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Localization of massive fermions on the brane
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We construct an explicit model to describe fermions confined on a four dimensional brane embedded in a
five dimensional anti—de Sitter spacetime. We extend previous works to accommodate massive bound states on
the brane and exhibit the transverse structure of the fermionic fields. We estimate analytically and calculate
numerically the fermion mass spectrum on the brane, which we show to be discrete. The confinement lifetime
of the bound states is evaluated, and it is shown that existing constraints can be made compatible with the
existence of massive fermions trapped on the brane for durations much longer than the age of the Universe.
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[. INTRODUCTION localization of fermion on a stringlike defect in five dimen-
sion).

The idea that our universe may be a hypermembrane in a Our goal is to transpose the original work of REf2] to
five dimensional spacetime has received some attention ithe brane context. For that purpose, we realize the brane as a
the past few years after it was realized that gravity could belomain wall. Such domain wall configurations in anti—de
localized on a three-brane embedded in an anti—de SitteSitter space have already been studigd,15. We will as-
spacetimg/1]. Since then, much work has been done in asume that five dimensional fermions are Yukawa-coupled to
cosmological context2] and there is hope that a consistentthe domain wall forming Higgs field, as in the usual case of
(i.e., mathematically self-contained and observationally sateosmic strings. In this respect, our work somehow extends
isfying) high dimensional model might soon be formulated.Ref. [10], where the mass term was put by hand, and Ref.
For instance, it has been proposed that a mf@lebased on  [11] where the gravity of the wall was neglected.
such ideas could present itself as an alternative to the infla- We start, in the following section, by recalling the domain
tionary paradigm, although for the time being the contro-wall configuration of a Higgs field in a five dimensional
versy as to whether or not such a model might have anythingnti—de Sitter spacetime and discuss briefly its properties. In
in common with our Universe is still going dd]. Sec. lll, we describe the dynamical equations of fermions

The idea is not new, however, but has evolved from thecoupled to this domain wall in order to show that they obey
standard Kaluza-Klein approach to that of particle localiza-a Schralinger-like equation with an effective potential which
tion on a higher dimensional defd&,6]. In particular, it has can trap massive modes on the wall. The asymptotic struc-
been shown that massless bulk scalars and gravitons shatee, i.e., deep in the bulkfar from the brang is not
the property to have a zero mode localized on the bf@he Minkowski space, so that the effective potential felt by the
in the Randall-Sundrum model. Various mechanisf8$ fermions possesses a local minimum at the brane location,
have been invoked according to which it would be possiblebut no global minimum, as first pointed out in REI0]. As
to confine massless gauge bosons on a brane, so that theraisonsequence, the bound states are metastable and fermions
hope to achieve a reasonable model including all the knowan tunnel to the bulk.
interactions in a purely four dimensional effective model. We then provide an analytical approximation of the effec-

A mechanism permitting localization of massless fermi-tive potential, thanks to which we compute analytically, in
ons on a domain wall was described in R¢&9]. However, Sec. IV, the mass spectrum of the fermions trapped on the
although appealing this mechanism might be, it should bérane. We obtain the mass of the heaviest fermion that can
emphasized that actual fermions, as seen on an everydédye on the brane and estimate its tunneling rate. This result is
basis in whatever particle physics experiment, are massiveompared to a full numerical integration, performed in Sec.
so that a realistic fermionic matter model on the brane musY. In a last section, we investigate the parameter space and,
accommodate for such a mass. The question of localizatioafter having compared our results to previous ones, we con-
of massive fermions on the brane thus arises naturally, and dlude that there exists a wide region in the parameter space
is the purpose of this work to provide the transverse branéor which the fermion masses can be made arbitrary low, i.e.,
and fermionic structure that leads to this localization. Up tocomparable to the observed small val@egh respect to the
now, fermions have been confined under the restricting hybrane characteristic energy soal@hile their confinement
pothesis that the brane self gravity was negligil€], or  lifetime can be made much larger than the age of the Uni-
that it was embedded in a Minkowski spacetime with oneverse. Such models can therefore be made viable as describ-
[11] or two [12] transverse dimensiorisee alsq13] for the  ing realistic matter on the brane.
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II. MEMBRANE CONFIGURATION IN AdS 5 3
o r—FH'2
We consider the action for a real scalar fidldcoupled to K2 o=® ®
gravity in a five dimensional spacetime
1 1 60’2=K—g(<13’2—2V)—A 9
s:f {F(R—ZA)nLEgABaAfI)&BCD—V((D) Jgd®x 2 '
Ks

while the Klein-Gordon equation takes the form

= [ o0 Lyt £+ 2] & N
40’ D' = . (10
where gag is the five dimensional metric with signature
(+,=,=,—,—), Rits Ricci 2scalar2,A the five dimensional  £q;ationg(8)—(10) is a set of three differential equations for
cosmological constant ands=67"Gs, Gs being the five g independent variablesi{ and o). Indeed, as can easily
dimensional gravity constant. Capital Latin indiog8 ... pe checked, the Klein-Gordon equation stems from the Ein-
run from 0 to 4. The potential of the scalar fieltis chosen  giein equations provide®’ 0. To study the domain wall
to allow for topological membrangdomain wall lik§ con-  configuration, we choose to solve the first Einstein equation
figurations, (8) together with the Klein-Gordon equatigho).
N This system of equations must be supplemented with
V(D)= = (D2— 5?)2, (2)  boundary conditions. By definition of the topological defect
8 like configuration, we require that the Higgs field vanishes
. . . . on the membrane itself, i.el =0 for y=0, while it recov-
where) is a coupling constant and=(|<I>_|> is the maglnl- ers its VEV in the bulk, so that lign, ...® = = 5. Note that
tude Of the scalar field vacuum expectation val(esy). . he sign choice made here is arbitrary and corresponds to the
Motivated by the brane picture, we choose the metric Olo-called kink solution: the opposite  choicéi.e.,

