side fully determine the bulk componentÛL for
all %.

The last constraint comes from Eq.~37! determining the
right-handed spinor bulk function. It is well defined if an
only if both ÛL and]%ÛL are not singular. In fact, the deriva
tive of the parabolic cylinder functionU(a,x) is generally
discontinuous atx50. With the help of the Wronskian o
U(a,x) andU(a,2x) @20#

U~a,x!
dU~a,2x!

dx
2U~a,2x!

dU~a,x!

dx
5

2p

GS 1

2
1aD ,

~72!

we can construct the derivative discontinuity atx50. This is

dU~a,02!

dx
2

dU~a,01!

dx
52~a/2!1~3/4!

GS 3

4
1

a

2D
GS 1

2
1aD , ~73!

where we have used the particular value@20#

U~a,0!5
Ap

2~a/2!1~1/4!GS 3

4
1

a

2D . ~74!

Imposing that the derivative ofÛL is continuous atx50
results in imposing that the jump~73! vanishes. This is the
case if and only ifa is solution of

GS 3

4
1

a

2D
GS 1

2
1aD 50. ~75!

SinceG is singular for negative integer arguments, this co
dition is satisfied only for

2a2
1

2
52n, ~76!

wheren is a positive integer. Note that2a21/2 cannot be
odd since then the numerator of the Wronskian~75! will also
be singular resulting in a finite derivative jump atx50. The
condition ~76! shows that the trapped fermions on the bra
have necessarily discrete massesmn which read, using the
values of the parameters~52!, ~53! and ~67!,
04401
-

e

mn
25gFH1F ~4n11!

3A11
6b

3gFH1
1

24ab1a2H1
2@~4n11!225#

36gF
2

2S 11
aH1

6gF
@~4n11!211# D G . ~77!

This mass spectrum is valid forn.0 since our derivation
assumed thatm.0. In the limiting case wheregF@1, it
reduces to the much simpler form for the lowest masses

mn;2AnAgFH1. ~78!

On the other hand,m2 cannot reach very large values since
is necessary to have a potential barrier in order to h
bound states. From the expression of the effective poten
~54!, the barrier is found to disappear when

v`
2 ~%m,mmax!;0. ~79!

Again in the limit wheregF@1, using the value~58! of %m,
one gets the maximum accessible reduced massmmax for m
as

mmax;gFe
21/A6H1. ~80!

The maximum number of distinct massive states trapped
the brane can thus be estimated to be

nmax;IntFgF

1

4H1
e22/A6H1G . ~81!

For the parameters chosen in Fig. 3, one obtainsmmax
;0.68gF and there arenmax511 massive modes trapped o
the brane.

C. Fermion tunneling rate

Since the effective potential becomes negative at infin
the massive modes trapped on the brane are subject only
finite potential barrier. They are in a metastable state and
tunnel from the brane to the bulk. In this section we use
previous analytic solution to estimate the tunneling ra
Would this rate be too high, one would observe an effect
violation of energy-momentum conservation on the bra
i.e., in four dimension, thereby contradicting observation.

Our starting point is the analytic solution for the lef
handed bulk function that was derived in the previous s
tion:

%,%m: ÛL~% !5AU~a,A2V1/4% !, ~82!

%.%m: ÛL~% !5BHl
(1)~A6meu%u/A6!.

~83!

The transmission factor can easily be derived from
matching conditions of the left-handed bulk fermion comp
nent at%5%m. First of all, ÛL has to be continuous. Usin
6-8
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the expansions~68! and ~70! and the value~76! of the pa-
rametera, permits to find the relation

Ae2(1/2)AV%m
2
~2AV!n%m

2n52
i

p
BG~ l !SA3

2
mnD 2 l

e2 l%m /A6

~84!

between the coefficientsA andB. Making use of the expres
sion ~58! for %m yields

B

A
5

ip

G~ l ! SA3

2
mnD lS l 2

3AV
D n

expF l 2

12AV
G . ~85!

Assuming, as above, thatgF@1 ~so that l @1) we can
expandG( l ) as

G~ l !; l l 21/2e2 lA2p, ~86!

so that, using expressions~57!, ~58!, and~63! respectively of
V, %m, and l, we get thatB/A is approximated by

B

A
; iAp

2 S 2

H1
D n

61/4gF
n11/2

3expF2A6gFS ln
2mmax

m
211

1

2A6H1
D G . ~87!

