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ABSTRACT

We address the question of whether and how tropical Indian Ocean Dipole or Zonal Mode

(IOZM) interannual variability is independent of El Niño-Southern Oscillation (ENSO) vari-

ability in the Pacific, in a comparison of twin 200-year runs of a coupled climate model. The

first is a reference simulation, the second has ENSO-scale variability suppressed with a con-

straint on the tropical Pacific wind stress. The IOZM can exist in the model without ENSO,

and the composite evolution of the main anomalies in the Indian Ocean in the two simulations

is virtually identical. Its growth depends on a positive feedback between anomalous equatorial

easterly winds, upwelling equatorial and coastal Kelvin waves reducing the thermocline depth

and sea surface temperature off the coast of Sumatra, and the atmospheric dynamical response

to the subsequently reduced convection.

Two IOZM triggers in the boreal spring are found. The first is an anomalous Hadley circu-

lation over the eastern tropical Indian Ocean and Maritime Continent, with an early northward

penetration of the southern hemisphere southeasterly trades. This situation grows out of cooler

sea surface temperatures in the southeastern tropical Indian Ocean left behind by a reinforce-

ment of the late austral summer winds. The second trigger is a consequence of a zonal shift in

the center of convection associated with a developing El Niño, a Walker cell anomaly. The

first trigger is the only one present in the constrained simulation, and is similar to the evolution

of anomalies in 1994, when the IOZM occurred in the absence of a Pacific El Niño state. The

presence of these two triggers—the first independent of ENSO, the second phase-locking the

IOZM to El Niño—allows an understanding of both the existence of IOZM events when

Pacific conditions are neutral, and the significant correlation between the IOZM and El Niño.

 

1. Introduction

 

The concept of an interannual Indian Ocean Dipole mode of variability with cold surface

temperature anomalies in the southeastern tropical Indian Ocean (SETIO) and warmer anoma-

lies in the western tropical Indian Ocean (WTIO), coupled to easterly wind anomalies, was

described by Saji et al

 

.

 

 (1999) and Webster et al

 

.

 

 (1999), though these types of anomalies were

also noted in an earlier study (Reverdin et al. 1986). These anomalies are linked to precipita-
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tion variability in East Africa and over Indonesia (Clark et al., 2003; Black et al. 2003) and

other regions (Ashok et al., 2001; Lareef et al., 2003; Saji and Yamagata, 2003a), and so

understanding their dynamics with a view towards prediction has an important social dimen-

sion. Saji et al. (1999) claimed that the dipole was a mode of variability confined to the Indian

Ocean independent of ENSO. Webster et al. (1999) suggested a coupled mechanism allowing

the growth of anomalies and cycling of the dipole mode based on the Indian Ocean alone.

The contention that the dipole mode is independent of ENSO has received some recent

attention. Saji et al.’s (1999) interpretation of the dipole mode as independent was based on

dipole years without El Niño events, and included a modal definition derived in part from the

second EOF of tropical sea surface temperature (SST) anomalies. This was disputed by Dom-

menget and Latif (2002), who pointed out that the orthogonality of this mode did not

necessarily mean that the physical mode with a similar pattern was independent. Allan et al.

(2001) demonstrated that significant correlations exist between anomalies in the tropical

Indian Ocean and ENSO when seasonal values are used. Yamagata et al. (2002) and Behera et

al. (2003) responded with further evidence and arguments of the statistical independence of

the dipole mode from ENSO. 

A number of studies (Chambers et al. 1999; Yu and Rienecker 2000; Annamalai et al.

2003) have examined the dynamical mechanisms connecting Pacific El Niño variability and

dipole-like anomalies in the Indian ocean. Gualdi et al. (2003) described these mechanisms in

a coupled model, while Baquero-Bernal et al. (2002) used a series of forced atmospheric and

coupled model simulations to show statistically that dipole-like variability in the Indian Ocean

was largely associated with ENSO. Li et al. (2003) outlined the Indian Ocean coupled feed-

backs that drive the dynamics of the dipole—the two positive feedbacks being the wind-ther-

mocline-SST feedback (Bjerknes 1969), and a seasonal wind-evaporation-SST (WES)

feedback off the coast of Sumatra—while maintaining that ENSO variability was one major

external forcing for the dipole.