the bulk spacetime to be of the warped static form lim,_....&= 7 ) would lead to an anti-kink whose physical

ds?= g pdxAdxB= — dy?+ e 27 7,00l properties, as fgr as we are (_:oncerned, are exactly_equalent.
As for the metric functions, it stems from the requirement
=—dy’+g L OXEdX”, (3) that one wants to recover anti—de Sitter asymptotically, so

that one demands that’ tends to a constant foy— oo,
wheren,, is the four dimensional Minkowski metric of sig- This constant can be determined using E®), so that

nature ¢+,—,—,—), andy the coordinate along the extra |im, . .o'=+\~A/6. Note that ay changes sign at the

dimension. Greek indiceg, v ... run from O to 3. brane location, there is no choice for the sign of the function
With this metric ansatz, the Einstein tensor components; in this case. Note also that, as is well known, the static

reduce to hypothesis implies that the bulk cosmological constant

must be negative, and therefore the five dimensional space-
time to be anti—de Sitter.
With the convenient dimensionless rescaled variables

GMV:_gMV(GO-,Z_:aO-”)! ny:_60-,2! (4)

where a prime denotes differentiation with respecy.tdhe
non-vanishing components of the matter stress-energy tensor do

P
e=yJlAl, H=—, S=4-, (11
8L ¢ 7 e
Tae=2—75 ~9asLo (5 . .

69 the dynamical equations read

are given by ..
S=-H?, (12)

1 12 1 12 3
Tur=59(®2+2V), Ty=2(®'2-2v). (6 ) _

H—-4SH=4pH(H?-1), (13)

It follows that the five dimensional Einstein equations o .
where a dot refers to a derivative with respecpt@and the

Gapt+ AQas= k2T ag (7)  two dimensionlesgpositive) parameters: and 3 are defined
by
can be cast in the form )
_ .22 _M7»

!Note, that, because of the unusual number of spacetime dimen- ) . )
sions, the fields have dimensions given [5§]=M?2, [®]=M3%? These parameters are not independent since, for an arbi-
[A]=M? [A]=M"Y [5]=M%2 and[«5]=M 32 (M being a trary value of$ say, there is only one value of for which
unit of mass. the boundary condition S(0)=0, or equivalently
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warp factor S and Higgs field amplitude H

001 0.1 1 10 100 1000
p

rescaled p coordinate

FIG. 1. The rescaled Higgs field amplitudt (full line for 8
=0.01 and dashed line fg8=0.1) and warp factor derivative
(dotted line for3=0.01 and dot-dashed line f@=0.1) as func-
tions of the rescaled extra dimension coordinate

FIG. 2. Relation between the dimensionless constarasd 3.
The thick curve represents the result of the numerical integration,
while the (hardly distinguishablethin curve is the best analytical
fit.

lim,_ ..S(e)=— l/ﬁ, is satisfied. This stems from the fact Ill. LOCALIZATION OF FERMIONS ON THE WALL

that Eq.(12) is a first order equation i, so that only one . L - .
boundgry condition is freely zgdjustable, and we chgose it to Th|§ S?Ct'.on IS devqted to_ the descr|p.t|on of the _D|rac
be ato— +o0. Once this choice is made, the value®6n equation in f|ye d|menS|qns with the domain wall configura-
the brane is completely determined, and unless the parantl'-On obtalned in the previous Sec“or?- - . .
eters are given the correct values, it does not vanish. As the The minimal representation of SPINOrS N f|v_e dlmensmns
solution must be symmetric with respect to the extra dimen®an be chosen to be four dimensiogb]. The five dimen-
sion coordinatey, one must tune the parameters in order tos'onal Cllffo.rd algebra can then pe construgted from the
have a meaningful solutiot.e. for which the metric and its usual four d'meQS'O”‘?" one by adding tlyg_matnx_ to clos_e
first derivative are continuous @=0). This is reminiscent the glgeb_ra. I.f7’ des!gn the _usual fOl.” d|men3|onaI.D|rac
of the relation that should hold between the brane and bul@atrlces in M|n.k0\(vsk| space in the thral represenéanon, the
cosmological constanf45]. irac matrices in five dimensional Minkowski spate,, are

Equations(12) and (13) have been solved numerically

_ 4_
with the relevant boundary conditions. The field profiles are Pr=yf 1T7=—lrs (17)
dﬁeplcted on Fig. 1 for two arbitrary values of the |oarameterand they satisfied the usual Clifford algebra

The relation between the parametersand 8 such that
the metric is regular at the brane location is depicted on Fig.