The transmission coefficient from the brane to the b
associated withÛL can thus be defined by

T̂[
ÛL~ l !

ÛL~0!
, ~88!

with ÛL( l )5BHl
(1)( l ), is evaluated at the turning point%

5 l where the spinor bulk component begins to propag
freely. Using the behavior~74! of the function at the origin,
the ratio~87! and the properties@19# of the Hankel function

Hl
(1)~ l !5S 4

3D 2/3 e2 ip/3

G~2/3!
l 21/3, ~89!

the transmission coefficient~88! reduces to

T̂;
24/3G~1/22n!

37/12G~2/3!
eip/6H1

2ngF
n11/6

3expF2A6gFS ln
2mmax

m
211

1

2A6H1
D G . ~90!

It follows, using the definition~40!, that the probability for a
trapped particle on the brane to tunnel to the bulk is given

P[uT̃ u25e2l /A6uT̂ u2. ~91!

The characteristic time for a fermionic mode trapped
the brane can be roughly estimated by
04401
k

te

y

n

tb;yb5
%b

AuLu
, ~92!

whereyb represents the typical length, in the fifth dimensio
felt by a particle on the brane. As can be seen on Fig. 5,
spinor bulk components are exponentially damped as soo
the effective potential becomes positive. Thus%b can be es-
timated by the solution ofvb

2(%b)50 so that, keeping in
mind thatm,gF ,

%b
21;AH1gF. ~93!

The lifetime tn of a fermionic bound state on the brane l
beled byn,

tn5
tb

P , ~94!

can be estimated by

tn;
37/6G2~2/3!

211/6G2~1/22n!
H1

2n21/2
gF

22n25/6

AuLu

3expS 2A6gFF ln
2mmax

mn
212

1

A6
1

1

2A6H1
G D .

~95!

We recall that, due to the approximations performed in
previous derivation, this estimate is valid only form
!mmax. Nevertheless, the argument in the exponential a
plifies the transition from bound states to tunneling ones
massesm;mmax, as intuitively expected. An order of mag
nitude of the minimal coupling constantgF leading to stable
bound states can thus be estimated by requiring that the
est massive state does not tunnel,

m1,2mmaxexpS 212
1

A6
1

1

2A6H1
D . ~96!

Using the two values~78! and ~80!, this implies that

gF*H1expS 21
2

A6
1

1

A6H1
D . ~97!

As a numerical application, for the Higgs and gravity para
eters used in Fig. 3, we getgF*25.

V. NUMERICAL INVESTIGATION

Numerically, it is simpler and more convenient to sol
the first order differential system~30!,~31!. A Runge-Kutta
integration method was used, on both sides of the brane
order to suppress the exponential growth, we integrate fr
the turning point,%5 l , where the solution begins to propa
gate freely, toward the brane. In this way, we get on
U(a,x) near the brane. The radiative solution for%. l , is
simply obtained by integrating from the turning point towa
infinity, with initial conditions determined by the matchin
6-9
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FIG. 5. The right ~dashed
curve! and left bulk spinor com-

ponents,ŨR and ŨL , as functions
of the dimensionless distance%
from the brane for the lightes
massive bound states. They hav
been computed forgF5100 and
in the Higgs and warp factor pro
files obtained with parameter o
Fig. 3. The numerical values o
the corresponding reduced mass
are reported in Table I.
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with the exponential decreasing solution near the wall. T
same method is used on the other side of the brane, but
time, by means of the last free parameter, we impose

continuity of one bulk spinor component on the brane (ŨL

say!. Generally, the other bulk spinor component will be d
continuous at%50, as expected from the analytical stud
sinceU8(a,0) is generally discontinuous. The mass spectr
is thus obtained by requiring the continuity ofŨR on the
brane.