The two poles of the dipole described by Saji et al. (1999) are in fact weakly anti-corre-

lated in phase (Baquero-Bernal et al. 2002), and the SETIO pole has stronger variability. We
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therefore adopt a different nomenclature, the Indian Ocean Zonal Mode (IOZM, Clark et al.,

2003), to describe the near-equatorial interannual variability centered off the coast of Sumatra.

In order to separate the variability in the Indian Ocean driven by ENSO variability in the

Pacific from that which is intrinsic to the Indian Ocean coupled system, we conceived an

experimental framework of numerical experiments with a coupled general circulation model

(CGCM). A long simulation is constrained to suppress ENSO, and compared with a reference

simulation. Several datasets are used to help judge the validity and biases of the model and the

robustness of the results. The analysis of the remaining Indian Ocean variability in the absence

of ENSO forcing reveals two different triggers of the IOZM, including one that is an avenue

for phase-locking between Pacific El Niño modes and the cold phase of the IOZM.

The coupled model, its systemic biases, and our method of suppressing ENSO are

described in the following section. The evolution of the IOZM with and without ENSO are

described in Section 3, with the precursory conditions triggering its development examined in

more detail in Section 4. The results, including comparisons with climatological data, are dis-

cussed in Section 5 before the summary in Section 6.

 

2. Methods: The coupled model, validation, and constraining the model ENSO

 

a. The coupled model

 

The model (described in detail in Gualdi et al. 2003a and Guilyardi et al. 2003) consists of

two independent dynamical components linked by a coupler, and was developed during the EU

Scale Interaction Experiment (SINTEX). The atmospheric component is ECHAM-4

(Roeckner et al. 1996), a version of the European Centre for Medium-range Weather

Forecasting (ECMWF) atmospheric model adapted to climate simulations. Here it is run at

T30 spectral resolution, corresponding to a horizontal resolution of about 3.75°, with 19

vertical layers. 

The ocean component is the OPA8 ocean model (Madec et al. 1998) in its ORCA2 global

configuration. The horizontal resolution is variable, with a nominal resolution of 2° in longi-

tude, and 1.5° in latitude with an increase to 0.5° near the equator. There are 31 vertical levels,
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with 10 m resolution in the top 100 m. The system does not include an interactive cryosphere,

and ice cover is relaxed towards climatology. 

The two components are coupled with the OASIS 2.4 (Valcke et al. 2000) coupler every

three hours, resolving the diurnal cycle, with no flux corrections. The initial condition for the

ocean is the Levitus (1982) climatology, for the atmosphere a spinup of a forced atmospheric

simulation. For the first two years the ocean is run in robust-diagnostic mode, with a restoring

to the climatological state in the interior, away from boundaries.

 

b. Climatological datasets

 

We use a series of climatological products and analyses for both comparison and valida-

tion of the model-produced climate mean state and variability, and to study the mechanisms of

IOZM events with and without ENSO in more detail. The simple ocean data assimilation

(SODA, Carton et al. 2000) ocean climatology, covering the years 1950-2000, is used for SST

and thermocline depth. There is a lack of long-term subsurface observations in the Indo-

Pacific region, particularly in the Indian Ocean. The product away from the surface is then

largely an ocean model response to surface forcing in these data-poor regions. The Reynolds

and Smith (1994) SST climatology was also considered, and yields similar results to SODA

SSTs. For comparisons at the air-sea interface, we use the Southampton Oceanography Center

(SOC, Josey et al. 1999) climatology of wind stress and heat flux components, based on the

years 1980-1997. For sea level pressure (SLP), surface and upper-level winds, we use the