2. As can be seen on the figure, it consists essentially in two AB , : . . .
power laws. For small values g8, one finds roughlya where »™* stands for the five dimensional Minkowski met-

~1/8, which becomes exact in the limi—0, while for ric. Since in this representation the Dirac matrices satisfy

large values of3, one getsx~ 2 3~ %2, which is, again, exact
in the limit B—o0. We were able to find the best fit

{TA B} =275 (18

r°=ir?...r*=ud (19

5 the five dimensional spinors have neither Weyl nor Majorana

f) } (15) representation. It follows that the Dirac Lagrangian in five

' dimension for fermions coupled to the Higgs domain wall is
necessary of the form

which, as can be seen on the figure, is almost exact every-

where. This translates into the relation Ly= \/§(i\IfFADA\If—gFlIf<I>‘I')
. ( 5z ) = \JgV[ie?OT D, +iT49,— ge® ¥ (20)
Al==\ 1+ -1 16
A o™ 8 (16 where the Lorentz covariant derivative with spin connection

is [17]
between the 5 dimensional cosmological constant and the
microscopic parameters, which corresponds to the usual re-

1
= _ —a(y) 4
lations between brane and bulk cosmological constants. D=0, 27 (v)e LI (21)
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We emphasize that the sign of the couplipgof the spinor Uo)
V¥ to the Higgs field is arbitrary and represents a coupling U(p)=e 2l ——~ m (29
either to kink or to anti-kink domain wall. For definiteness, |A|
we shall consider in what follows only the case of a kink, .
coupling, and thus assume without lack of generality thai” ©€'ms of which the syster27),(28) takes the form
gr>0.2 1

The variation of the Lagrangiai20) leads to the equation (ae— [ yeH+ =S )ZIR= — e, (30)
of motion of the spinor field, namely the Dirac equation in 2
five dimensional anti—de Sitter space for a fermionic field L
coupled to a Higgs field, dg+ yFH— ~s| |7 = perlin, 31)

[iIT*(dy—20"(y)+ie"0T#5,—ged]¥=0. (22
with the dimensionless rescaled mass and coupling constant
This equation involves the matrixs (throughl',) and it is
thus convenient to split the four dimensional right- and left- m
handed components of the five dimensional spinor and to p=—=—= and y=———. (32
separate the variables as Al Al

1+ ys 1— e Let us first concentrate on the special case0. The system
Ur(y)+ U(Y) | p(x*), (23) (30),(31) then consists in two decoupled differential equa-
2 2 tions and the zero mode statgl3] are recovered. Asymp-
totically, these functions behave as

W(x*y)=

wherey(x*) is a four dimensional Dirac spinor, whilés(y)
andl (y) are yet-undetermined functions wf In what fol- U 0— + 00) ~ et 12| (33)
lows, we want the five dimensional Dirac equation to yield R N '
an effective four dimensional massive Dirac equation, with
an effective massn (energy eigenvalue of the bound sjate
Such a requirement implies that

U (0 — +0)~e (vF12B)lel, (34)

Thus, only the left-handed solutidf, may remain bounded

iyHd, p=my, (24)  [7,9], and yet provided
or, equivalently, in terms of the right- and left-handed com- 1
ponents 7F>m- (35
YR Y=, TR, = MR, (29) Indeed, the right-handed zero modes could have been ob-

tained by con5|der|ng the coupling of fermions to the anti-
kink Higgs profile® We thus recover the well-known fact that
massless fermionswustbe single-handed in a brane model,
contrary to the ordinary four dimensional field theory in
Vs - 1-ys ; ;
¢ and Y = . (26)  which they simplycan
2 Let us now focus on the more interesting massive case for

o . which u#0. Then the systert80),(31) can be decoupled by
Contrary to the case studied in RE€10], the masam is not eliminating 2/ say. For that purpose, we differentiate E
an arbitrary parameter and will be determined later. 9 Ur SAY. purp q-

Choosingyr andy_as the independent variables instead(31) with respect tog and expresg, Ug using Eq.(30) and
Ug using Eq.(31) again to get

where the right- and left-handed components of the four diq
mensional spinor are defined as

Yr=

of ¥ and V¥, and inserting Eq(25) into the equation of
motion (22) while using the splitting ansat23) yields the

. ; . 3 1
differential system for the two functiorigg, (y), 92—2S9,+ w27+ ZSZ_ y2H2— y:SH— Eﬁgs
[dy—20" (y) =g JUR(Y) = —me"DU (y),  (27) ~
+‘}/FO79H):|Z/[|_:O, (36)
[dy— 20" (y)+ g 1L (y) = me”NUn(y).
(28) Ly "
To simplify the notations, it is convenient to introduce the Ur J +( yeH = ES) }u'-
dimensionless rescaled bulk components of the fermions (37)
Note also that the dimensions are given[ty]=M? and[g] 3The coupling with and anti-kink for which-<0 would yield the
=M"12 right-handed solution with the constraipt< — 1/2\/6.
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This system is strictly equivalent to the initial system 5000
(30),(31) since differentiating Eq(37) and then using Eq.
(36) gives back Eq(30). It is thus important to keep both
equations. Note that the integration of the first equa(&6)

will require two initial conditions but that/g will then be
completely determined and thus requires no extra constant o
integration. As a consequence, it is sufficient to solve the_
second order equatid@6) for 24, in order to fully determine >
the left- and right-handed bulk fermion profiles.

