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In the limit of low viscosity, we show that the amplitude of the modes of oscillation of a rotating
fluid, namely inertial modes, concentrate along an attractor formed by a periodic orbit of characteristics
of the underlying hyperbolic Poincaré equation. The dynamics of characteristics is used to elaborate
a scenario for the asymptotic behavior of the eigenmodes and eigenspectrum in the physically relevant
régime of very low viscosities which are out of reach numerically. This problem offers a canonical
ill-posed Cauchy problem which has applications in other fields.

PACS numbers: 47.32.-y, 02.60.Lj, 04.20.Gz, 05.45.Ac

Rotating fluids encompass all fluids whose motions are
dominated by the Coriolis force. These flows play an im-
portant role in astrophysics or geophysics where the large
size of the bodies makes the Coriolis force a prominent
force. Some engineering problems like the stability of ar-
tificial satellites also require the study of rotating fluids
because of their liquid-filled tanks [1]. This latter prob-
lem is related to the existence of waves specific to rotat-
ing fluids, namely inertial waves, which easily resonate.
These waves play also an important part in the oscilla-
tion properties of large bodies like the atmosphere, the
oceans, the liquid core of the Earth [2], rapidly rotating
stars [3], or neutron stars [4]. As such, they have been
considered since the work of Poincaré on the stability of
figures of equilibrium of rotating masses [5]. Pressure per-
turbations of inertial modes for inviscid fluids obey the
Poincaré equation (PE) (christened by Cartan [6]) which
reads AP — (2Q/w) 29?P/dz> = 0 where Qeé, is the
angular velocity of the fluid and w is the frequency of
the oscillation. Since w < 2€) [7], the PE is hyperbolic
(energy propagates along characteristics) and since its so-
lutions must meet boundary conditions, the problem is ill
posed mathematically. Although some smooth solutions
exist (for instance, for a fluid contained in a full sphere
or a cylinder), one should expect singular solutions in the
general case. These latter solutions have been made ex-
plicit only recently thanks to numerical simulations which
include viscosity to regularize the singularities and let this
parameter be very small as in real systems [8,9].

In this Letter we wish to present a scenario, based on
analytical and numerical results, for the asymptotic behav-
ior of inertial modes at small viscosities. We use the case
of a spherical shell as a container, which is relevant for
astrophysical or geophysical problems, but it will be clear
that this case is general. We will sketch only the main re-
sults; more details can be found in [9]. While the fluid
mechanical problem is of much interest by itself, it opens
new perspectives in the theory of partial differential equa-
tions (PDE) and also offers a toy model for some (very
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involved) problems of general relativity which we shall
present briefly.

The model we use is a spherical shell whose inner radius
is 7R and outer radius R ( < 1). The fluid is assumed
incompressible with a kinematic viscosity v. We write the
linearized equations of motion for small amplitude pertur-
bations for the velocity # in a frame corotating with the
fluid; momentum and mass conservation imply

ow . . = . =
5+ez><u=—Vp+EAu, \

u=0 (1)
when dimensionless variables are used; (20) ! is the time
scale and E = v/2Q R? the Ekman number. When E is set
to zero and # is eliminated, one obtains the Poincaré equa-
tion. In nature £ < 1 and one is tempted to use boundary
layer theory and singular perturbations to solve (1). How-
ever, this is feasible only when regular solutions exist for
E = 0; this is the case when the container is a full sphere
[7] but not when the container is a spherical shell. Indeed,
numerical solutions of the eigenvalue problem issued from
(1), where solutions of the form u(7)e?' are searched for
[with —1 = w = Im(A) < 1], yield eigenmodes of the
kind shown in Fig. 1. In this figure we see that the am-
plitude of the mode is all concentrated along a periodic
orbit of characteristics of the PE; we found this property
to be quite general, after extensive numerical exploration
of least-damped modes of (1) [8,9], and will now explain
its origin and consequences on the asymptotic spectrum of
inertial modes. For this purpose we will use axisymmet-
ric modes since the azimuthal dependence of solutions can
always be separated out because of the axial symmetry of
the problem.

For understanding the concentration of kinetic energy
along a periodic orbit of characteristics, it is necessary
to consider in some detail the dynamics of these lines.
Characteristics of PE are, in a meridional plane, straight
lines making the angle arcsinw with the rotation axis. A
numerical calculation of their trajectories shows that they
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w=0.5531,
T=—1.44x1073

FIG. 1. Kinetic energy in a meridional section of a spherical
shell of an inertial mode in a viscous fluid. For this numerical so-
lution, E = 1078, 570 spherical harmonics and 250 Chebyshev
polynomials have been used (the numerical method is described
in [8]). The mode is axisymmetric and symmetric with respect
to equator. n = 0.35 as in the Earth’s core. w is the frequency
of this mode and 7 its damping rate. Stress-free boundary con-
ditions are used. The convergence of characteristics towards the
attractor is also shown (white lines).

generally converge towards a periodic orbit which we call,
after [10], an attractor. The periodic orbit of Fig. 1 is one
example of such an attractor.

