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HEREDITARY IS HEREDITARY

B. Bendiffalah and C.Cibils

Abstract

In this note we show that a finite full subcategory of an hereditary
small Z-category is hereditary. As a specialization we obtain the result
proved in [6, 4], namely that the endomorphism ring of a finitely generated
projective module over an hereditary ring is also hereditary, see also [5].
In particular if A is an hereditary ring and e is an idempotent, the ring
eAe is also hereditary.

1 Introduction

A small Z-category C is a category with set of objects C0, abelian groups of
morphisms and Z-bilinear composition. Note that the endomorphism set of each
object of C is a ring (i.e. an associative unitary ring which is non necessarily
commutative). Morphims of C are naturally endowed with bimodules structures
over those rings.

A ring A is hereditary if submodules of projective modules are still projective.
In other words an A-module can be resolved using projective modules in at most
one step, that is hereditary rings are those of projective dimension at most one.
Similarly a Z-category is hereditary if subfunctors of projective functors from C to
the category of abelian groups are still projective. Recall that such functors are
often called modules over the category, since for a category with a single object,
such functors over the category and modules over the endomorphism ring of the
object coincide.

The main result of this paper is that for an hereditary Z-category, any finite
full subcategory is still hereditary. The proof relies on the study of functors
defined on a vertex of the category and their induction to the entire category.
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As a consequence we recover the result proven by H. Lenzing [6] and R.R.
Colby – E.A. Rutter [4] (see also the work of J.L Garćıa Hernandez and J.L.
Gómez Pardo [5]) : let A be an hereditary ring and let P be a finitely generated
module, then EndAP is also hereditary. In particular, let e be an idempotent of
an hereditary ring. Since eAe is the endomorphism ring of the projective module
Ae, the ring eAe is hereditary. Note that a trivial situation occurs when the
idempotent e is central. In this case eAe = Ae and A = Ae × A(1 − e). Then

proj dim A = max{proj dim Ae, proj dim A(1 − e)}.

Recall that for rings A with projective dimension strictly larger than 1 the
projective dimension of eAe can be arbitrary, examples are provided by the
Auslander-Reiten algebra of a finite representation type algebra over a field. In
this respect the result for hereditary rings and categories is an exception.

The link between the main result and it’s specialization is as follows. Let
A be an hereditary ring and let e be an idempotent. Consider the Z-category
with two objects denoted e and 1 − e, having endomorphisms rings eAe and
(1− e)A(1− e); the bimodules of morphisms between different objects are given
by (1 − e)Ae and eA(1 − e). Composition is provided by the product of A.

The preceding construction is a special instance of the expansion process
described in [3]. It follows for instance from this paper that modules over the
expanded category coincide with A-modules, hence the category is hereditary in
case A is hereditary. Consequently, eAe is an hereditary ring using Theorem 3.1.

2 Categories and modules

A Z-category is a small category C such that each set of morphisms yCx from an
objet x to an object y is a Z-module, and such that the composition of morphisms
is Z-bilinear. Of course, any ring A provides a single objet Z-category, this way
a Z-category can be considered as a ring with ”several objects”, see for instance
[7].

A C-module is a Z-functor M from C to the category of Z-modules. In other
words M is given by a family of Z-modules xM and a family of ”actions”

yCx ⊗Z xM −→yM verifying the usual module axioms. Morphisms between
modules are natural functor transformations, providing an abelian category. In
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case the Z-category is a single object category, modules coincide with usual
modules over the endomorphism ring of the object.

By definition a C-module M is projective if the covariant functor (M,–) is
exact. We record the following well known lemma, see for instance [8].

LEMMA 2.1 Let C be a Z-category and let x be an object of C. The C-module
Cx is projective.

Proof. Let M
h

−→ N be a surjective morphism and let Cx
ϕ
−→ N be any

morphism. Considering the object x, we lift ϕ by defining ϕ(x1x) = xm where

xm verifies h(xm) = ϕ(πx). Then for any object y define ϕ(yfx) = yfx xm.