Equation(36) can be recast into a Scluinger-like sec-

2500

ond order differential equation —2500
Il + ()l =0, (38)
where the functionw is defined by S000 T 95 1 65 0 05 1 15 2 25
p
2(0)= 12e27(0) 1 1.)2
w(e)=p +do| veH+ ES | yeH T ES FIG. 3. The effective potential 4= — w? felt by {, . We chose

(39 the parameterg/r=100 andx=0.5y¢ (an illustrative value, not
necessarily leading to a bound spatethe Higgs and gravity back-

with the new function ground similar to those of Fig. 1, and we have assumed, for defi-
niteness, the valuas=1.63, 3=1.23. The fermions are trapped on
Z:{(Q)Eef"(e)a(g). (40) the brane wher® 4 is negative and have a non-zero probability of

tunneling into the bulk due to combined effects of the Higgs field

Our aim will now be to find the zero modes of this new and gravity which produce a finite potential barrier.

equation; as previously discussed, they will be equivalent to ) _

the massive bound states we are looking for on the brane. rapped in a neighborhood of the brane, we can look for
In order for the fermions to be confined on the brane, theS€ries solutions i. o _

minimum of w2 needs to be negative to imply an exponential N Sec. IVA, we give an approximation of the effective

decrease oiIL in the bulk. This is essentially equivalent to potentialV . which will then be used to determine the bound

the condition(35) that was obtained for the case of zero states and the mass spectrum in Sec. IVB. We end this sec-

modes. We shall assume henceforth that this condition als%On by determining in Sec. IVC the tunneling rate in this

holds for massive modes, i.e., that the valueyphecessary approximation. The validity of this approach is difficult to

to bind massive fermions on the brane is at least that to bin?slfess an_d It W'" be J_ust|f|eai posteriorion the groun_d of a
massless ones. Indeed, E§9) shows that the minimum of u numerical mtegratpn Of. the system in the following sec-
w? can only be negative for large values of the parametepon' In the whole section, it is assumed thét-0.

ve. However, since the first term of E¢39) increases ex-
ponentially at large distance from the brane, thenuif
#0, w? will necessarily become positive. This will yield In a neighborhood of the brane we can expand the Higgs
asymptotic radiative behaviors of the spinor bulk compo-and warp factor profiles as

nents. Physically, it can be interpreted as a tunneling of the

A. Approximation of the effective potential

fermions from the brane to the bult0]. On the other hand, H(e)=Hio+H30%+0(e%), (41)
on the brane, the Higgs field and the derivative of the warp 3 4
factor S vanish, so thatw?(0) is positive. As a result, the S(@)=8,+S;0°+0(e"), (42

fermions can frgely propagate na tiny region around theWhere both the constant and quadratic terms vanish for sym-
brane, but certainly only for particular valueswf (and thus

of 12) satisfying the boundary conditions with the Surround_metry reasons. To simplify the analysis, we shall make use of

ing exponential decreasing regions. The effective potentiatlhe equations of motion in the form

Ver= — w?, depicted in Fig. 3, exhibits a local minimum on )

the brane and minima at infinity. The modes trapped on the S= §F(S,H), (43
brane are thus expected to have discrete magses the

brane and non-zero probability of tunneling into the bulk. gnd

. 12
IV. ANALYTIC ESTIMATE OF THE MASS SPECTRUM H=+\/ZF(S,H), (44)
AND OF THE TUNNELING RATE a

Since the Higgs and warp factor profiles are not knownynere the functior(S,H) is defined as

analytically, it isa priori impossible to solve Eq.38) ana-
lytically. Nevertheless, since the fermions are expected to be F(SH)=6S’+ aB(H?>—1)2—1 (45)
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(recall thatA <0). The dimensionless matching distangg has to be solution
Plugging the expansiond1) and(42) into Egs.(43) and  of

(44), it follows that the functior-(S,H) can be expanded up

to third order as 0p(0m)=03(0m), (56)

F(SH)~aB— 1+(6$§—2aﬂH§)QZ+ O(e%). (46) in order to get a continuous function. Note that, because of

. ) ) ) ) _ the symmetry on both sides of the wall, we can asseme
Inserting this expression back into the equations of motion. g without lack of generality. For large values ¢, and

yields the three coefficients using Eq.(53), we get
(634
S1= 5 H, (47) VO~ yeH,, (57)
leading to
4 ol
53=§QH1 §Hl—ﬂ y (48) 1
Om™ H_ (58)
1
Hy= 2 Hyl = H2 49
333 B (49 As it turns out, the faster the asymptotic solution is reached,
the better the approximation works. This is the case in par-
in terms of the coefficient ; ticular forH,;>1,
3 The exact(numerically integratedeffective potential and
H15&9H|g:o= \ /—(aﬂ—l). (50) its approxlmatlon are compareq in F|g. 4. The glqbgl shapes
a are effectively the same, and in spite of uncertainties at in-

) . termediate regions due to this crude approximation, it is rea-
Then, the frequency,” can be expanded as an harmonicgpnaple to expect the same fermion physical behaviors in

oscillator potential both potentials. Note that fofcosmologically favored

2 v 2 2 . 2 N 2 o2 higher value ofx 3, the Higgs field and the warp factor reach
0 (@)=wp(e)+0(e")  with  wy(@)=wo— e more rapidly their asymptotic values leading thus to a better

(5D agreement between the two potentials, as can be seen on
where w3 and() are given by Fig. 4.

a o
w2=u2+ yeH,| 1+ 6_H1) (52) B. Determination of the bound states

VF Given the approximate frequend$5), the equation of

motion for the left-handed bulk spinor componér{Lt re-
—H.2 2 2 duces to
Q=H,» H1+7_F B—gH1
2
- 1 .
>0m: | A+ p2ld—| yer —| |l =0, (59
@ e, e=lm: 1% 26
+ 37/'Z:Hl(z,e o 12H1 . (53