The Lyapunov exponent (LE) of a trajectory, defined by
A = limy— 37 Sy In| 52| (¢, is the latitude of the
nth reflection point), describes how fast characteristics are
attracted or repelled. Its computation as a function of fre-
quency shows that attractors (A << 0) are ubiquitous in fre-
quency space (see Fig. 2). Their existence shows that the
dynamical system described by the characteristics is not
Hamiltonian; the “dissipation” is purely geometrical and
is due to the fact that, unlike billiards, the reflection on
boundaries is not specular, but conserves the angle with the
rotation axis. In fact, the dynamics of rays is a one-to-one
one-dimensional map (from the outer boundary to itself),
piecewise smooth, but with a finite number (twelve) of dis-
continuities. This kind of map has not been studied in the
literature of dynamical systems, perhaps because it does
not produce chaos because of its invertibility. Iterations
of such a map generate fixed points which either corre-
spond to attractors or to some neutral periodic orbits. In-
deed, if » = 0 (i.e., the sphere is full), all orbits such that
w = sin(pm/2q) with (p,q) € N?, are neutral and peri-
odic while those such that @ = sin(r ), r being irrational,
are neutral ergodic (quasiperiodic). When 7 is nonzero
only a finite number of such neutral periodic orbits sub-
sist; for instance, if 7 = 0.35 which is the aspect ratio of
the Earth’s liquid core, ¢ = 1, 2, 3, 4 are the only possi-
bilities. Interestingly, we face here a situation which is just
the opposite of the one described by the KAM theorem in
Hamiltonian systems: when the full sphere is perturbed by
the introduction of an inner sphere, all ergodic orbits are
instantaneously destroyed while the longer periodic orbits
survive the smaller the denominator g is.
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FIG. 2. LE A(w) of the orbits as a function of w for n = 0.35.
Inset: Blowup showing the LE of two coexisting attractors (full
and dashed thick lines).

Apart from these isolated frequencies which become
rarer and rarer as 7 increases, generic trajectories are in
the basin of attraction of attractors. We were able to show
[9] that the number of attractors at a given frequency is
finite. The inset of Fig. 2 shows the typical case where an
attractor exists in a frequency band [ w1, w, | with A(w) =
0, A(ws) = —% and wy — w; ~ 1/N? where N is the
length of the attractor defined as its number of reflection
points. Near w;, A ~ /o — ) and near w;, A(w) ~

%lnN (w — wy). The latter implies that long attractors
have small LE in a large fraction of [w1, w>] (all these
results are shown in [9]).

The existence of attractors for characteristics implies
that solutions of the inviscid problem (i.e., of PE) are sin-
gular. This property can be made explicit in the simplified
case of a 2D problem. Indeed, in this case the PE may
be written 92P/du,du_ =0 using characteristic coordi-
nates; solutions may be constructed explicitly from an ar-
bitrary function but, as shown in [11], regular eigenmodes
exist only when neutral periodic orbits exist and eigenval-
ues are infinitely degenerate. When attractors are present,
the scale of variations of the pressure vanishes on the at-
tractors while its amplitude remains constant. As velocity
depends on the pressure gradient, it diverges on the attrac-
tor; this divergence is like the inverse of the distance to
the attractor which makes the velocity field not square in-
tegrable. This result seems to be valid also in 3D [9].

We therefore understand why solutions of (1) look like
Fig. 1: the inviscid part of the operator focuses energy
of the modes thanks to the action of the mapping made
by characteristics while viscosity opposes this action via
diffusion. The resulting picture of Fig. 1 therefore comes
from a balance between inviscid terms and viscous ones;
let us make this more quantitative.

For this purpose we first observe that the patterns drawn
by the kinetic energy of the mode in Fig. 1 is in fact a shear
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layer whose width scales with E” and o = 1/4. Such a
scaling is observed numerically and seems generic [8,9];
it implies that the damping rate of such modes scales like
E'/2 as clearly shown in Fig. 3. Now we may consider
a wave packet traveling around an attractor in a slightly
viscous fluid. The above mentioned balance, when applied
to both the width and the amplitude of the packet, leads to
a relation between the LE and the Ekman number such
as A ~ E'737 with ¢ < 1/3 for an eigenmode of the
viscous problem. We see that the constraint o < 1/3
is met by actual shear layers. It therefore turns out that
frequencies of eigenmodes of the viscous problem are such
that A — O when E — 0 which means that they will gather
around the roots of the equation A(w) = 0.

The above result shows the importance of the scaling
verified by shear layers. A boundary layer analysis reveals
that these shear layers are in fact nested layers which
consist of an inner o = 1/3 layer surrounded by a thicker
layer. The inner 1/3 layer can be fully explicited. Using
coordinates along the shear layers (x) and perpendicu-
lar to it (y), we find that the ¢ component of the
velocity verifies % = —j %’ with ¥ = y/E'3 and
g = x/v1 — w? which is also the equation verified by the
stream function in a steady shear layer of a rotating fluid
[12]. Solutions which vanish in Y = *oo are self-similar
and of the form u, = g*Hy(Y/q'?) with Hu(t) =
[§ e iPte=r p=3a=1 4y Besides, @ = —x is the only
admissible value to ensure a coherent evolution of the
width and amplitudes after reflection on a boundary.