NCEP reanalysis (Kalnay et al. 1996), covering the years 1950-2000. For precipitation, we use

the CPC Merged Analysis of Precipitation (Xie and Arkin 1997), covering the years 1979-

2002. In comparing the power spectra of long timeseries from the model runs, we use an equa-

torial Pacific wind index, covering 8°S-8°N, 150°E-140°W, from 1854-1995 (Mitchell 2003),

while other atmospheric and oceanic indices are derived from the NCEP and Reynolds SST

reanalyses.
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c. The coupled model representation of the tropical Indo-Pacific

 

1) M

 

EAN

 

 

 

STATE

 

, 

 

INCLUDING

 

 

 

SEASONAL

 

 

 

CYCLE

 

 

 

AND

 

 

 

BIASES

 

The 200-year reference simulation (REF) is described in Guilyardi et al. 2003. The mean

state of the tropics remains quite stable during the integration. The mean surface temperatures

in the Indo-Pacific region compare well with observations (top two panels Fig. 1). The major

model biases are a strong upwelling at the equator in the central and eastern Pacific associated

with strong trade winds (a too-strong cold tongue), a weak and divided western Pacific warm

pool, and an eastward extension of warm waters in the southern tropical Pacific, associated

with the unrealistic formation of a double ITCZ. These biases are common in other modern

coupled models (AchutaRao et al. 2002). The mean state in the tropical Indian Ocean com-

pares very well with observations, though in the seasonal cycle there is a bias towards cool

temperatures in the eastern tropical Indian Ocean (ETIO) during the boreal fall. The ocean sub-

surface structure (not shown) reflects the mean biases in the Pacific, and in the Indian Ocean

reveals a bias towards a shallow thermocline in the ETIO. Outside of the equatorial zone, the

mean thermocline depth structures in both the Pacific and Indian Oceans exhibit some strong

biases, in the Pacific influenced by the double ITCZ and the associated unrealistic wind struc-

tures, and in the Indian Ocean associated with the strong zonal winds and lack of strength in

the Asian Monsoon circulation (Roeckner et al. 1996). 

The coupled model has a systematic bias which favors variability in the SETIO region.

This is a bias in the seasonal cycle of Indian Ocean equatorial winds (see Terray et al. 2004a

for a description of how this affects ENSO-monsoon interactions in the same model). The

model climatological thermocline is therefore shallower than observed in the boreal fall, at the

season of the maximum of the IOZM. Several key indices for the IOZM are shown in Fig. 2.

The mean observed seasonal cycle of equatorial zonal winds in the Indian Ocean has two west-

erly peaks during the transition seasons between the monsoons. Westerly winds provoke an

equatorial downwelling Kelvin wave response, which rapidly translates eastwards in both a

current, the Yoshida-Wyrtki Jet (Wyrtki 1973) and thermocline depth response (seen in the

20°C isotherm depth), affecting the thermocline along the coast of Sumatra through coastal

Kelvin waves (Clarke and Liu 1994; Meyers 1996). A projection of this downwelling onto



 

6

 

westward-propagating long Rossby waves then carries this information offshore, increasing

thermocline depth in a region offshore larger than the Rossby radius. The arrival of the

Yoshida-Wyrtki Jet in spring and fall thus deepens the thermocline in the SETIO. In the

model, however, the spring equatorial westerly winds, equatorial jet, and thermocline response

exist (with a peak delayed by one month), but the mean fall winds are mildly easterly rather

than westerly. The result is that the mean depth of the simulated thermocline off the coast of

Sumatra decreases from September through November, to a depth of about 80 m, against the

SODA estimate of about 120 m. 