. 2 2 217 —
The functionw? is well approximated bybg only near the e<em: [dpHwo—0e U =0, (60)

brane and the expansi@hl) is no longer valid at large dis-
tance where the exponential term domindisse Eq.(39)].
Once the fixed asymptotic values of the Higgs and warPys at€m-

with the requirement thal, and its derivative are continu-
Note also that we consider only the case 0,

factor are reached, the frequen(@®) behaves as physics on both sides of the brane being completely symmet-
ric under the transformatiop — — . Let us consider the
_ 1 \?2 solutions in each region separately.
w?~w?(0) with o2=p2e?lelb_| 4 %> 0>p.,: we introduce the new variable

(54) z=\l6ude"s, (61)

The analytical estimate of the functi@st is thus obtained by in terms of which Eq(59) reduces to a standard Bessel dif-
matching the two limiting asymptotic behaviof§1) and ferential equation
(54), respectivelyw? closes to the brane anof far from it,

as d2+1d+(1 IZ) it =0 (62)
7 za | Y
, . [ob lol<pm, e ;
o (p)=) , (59 . . .
@, |p[>pm- the order of which being given by
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5000 5000

Veff
o

-5000 -5000

-10000

-10000
-3 -1 -0.5 0 0.5 1

(a) (b)

FIG. 4. The effective potentiaf 4= — w? and the approximate analytic effective poten(i@dshed curveobtained from the matching of
its two asymptotic expansions near the brane and at infinity. On the left panel, the parameters are the same as on Kig= 300eand
n=0.5yc. As the asymptotic solution is not reached very close to the brane, the approximation is rather poor and the two solutions are not
in good agreement at intermediate regions. On the right panel, we use the new parameteypall@® andu = 0.6yg, obtained fora
=0.1865 and3=53.62; a much better approximation is obtained around the potential barrier provided the Higgs field and warp factor reach
their vacuum value rapidly, i.e., for larger value®B. As in Fig. 3, the parameters are chosen to illustrate the point and do not necessarily
correspond to existing bound states.

1 A (UAX3,—a-1/2
|=Byet 5. (63) viax—e § - and

i 2 iti infini i 2 142 ,a—1/2
Since w* is positive at infinity, the asymptotic form of the V(a,x)~ \/ —el/Axxa-12, (68
solution is necessary radiative, as was already pointed out in m
the previous section. The most general solution of the Besseé. . . , .
ince we are interested in confined fermion states on the

equation(62) is a linear superposition of Hankel functions. brane, only the exponentially decreasing function is relevant
Since we are interested only in ingoing waves in order to , only b 1ally 9 k
that the general solution near the brane reads

study a tunneling process, the most general solution takes e

form ~
U (x)=AU(a,x), (69

U (z2)=BHY(2), 64
L(2) (2) 64 whereA is a complex integration constant.

whereH(Y)(z) is the Hankel function of the first kind, propa- ~ The general solutiori (¢) for all ¢ is obtained by

gating towards the brane at infinifs9] matching the two different solutions @=¢,,. Sinceg,
corresponds to the maximum positive value of the effective
[2 potential (see Fig. 4, it is reasonable to consider that the
(1) — . — 72— w4 g y .
Hi"(z—) er'(z : (65 Hankel function at that point can be expanded around small

values of their argument with respect to their orfid], i.e.,
andB is an arbitrary complex constant. |
o <@ performing operations similar to those of the pre- 1) 2 .
vious case, we cast E¢60) on the form Hi™(Zm) ~ = TNz (70)
while the parabolic cylinder functions can be taken in their
large argument asymptotic lim{8). This is the same kind
of approximation as that made to derive the effective poten-

in which we have introduced the new variable and parametetial. Physically, the initial conditions on the brane, id.(0)

and aei{,_|0, are chosen in such a way that the asymptotic
“o 67) exponentially growing functiorV(a,x) contribution is ev-

2J0° erywhere negligible. Once these initial conditions are fixed,

they fully determine the solution on the other side of the

The general solutions of E@66) are the parabolic cylinder brane, i.e., forx<<0. The asymptotic expansid88) can be

functions, namelyJ(a,x) andV(a,x), of which 4 (x) can  analytically extended te-|x|=|x|€™ and yields[21]

be expressed as linear superpositions. In the Ixgital,

these solutions scale &20] U(a,— |x|)~e Walk?|x|~a-Lzgrin(at12)  (7q)

U =0, (66)

& (1 2,
@ ZX a

2

x=(4Q)Y0, a=-
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Thus, oncel/ (0) andd i, |, are fixed, the matchings be-

tweenH("(z,,) andU(a, —|x,|) on one side, ant(a, |x|) mh=yeHa| (4n+1)

on the other side fully determine the bulk compon&ntfor

all e. 24a B+ a®H2[(4n+1)2-5
The last constraint comes from E@7) determining the X \/1+ 68 + pta 1[(2 ) !

right-handed spinor bulk function. It is well defined if and 3yeHa 36v¢

only if bothZ4_ andd,i4_ are not singular. In fact, the deriva-
tive of the parabolic cylinder functiokl(a,x) is generally
discontinuous ak=0. With the help of the Wronskian of
U(a,x) andU(a,—x) [20]

. (77)

1+ Y ang 1z
—_ n
6vr

This mass spectrum is valid far>0 since our derivation
assumed thap>0. In the limiting case wherey>1, it