The bulk spinor components computed this scheme h
been plotted for the first massive modes trapped on the b
04401
e
his
e

-

ve
ne

in Fig. 5, forgF5100. The lowest mass is numerically foun
to bem1;0.209gF and was estimated analytically, from E
~78!, to bem1;0.210gF leading to a precision of 0.5% fo
the analytical estimate. The second mass is numeric
found to bem2;0.291gF , which has to be compared to it
analytical estimatem2;0.295gF . Again, the precision of this
estimate is of about 1%. As predicted from Eq.~81!, there
are nmax511 massive bound states the lightest masses
which are summed up in Table I. On Fig. 6, we plot the la
n511 trapped mode; it has a tiny radiative component,
expected for a tunneling mode.
6-10
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TABLE I. Comparison of the numerical values and analytical estimates of the first six bound
reduced massm, together with the heaviest mode, computed forgF5100.

n 1 2 3 4 5 6 . . . 11

mn ~numerical! 0.209 0.291 0.353 0.402 0.444 0.480 . . . 0.593
mn ~estimates! 0.210 0.295 0.359 0.412 0.458 0.499 . . . 0.657
precision~%! 0.5 1.3 1.7 2.4 3 3.8 . . . 9.7
a
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In conclusion, the numerics confirm that the approxim
tions of the previous section and our estimates are accu
up to 1%–10%~see Table I!.

VI. DISCUSSION AND CONCLUSIONS

We shall now discuss the cosmological constraints ex
ing on the kind of model we have been considering he
Most of these constraints come from brane models in wh
the wall structure is replaced by an infinitely thin four d
mensional layer. As discussed in the previous sections, s
an approximation is equivalent, within our framework,
asking that the combinationab be much larger than unity. In
this limit, equivalent to the largeb limit since, from Eq.~15!,
ab; 4

3 b1/2, we can replace the stress-energy tensor~6! by
the effective four dimensional surface distribution

Tmn
eff

5T`gmnd~y!, ~98!

whose isotropic tensionT` is obtained by integration in the
transverse direction to yield

T`5AuLuh2E d%e26s(%)F1

2
F8212VG[AuLuh2j~b!

~99!

where the functionj(b) can be expressed as

j5E d%e26s(%)F6S221

a
12b~H221!2G . ~100!
04401
-
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Figure 7 shows the variation ofj as a function ofb. In
the limit b@1, it is clear thatj.b, so that the brane tensio
behaves as

T`.
lh4

8AuLu
, ~101!

which will be used to derive the relevant cosmological co
straints. Note also that the discrepancy between the ab
formula and the actual value ofT` becomes important~more
than 100% error say! for b&0.1, which is already rather fa
from the thin brane limit usually considered.

A. Investigation of the parameter space

The model described in this article depends on five
rameters, four describing the spacetime and scalar field
namics (G5 ,L,h,l) and one concerning the fermions (gF).
With the domain wall structure assumed, only four of the
parameters are independent@see Eq.~16!#. It is convenient to
replace this set of parameters by the three mass scales

m5[G5
21/3, mL[

A2L

6
, m`[T`

1/4, ~102!

and the dimensionless parametergF . These parameters ar
subject to a number of constraints, namely:

~1! the four dimensional gravitational constant must ag
with its observed valueG4[m4

22 with m4;1019 GeV. Us-
ce
ive
FIG. 6. @Left# The right~dashed line! and left~solid line! bulk spinor componentsŨR andŨL , as functions of the dimensionless distan
% to the brane, for the heaviest massive state (n511) andgF5100. @Right# Zoom near the turning point and transition to the radiat
behavior which takes place at a finite distance to the brane due to the tunneling of this mode from the brane to the bulk.
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ing the expression of the four dimensional Planck mass
terms of the five dimensional analog and of the brane ten
gives @2,22,23#

m5
3;m4m`

2 . ~103!

~2! The brane cosmological constant@2,22,23#

2L45L16p4G5
2T`

2 , ~104!

must also agree with the standard observational boundmL4

,10260m4. This implies

mL5
p2

A6

m`
4

m5
3

⇒m`
4 ;mLm5

3 . ~105!

Note that in the limitb@1, this relation is equivalent to Eq
~101!. This means that this condition is readily satisfied
the thin brane limit. At this point, it is worth emphasizin
that this is precisely the limit in which the analytic approx
mation for fermion masses are the most accurate.

~3! There must not be any deviation of the law of grav
on the brane with respect to the inverse square Newton
above 1 millimeter@24#. This implies@25#

mL*1023 eV. ~106!

~4! Finally, we require the fermion stress-energy tenso
be negligible with the brane stress-energy, so that we imp
that the mass of the heaviest fermion is smaller than
brane mass scale. By means of Eq.~80!, this condition reads

mmax;mLgFe
21/(A6H1),m` , ~107!

whereH1 ends up being function ofb only by means of Eqs
~15! and ~50!,

H1
252b2

6b

A16b19
. ~108!