We are now in a position to propose a scenario for
the asymptotic behavior of inertial modes when the vis-
cosity vanishes. FEigenfunctions reduce to nested shear
layers concentrated along attractors while the associated
eigenvalues converge toward the frequency w; such that
A(w;) = 0 for the associated attractor. Furthermore, we
can constrain this convergence of eigenfrequencies; in-
deed, since A ~ /o — w;, one finds that w = w; +
aE*>™% + . and 7 = Re(A) = —bE'"2? when E — 0;
Fig. 3 shows that this law agrees well with the numerical
results, in the case shown, with o = 1/4.

. 0.0100¢ E
3 E §
° 0.0010} .
0.0001 [ ‘ ‘ ‘ ‘ ]
10710 1079 1078 1077 1076 10
Ekman number
FIG. 3. Asymptotic behavior of an eigenvalue. The dashed

line is w — w; as a function of E, while the dotted line is for
the damping rate 7. The solid line represents the “theoretical”
law E'2. w; = 0.403112887 is a root of A(w) = 0 when
n = 0.35.

In addition, we noticed earlier that for a finite number of
w such that @ = sin(p/2q) all orbits of characteristics
are periodic; this implies that in the vicinity of these fre-
quencies very long attractors with very small average LE
accumulate as shown by Fig. 4; therefore, these frequen-
cies will be accumulation points of the asymptotic spec-
trum. Moreover, around these frequencies eigenmodes are
weakly damped. On the contrary, modes whose frequency
is in the frequency band of short attractors (like the one
of Fig. 1) are more strongly damped. It therefore turns
out that the LE curve in Fig. 2 will strongly constrain the
distribution of least-damped modes in the complex plane
at finite viscosities: such modes will avoid the large fre-
quency bands of short-period attractors and concentrate
around frequencies where A(w) = 0 especially those with
o = sin(pw/2q).

This general evolution of the spectrum is well illustrated
in Fig. 5. Here, the least-damped eigenvalues have been
computed for E = 1078, We clearly see frequency bands
of attractors avoided by weakly damped eigenvalues but
see the gathering of these eigenvalues around sin(7r/4)
and, but less conspicuously, around sin(7 /6).

To complete the picture, we need now mention that a
few regular modes survive among all these singularities;
such modes are purely toroidal modes or r modes [13]
which are nonaxisymmetric. They avoid the constraint of
characteristics, for their velocity field has no radial compo-
nent; this property makes their characteristics independent
of frequency (they are circles and vertical straight lines)
and authorizes smooth solution at zero viscosity. The as-
sociated eigenvalues w = 1/(m + 1), m € N* seem to be
the only eigenvalues of the Poincaré operator in a spheri-
cal shell.

Ending this Letter, it is worth emphasizing the role
of the geometrical approach allowed by the dynamics of
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FIG. 4. Inverse of the length N of attractors with N < 100 for
n = 0.35, near the accumulation point 7 /6; each point corre-
sponds to an attractor with A = 0 and therefore to a point in
the asymptotic spectrum. Note the lengthening of the attractors
as 7 /6 is approached. Here n = 0.35.
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FIG. 5. Distribution of the eigenvalues associated with least-

damped axisymmetric modes in the complex plane. Hatched
frequency bands denoted bands occupied by simple attractors;
the dotted line is for sin(7r/6). The Ekman number is 10~8 and
n = 0.35. We used a resolution of 700 spherical harmonics and
270 radial grid points.

characteristics, for describing the asymptotic properties of
inertial modes; in the domain of very low Ekman numbers
(10719 — 10729, typical of astrophysical or geophysical
fluids, these modes are out of reach numerically.

The foregoing presentation shows that inertial modes
display a very rich dynamical behavior which comes from
the ill-posedness of the underlying inviscid problem. Here
we discussed the case of the spherical shell, but our results
are general and can be extended to any container; this is
important since natural containers are usually not perfect
geometrical objects. Hence, fortunately, a curve like Fig. 2
is structurally stable (see our discussion relative to the core
of the Earth in [2]).

We note that the relevance of attractors has also been
shown experimentally in stratified fluids [14]. Some con-
figurations of conducting fluids bathed by a magnetic field,
obeying the PE, will also display attractors [15]. These
properties are in fact very general and extend to mixed-type
PDE as illustrated by the case of gravito-inertial modes
[16]. We think that similar results should hold for systems
which are solutions of PDE of hyperbolic or mixed type
meeting boundary conditions. As an example, our results
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may have applications in general relativity and the prob-
lem of “closed timelike curves” (CTC), that is the problem
of the existence of physical systems which permit travels
backward in time. Such systems like wormholes have been
studied by various authors [17]; they set many problems
among which is that of causality. Such a problem is also
at the origin of the ill-posedness of the Poincaré problem,
and we showed that it leads to many kinds of singularities.

We therefore see that inertial oscillations of a fluid inside
a container offer a paradigm which may guide our intuition
for problems in other fields of physics which are also ill-
posed Cauchy problems.
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