U(a,x)(w(j—)’(_x)—U(a,—x) duéi’x) = 1277 , reduces to the much simpler form for the lowest masses
Flz*a fn~ 23N yeH . (79)

On the other handy? cannot reach very large values since it
is necessary to have a potential barrier in order to have
bound states. From the expression of the effective potential
we can construct the derivative discontinuityxat0. Thisis  (54), the barrier is found to disappear when

®Z%(CmHmad ~O. (79

(72

3 a
dU(a,07) dU(a,0") Tz73 Again in the limit whereyz> 1, using the valugs8) of o,
_ _ 2(a12)+(3/4) (73) . .
dx dx ' one gets the maximum accessible reduced mass for u
r §+a as

Mmax™ YF€ BHy, (80)
where we have used the particular val@é]

ar

2(a/2) +(U4)

The maximum number of distinct massive states trapped on
the brane can thus be estimated to be

U(a,0)= (74)

3 a\|’

Npax— 1Nt
__|__ max
4 2

,yF4Hle2/\EH1:|' (81)

For the parameters chosen in Fig. 3, one obtging,
~0.68yr and there are,,,,=11 massive modes trapped on

Imposing that the derivative o/, is continuous atx=0
posing L the brane.

results in imposing that the jum@3) vanishes. This is the

case if and only ifa is solution of ) .
C. Fermion tunneling rate

3 a Since the effective potential becomes negative at infinity,
r-+= the massive modes trapped on the brane are subject only to a

4 2 -0. (75) finite potential barrier. They are in a metastable state and can

1 tunnel from the brane to the bulk. In this section we use our
r 2 ta previous analytic solution to estimate the tunneling rate.

Would this rate be too high, one would observe an effective
. . o . violation of energy-momentum conservation on the brane,
S.'f_‘cef IS s!ngular for negative integer arguments, this CON% e, in four dimension, thereby contradicting observation.

dition is satisfied only for Our starting point is the analytic solution for the left-

handed bulk function that was derived in the previous sec-

1 tion:
—a-5= 2n, (76)
<om: Ul 0)=AU(a, 20 82
e<e@m: Ule) (a, @), (82)
wheren is a positive integer. Note thata— 1/2 cannot be 0>0m: U(e)=BHY(\6uelel®).
odd since then the numerator of the Wronski@s) will also (83)

be singular resulting in a finite derivative jumpat 0. The o _ _

condition (76) shows that the trapped fermions on the braneThe transmission factor can easily be derived from the
have necessarily discrete masggswhich read, using the matching conditions of the left-handed bulk fermion compo-
values of the paramete(52), (53) and(67), nent ato =p,,. First of all,i{, has to be continuous. Using
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the expansion$68) and (70) and the valug76) of the pa-

rametera, permits to find the relation 2o

T~ Y=
A
} JIA]

g lem/\® wherey, represents the typical length, in the fifth dimension,
felt by a particle on the brane. As can be seen on Fig. 5, the
(84) spinor bulk components are exponentially damped as soon as
the effective potential becomes positive. Thyscan be es-
timated by the solution oiof,(gb)=0 so that, keeping in
mind thatu < yg,

(92

~ 2 i 3
Ae” (VD 0en(2 (Q)g7 = ;B””( \[zu

between the coefficientd andB. Making use of the expres-

sion (58) for ¢, yields
P 2 n 2
B_1m \/EM ! ex ! . (85 @b "~ VH17e (93
A T V27 30 12JQ L -
The lifetime 7, of a fermionic bound state on the brane la-

Assuming, as above, that>1 (so that|>1) we can Peled byn,
expandl'(l) as

Th
Th=", (99
()~ Y% 27, (86 o7
so that, using expressiofs7), (58), and(63) respectively of can be estimated by
Q, , andl, we get thatB/A is approximated b —2n—
Om g pp y . 37/61"2(2/3) %n71/2 Ve 2n—-5/6
n 11/6p2 _
ENi \/E(i)n61/4,yn+1/2 2116 (1/2—n) \/|A|
A ¢t F Xp(zJé 2tmax_g L1 )
ex Yol IN———1——+——] |.
2 1 M 6 2.6H
Xexgd —\V6ye| In Mmax_1+ ) . (87 " V6 2y6H,
2\6H, (95)

The transmission coefficient from the brane to the bulk We recall that, due to the approximations performed in the

associated witl/, can thus be defined by previous derivation, this estimate ?s valid only f_qz
<umax- Nevertheless, the argument in the exponential am-

R0 plifies the transition from bound states to tunneling ones for
T= - , (89 massesu~ tmax: @S intuitively expected. An order of mag-
U (0) nitude of the minimal coupling constant leading to stable

. bound states can thus be estimated by requiring that the low-
with 24 (1)=BH™(1), is evaluated at the turning poigt  est massive state does not tunnel,
=| where the spinor bulk component begins to propagate

freely. Using the behavio(74) of the function at the origin, ) 1 1 1 96
the ratio(87) and the propertiegl9] of the Hankel function M1=2uma®Xp — 1= %Jrz\/ng : (96)
M) f 213 o-i7/3 1 89 Using the two value$78) and(80), this implies that
: 3/ T(2/3) '
2 1

the transmission coefficieri88) reduces to yr=Hiexp 2+ %4' JoH, ) 97

~ 2P0(L2-n) e As a numerical application, for the Higgs and gravity param-
- 37120 (2/3) Hi e eters used in Fig. 3, we ge=25.
2 1 V. NUMERICAL INVESTIGATION
xex;{ — 6y In Hrmax_ 1+ (90