We will need to induce modules as follows.

DEFINITION 2.2 Let C be a Z-category and let M be an usual module over
the ring xCx for a fixed object x. The induced C-module M ↑ is

y(M ↑) = yCx ⊗
xCx

M

together with the natural actions provided by composition of morphisms of C.

PROPOSITION 2.3 Let C be a Z-category. Let x be an object of C and let
M be a xCx-module. Then M is projective if and only if M↑ is projective.

Proof. Assume M is free of rank one. Then M ↑ is precisely Cx. Replacing M

by a direct sum of free rank one modules, or a direct summand of it, provides
that M ↑ is projective.

Conversely, assume M is not projective and let h : X −→ Y be a surjective

xCx-module together with a map ϕ : M −→ Y which cannot be lifted. Inducing
this situation to the entire category shows that M ↑ is not projective, since a
lifting of C-modules would produce a lifting at each object, in particular a lifting
at x.

Remark 2.4 In case C is amenable, meaning that finite coproducts exists and
idempotent splits, the representable functors Cx are precisely the finitely gener-
ated projectives, see [8]. We do not need formally this result for the preceding
considerations. Note however that any category is Morita equivalent to it’s
amenable completion, which is obtained through additivisation and karoubiani-
sation.
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3 Hereditary is hereditary

THEOREM 3.1 Let C be a Z-category which is hereditary (any submodule of
a projective module is projective). Let x be an object of C. Then the ring xCx is
hereditary.

Proof. Let M be a projective xCx-module and let N be a submodule. Clearly
N↑ is a submodule of M↑. Since M ↑ is projective we infer that N↑ is projective.
Using the Proposition above we conclude that N is projective.

Next we recall briefly the expansion process of a Z-category as described
in [3]. Let C be a Z-category provided with complete finite sets of orthogonal
idempotents of endomorphisms algebras at each object. Recall that complete
means that the sum of the idempotents at each vertex provides the unit of
the endomorphism ring. We call this situation a category with an idempotent
data. Equivalently each endomorphism ring is provided with a finite direct sum
decomposition by means of left ideals.

The expanded category (with respect to this idempotent data) has each object
x of C replaced by the finite set of idempotents of its endomorphism ring. The
morphisms from an idempotent e at x to an idempotent f at y are given by the
corresponding piece of the decomposition of yCx, namely f(yCx) e. Clearly the
composition of the original category provides a well defined composition of the
expanded category.

PROPOSITION 3.2 The module categories of a Z-category C and of an ex-
pansion of it (given by an idempotent data) are isomorphic.

Proof. At each object x, the abelian group xM of a C-module M can be
decomposed in direct summands using the action of the idempotents of the
endomorphism ring given by the data. The module over the expanded category
associates to the object e the piece e (xM). The action of f(yCx) e is the
restriction to this direct summand of the original action, which indeed provides
elements in f (yM).

Conversely a module over the expanded category can be assembled as follows.
Provide each object x of C with the direct sum of the abelian groups associated
to the idempotents at this object. The action of the entire morphisms from x to
y is obtained by matrix multiplication combined with the given action.
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Clearly those functors (which we have only described on objects for simplicity)
are inverses each other.

EXAMPLE 3.3 Let A be a ring and CA be the corresponding single object Z

category. Let e be an idempotent of A, note that {e, 1−e} is an idempotent data
of CA and that the corresponding expansion is precisely the category described in
the introduction, namely it has two objects called e and 1−e with endomorphisms
rings respectively eAe and (1−e)A(1−e); the bimodules of morphisms between
different objects are given by (1− e)Ae and eA(1− e). Composition is provided
by the product of A.

THEOREM 3.4 Let A be an hereditary ring and let e be an idempotent of A.
The ring eAe is also hereditary.