FIG. 7. Effective four dimensional brane tension, in units
AuLuh2, of the domain wall as a function ofb ~dashed line!. It is
clear that in the thin brane limit,j.b ~thin line!.
04401
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In the limit b@1, Eqs.~107! and~108! combine to give the
constraint on the coupling constant

gF,
m`

mL
e1/A12b.

m`

mL
. ~109!

It follows from the relations~103! and ~105! that m`
2

;mLm4 so that the three mass scales must satisfy

mL*1023 eV, m`*1 TeV, m5*106 TeV,

~110!

which, together with Eqs.~109! and ~35! yields

1

2A6
,gF&1015S m`

1 TeVD , ~111!

where, as discussed below Eq.~40!, the lower bound is very
conservative.

Now, let us examine the stability of the fermion confin
ment on the brane and the restriction on their lifetime i
posed by the previous conditions. We require, at least,
massive bound state to have a lifetime longer than the ag
the Universe, i.e.,

t1.tuniv;1017 s. ~112!

Using Eq.~95!, one roughly gets

FIG. 8. Contour plot of the functionY(b,gF) for Y51030 @solid
lines# and 1060 @dashed line#, i.e., respectively a particle lifetime o
the order of the age of the Universe, and of the proton lifeti
lower limit. Note that both top curves are indistinguishable due
the exponential behavior ofY in gF . They turn out to be equivalen
to the analytical requirement given by Eq.~97!. Points above the
highest curve and below the lowest curves satisfy the constraint
also superimpose the conservative constraint~35! necessary for the
existence of a massless bound state, the allowed region being a
the dotted line.
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mLt1;Y~b,gF![H1
3/2gF

217/6

3expS 2A6gFF1

2
ln

gF

H1
2121/A62

1

2A6H1
G D .

~113!

The condition~112! together with the former constraint~110!
can be written as

Y~b,gF!*1030. ~114!
In Fig. 8, we present the contour plot of the dimensionl

function Y(b,gF), for Y51030 and 1060, which correspond
respectively to a particle lifetime of the order of the age
the Universe, and of the proton lifetime lower limit. Forb
*1, there are in principle two allowed regions, correspo
ing to strong and weak coupling limits, i.e.,gF@1 andgF
!1. However, the lower bound ongF , which comes from
the requirement that fermions are actually trapped on
brane, pushes the weak coupling allowed region to very h
values ofb, in practiceb*7.531057 for Y51030. Note also
that this already rather extreme value is based on the con
vative estimate given by Eq.~35!.

For b&1, the weak coupling region completely disa
pears, while the strong coupling allowed region shrinks r
idly: for b&8.531023, the lifetime cannot exceed the age
the Universe becausegF*1015. Consideringb*1 therefore
turns out to be the relevant limit if one wishes to have f
mionic bound states living on the brane.

B. Conclusion

In this article, we have considered fermions coupled t
Higgs field with a domain wall structure in a five dime
g,
.
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sional anti–de Sitter spacetime. This domain wall can
thought of as a realization of a brane universe.

After, studying the domain wall configuration, we solve
the Dirac equation and showed that there exists massive
mionic bound states trapped on the wall. We develop b
analytic approximation to compute the mass spectrum
the tunneling time. This was compared to a full numeric
integration of the dynamical equations that revealed the
curacy of our approximation scheme.

We recover the fact that massive fermions tunnel to
bulk @10#. Investigation in the parameter space shows th
for models satisfying the cosmological constraints, the r
evant confinement lifetime can be much greater that eit
the age of the Universe or the proton lifetime. This was ma
possible by the derivation of the analytic estimate.

One of our central results is the derivation of an analy
mass spectrum for fermions trapped on a brane-like four
mensional spacetime. In particular, as could have been
ticipated @13#, it was shown that the allowed masses a
quantized, with a spectrum varying, in the strong coupl
limit, asAn. Such a spectrum is indeed in contradiction w
experimental measurements of particle masses@26#, which is
not surprising given the simplicity of the model. It howev
opens the possibility to build more realistic theories in whi
mass quantization would stem naturally from extra dime
sions.
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