2\/ng Numerically, it is simpler and more convenient to solve

the first order differential systert80),(31). A Runge-Kutta
It follows, using the definitior{40), that the probability for a  integration method was used, on both sides of the brane. In
trapped particle on the brane to tunnel to the bulk is given bysrder to suppress the exponential growth, we integrate from
_ R the turning point =1, where the solution begins to propa-
P=|T|2=e?""8 72, (91) gate freely, toward the brane. In this way, we get only
U(a,x) near the brane. The radiative solution for-1, is
The characteristic time for a fermionic mode trapped onsimply obtained by integrating from the turning point toward
the brane can be roughly estimated by infinity, with initial conditions determined by the matching
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-2 -2
-1 -05 0 05 1 -1 05 0 0.5 1

(a) (b)

FIG. 5. The right (dashed
curve and left bulk spinor com-
ponents/{z and4, , as functions
of the dimensionless distance
from the brane for the lightest

\ L massive bound states. They have
Vol AT been computed for=100 and
\ / AR in the Higgs and warp factor pro-
-1 | . o -1
v y files obtained with parameter of
Fig. 3. The numerical values of
= " the corresponding reduced masses
-1 -05 0 0.5 1 -1 -05 0 0.5 1 are reported in Table I.

] (d)

-2 -2
-1 -05 0 05 1 -1 -05 0 0.5 1

(e) ®

with the exponential decreasing solution near the wall. Theén Fig. 5, for ye=100. The lowest mass is numerically found
same method is used on the other side of the brane, but thig be u,~0.209 and was estimated analytically, from Eq.
time, by means of the last free parameter, we impose the7g), to be u,~0.210y¢ leading to a precision of 0.5% for
continuity of one bulk spinor component on the brang (  the analytical estimate. The second mass is numerically
say). Generally, the other bulk spinor component will be dis-found to bew,~0.291ye, which has to be compared to its
continuous ato=0, as expected from the analytical study analytical estimate.,~0.295yr. Again, the precision of this
sinceU’(a,0) is generally discontinuous. The mass spectrunestimate is of about 1%. As predicted from Ef1), there
is thus obtained by requiring the continuity df on the are np,=11 massive bound states the lightest masses of
brane. which are summed up in Table I. On Fig. 6, we plot the last
The bulk spinor components computed this scheme have=11 trapped mode; it has a tiny radiative component, as
been plotted for the first massive modes trapped on the brarexpected for a tunneling mode.
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TABLE |. Comparison of the numerical values and analytical estimates of the first six bound states
reduced masg., together with the heaviest mode, computed far= 100.

n 1 2 3 4 5 6 - 11
Mn (numerical 0.209 0.291 0.353 0.402 0.444 0.480 0.593
M, (estimates 0.210 0.295 0.359 0.412 0.458 0.499 0.657
precision(%) 0.5 1.3 1.7 2.4 3 3.8 9.7

In conclusion, the numerics confirm that the approxima- Figure 7 shows the variation @f as a function ofB. In

tions of the previous section and our estimates are accurathe limit 8> 1, it is clear thatt= g, so that the brane tension
up to 1%-10%see Table)l behaves as

VI. DISCUSSION AND CONCLUSIONS )\774

Te= , (101
We shall now discuss the cosmological constraints exist- SW

ing on the kind of model we have been considering here.
Most of these constraints come from brane models in whicthich will be used to derive the relevant cosmological con-
the wall structure is replaced by an infinitely thin four di- Straints. Note also that the discrepancy between the above
mensional layer. As discussed in the previous sections, sudRrmula and the actual value f. becomes importarimore
an approximation is equivalent, within our framework, to than 100% error sgyfor 8=0.1, which is already rather far
asking that the combinatiomB be much larger than unity. In from the thin brane limit usually considered.
this limit, equivalent to the largg limit since, from Eq.(15),
aB~2BY2 we can replace the stress-energy ter(§drby

A. Investigation of the parameter space
the effective four dimensional surface distribution

The model described in this article depends on five pa-
eff rameters, four describing the spacetime and scalar field dy-
T,,=T.09,,6(y), (99 - g pacet . y
H namics Gs,A,n,\) and one concerning the fermiongd.
whose isotropic tensioff.. is obtained by integration in the With the domain wall structure assumed, only four of these

transverse direction to yield parameters are independésee Eq(16)]. It is convenient to
replace this set of parameters by the three mass scales
1
T.=\|A Zf d e6"<9)[—c1>'2+2v =\|A|7? V-A
Al de 2 Al g(ﬁz ) ms=Cs %, my=——, m.=T (102
99

where the functioré(B) can be expressed as and the dimensionless parametgr. These parameters are

subject to a number of constraints, namely:
1) the four dimensional gravitational constant must agree
+ 2-1)2|. (@) P
2p(H"=1) } (100 with its observed valu& = m42 with m,;~ 10" GeV. Us-

2

é: f dQefGU(Q) 6

o

2

1e-07

5e-08

-1

-56-08 .