Proof. Since A is hereditary the single object Z-category CA is hereditary.
The expanded category considered in the example above is hereditary since the
categories of modules are isomorphic. Hence the endomorphims rings at each
object are hereditary by Theorem 3.1, in particular eAe is hereditary.

As quoted in the Introduction the preceding result is exceptional. We record
the following :

PROPOSITION 3.5 For each integer n ≥ 1 there exists an algebra of projec-
tive dimension 2 with an idempotent e such that

proj dim eAe = n.

Proof. Consider the Auslander algebra A(A) of a finite dimensional algebra
A of finite representation type, meaning that up to isomorphism the algebra A

admits only a finite number of isomorphism classes of indecomposable modules.
Recall that the Auslander algebra is obtained as the opposite of the endomor-
phism algebra of the direct sum of one copy of each indecomposable module (no
isomorphic copies are allowed).

It is well known and easy to prove – see for instance [1] – that the original
algebra A is reobtained from A(A) using the direct sum of all the projective
indecomposable summands. More precisely, let e be the sum in A(A) of the
identities endomorphisms of each indecomposable projective module used for the
construction of A(A). Then A = e [A(A)] e.
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Note that the Auslander algebra is well known to be of projective dimension
2, see for instance [1]. It remains to construct algebras of finite representation
type with arbitrary projective dimension, for instance consider the path algebra
of the quiver An with n+1 vertices all arrows from 1 to 2, from 2 to 3, ... , from
n− 1 to n, modulo the two-sided ideal generated by all the paths of length two.
It is easy to prove that this algebra of finite representation type is of projective
dimension n.

Next we infer the result obtained by H. Lenzing [6] and by R.R. Colby – E.A.
Rutter [4].

THEOREM 3.6 Let P be a finitely generated projective module over an hered-
itary ring A. Then it’s endomorphism ring is hereditary.

Proof. Consider P as a direct summand of An, a free A-module of rank n, which
has endomorphism ring Mn(A). Note that this matrix ring is hereditary since it
is Morita equivalent to A. Let e be the idempotent of Mn(A) corresponding to
P in the decomposition An = P ⊕ Q. Clearly the endomorphism ring of P is
eMn(A)e, hence hereditary.

We will prove now a more general version of Theorem 3.1.

THEOREM 3.7 Let C be a Z-category, let F be a finite set of objects of C and
let CE be the full subcategory of C having E as set of objects. If C is hereditary
then CE is also hereditary.

In order to prove this Theorem we first recall the contraction process from
[3].

DEFINITION 3.8 Let C be a Z category and let E be a partition of the set of
objects by means of finite sets Ei indexed by a set I. The contracted category
is a new Z-category which objects are the sets of the partition, and morphisms
from the set Ei to the set Ej are given by the direct sum of the morphisms from
each element of Ei to each element of Ej . Composition is given by the matrix
product combined with composition of the original category.

LEMMA 3.9 (see [3]) Consider the contraction of a Z-category along a parti-
tion of its objects by means of finite sets. Then the categories of modules of the
original category and the contracted one are isomorphic.
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Proof. It is clear that the contraction of a category is provided with an extra
data, namely the idempotents at each object reminiscent from the elements of
the partition. More precisely, at each object of the contracted category (i.e. at
a set of the partition), consider the endomorphism given by the matrix having
0 entries except for the endomorphims of one of the objects of the set of the
partition, where we consider it’s identity. In other words we can expand the
contracted category along this idempotent data, getting back this way to the
original category. Since the modules categories of a category and of an expansion
of it are isomorphic, the result is proven.

Proof of Theorem 3.7. Consider the partition of the objects of the original
category given by the finite set E and each singleton corresponding to each
element not belonging to E. The Lemma above shows that this contracted
category is hereditary, hence the endomorphism ring at the object corresponding
to E is hereditary by Theorem 3.1. Finally the full subcategory of C given by E

is the expansion of the single object category given by the endomorphism ring of
the object E in the contracted category.
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