-1e-07 .
-3 -2 -1

(@) (b)
FIG. 6. [Left] The right(dashed lingand left(solid line) bulk spinor componen#R andZ/, , as functions of the dimensionless distance

¢ to the brane, for the heaviest massive staie {1) andyr=100.[Right] Zoom near the turning point and transition to the radiative
behavior which takes place at a finite distance to the brane due to the tunneling of this mode from the brane to the bulk.
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FIG. 7. Effective four dimensional brane tension, in units of ) or
J[A]#?, of the domain wall as a function ¢8 (dashed ling It is ~ FIG.8. C%ntour plot of the functiol (5, ) forY_=103_ [solid
clear that in the thin brane limig= 3 (thin line). lines] and 16° [dashed ling i.e., respectively a particle lifetime of

the order of the age of the Universe, and of the proton lifetime
IJlower limit. Note that both top curves are indistinguishable due to
Hue exponential behavior &f in ye. They turn out to be equivalent

0 the analytical requirement given by E®7). Points above the
highest curve and below the lowest curves satisfy the constraint. We
also superimpose the conservative constré@@bi necessary for the
existence of a massless bound state, the allowed region being above
the dotted line.

ing the expression of the four dimensional Planck mass i
terms of the five dimensional analog and of the brane tensio
gives[2,22,23

m3~m,mz. (103
(2) The brane cosmological constd22,23

2A4=A+67T4G§Ti, (104) In the Iimit pB>1, Eqs.(;O?) and (108 combine to give the
constraint on the coupling constant

must also agree with the standard observational bcmpg

60 is imoli M 415 Mo
<10 *"m,. This implies Y N . (109
my my
2 4
mm
* 3
My=—=—F=MmM_~mymg. 10 .
N mg: = TATS (109 It follows from the relations(103 and (105 that m2

~m,m, so that the three mass scales must satisfy
Note that in the limit3>1, this relation is equivalent to Eq.
(101). This means that this condition is readily satisfied in my=10"3 eV, m.=1 TeV, mg=10° TeV,
the thin brane limit. At this point, it is worth emphasizing
that this is precisely the limit in which the analytic approxi- (110
mation for fermion masses are the most accurate.
(3) There must not be any deviation of the law of gravity . . .
on the brane with respect to the inverse square Newton law hich, together with Eqs(109 and (35) yields
above 1 millimetef24]. This implies[25]

m,=10"3 eV. (106 ﬁ<ﬁ5101 1 Tev)® (119

(4) Finally, we require the fermion stress-energy tensor to . _
be negligible with the brane stress-energy, so that we imposehere, as discussed below E40), the lower bound is very
that the mass of the heaviest fermion is smaller than theonservative.

brane mass scale. By means of E[), this condition reads Now, let us examine the stability of the fermion confine-
ment on the brane and the restriction on their lifetime im-
Mina— My yee YOBHD <m | (107  posed by the previous conditions. We require, at least, one

massive bound state to have a lifetime longer than the age of
whereH; ends up being function g8 only by means of Egs. the Universe, i.e.,
(15 and(50),

T1= Tuniv™ 10" s. (112
H§=2ﬁ—6—ﬁ. (108
V16B8+9 Using Eq.(95), one roughly gets
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(113

32 —17/6
1 Yk

xex;{Z\/EyF

my71~Y (B, ve)=H

1

2\6H,

1 9
EInH_l_l_l/\/E_

The condition(112) together with the former constrai(it10
can be written as

Y (B, ve)=10%. (114
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sional anti—de Sitter spacetime. This domain wall can be
thought of as a realization of a brane universe.

After, studying the domain wall configuration, we solved
the Dirac equation and showed that there exists massive fer-
mionic bound states trapped on the wall. We develop both
analytic approximation to compute the mass spectrum and
the tunneling time. This was compared to a full numerical
integration of the dynamical equations that revealed the ac-
curacy of our approximation scheme.

We recover the fact that massive fermions tunnel to the
bulk [10]. Investigation in the parameter space shows that,

In Fig. 8, we present the contour plot of the dimensionlesdor models satisfying the cosmological constraints, the rel-
function Y (B, yp), for Y=10°" and 16°, which correspond evant confinement lifetime can be much greater that either

respectively to a particle lifetime of the order of the age ofthe age of the Universe or the proton lifetime. This was made

the Universe, and of the proton lifetime lower limit. F@r

=1, there are in principle two allowed regions, correspond-

ing to strong and weak coupling limits, i.eyz>1 and yg
<1. However, the lower bound of:, which comes from

possible by the derivation of the analytic estimate.

One of our central results is the derivation of an analytic
mass spectrum for fermions trapped on a brane-like four di-
mensional spacetime. In particular, as could have been an-

the requirement that fermions are actually trapped on thécipated[13], it was shown that the allowed masses are
brane, pushes the weak coupling allowed region to very higfluantized, with a spectrum varying, in the strong coupling

values ofg, in practice=7.5x 10°" for Y = 10®". Note also

limit, as \n. Such a spectrum is indeed in contradiction with

that this already rather extreme value is based on the consegxperimental measurements of particle ma$26k which is

vative estimate given by E¢35).
For B=<1, the weak coupling region completely disap-

not surprising given the simplicity of the model. It however
opens the possibility to build more realistic theories in which

pears, while the strong coupling allowed region shrinks rapmass quantization would stem naturally from extra dimen-

idly: for 8<8.5x 10" 3, the lifetime cannot exceed the age of
the Universe becausg-=10". Considering3=1 therefore

turns out to be the relevant limit if one wishes to have fer-

mionic bound states living on the brane.

B. Conclusion

sions.
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