The erroneous winds in the equatorial Indian Ocean during boreal fall can be traced to the

model’s placement of a strong zone of convection in the southwestern tropical Indian Ocean

northeast of Madagascar. This in turn can be traced both to somewhat warmer than observed

SSTs in the coupled simulation, and to difficulties with the atmospheric convective scheme,

which even in forced atmospheric simulations (at both T30 and T42 resolutions) with climato-

logical SSTs creates a boreal fall Indian Ocean zonal gradient in precipitation biased towards

the west, driving the Indian Ocean Walker circulation in the wrong direction. This bias is

absent in a T106 version of the same coupled model (S. Masson, personal communication).

The bias in the boreal fall SETIO thermocline depth is added to by a smaller bias in the

seasonal cycle of upwelling-favorable winds along the Sumatra coast, influenced by the

quicker-than-observed northward movement of the Mascarene anticyclone in boreal fall (Ter-

ray et al. 2004a). The observed seasonal cycle along the Sumatra coast follows the shifts in the

centers of atmospheric convection (see Fig. 2), with northwesterly downwelling-favorable

winds during the austral summer Australian monsoon (DJF), and southeasterly upwelling-

favorable winds building through the boreal summer monsoon season (JJAS), peaking at its

end. The model produces a reasonable seasonal cycle, with a bias towards strong upwelling

winds during the SW monsoon season.

These two wind biases both favor upwelling and a shoaling of the SETIO thermocline in

the boreal fall, sensitizing the system by allowing a smaller initial disturbance to develop into

the Bjerknes-type positive feedback between ocean and atmosphere that occurs in the growth
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phase of the IOZM (see Section 3). They explain why the model has a higher SETIO variabil-

ity than observed (detailed below), a fact worth keeping in mind in the analysis to follow.

2) I

 

NTERANNUAL

 

 

 

VARIABILITY

 

The amplitude of interannual variability in the SST reveals an ENSO that is smaller than

observed (Fig. 3 top two panels). The model also produces an ENSO with a higher frequency

than observed, with a peak between 2 and 3 years (first three panels of Fig. 5, see also Guil-

yardi et al. 2004 for further details). 

The model supports an IOZM—its evolution is described by Gualdi et al. (2003b) for the

T42 version of the coupled model (and is similar to that seen here), reproducing the main fea-

tures described by Saji et al. (1999). The Indian Ocean SST variability is overemphasized off

the coast of Sumatra, and in the subsurface over a large part of the ETIO (Fig. 4 top two pan-

els), as expected from the model biases described above. 

The seasonal maximum in interannual variability in the Indian Ocean is anchored in the

seasonal cycle, for the SETIO (70-90°E, 10°S-0°) it is in the boreal fall, for the WTIO (50-

70°E, 10°S-10°N) it arrives a few months later. The tropical variability in the Indian and

Pacific Oceans is significantly correlated when seasonally stratified (Allan et al. 2001), these

relationships are shown in Fig. 6 for observations and the REF simulation. The SETIO index

of SST anomaly is anticorrelated with the Niño3.4 SST anomaly (with just over 99% signifi-

cance), and the WTIO is more strongly correlated with Niño3.4, with the Pacific signal leading

by about one season. This correlation is reproduced quite well in REF (although the model has

a tendency towards a significant biennial signal not seen in the observations) giving some con-

fidence in the coupled model’s ability to reproduce the relationship between Indian and Pacific

tropical variability.

 

d. Removing ENSO from the model

 

The ENSO cycle depends on a coupled interaction of atmosphere and ocean in the tropical

Pacific Ocean, and thus can be suppressed in a coupled model by constraining one of the

agents of exchange between components (Fig. 7). These are the SST, which as entry into the

atmospheric model in part determines the air-sea heat flux, forcing the atmospheric dynamics,
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producing a surface wind stress. The wind stress and heat flux are the forcing for the oceanic

component, which through its own dynamics then produces a distribution of SST. The SST

and heat flux are the agents through which thermodynamic atmosphere-ocean coupling occurs.

A direct negative feedback exists between the two, with higher (lower) SSTs generally yield-

ing a smaller (larger) heat flux from atmosphere to ocean through an increase (decrease) in the

latent, sensible and longwave heat fluxes. The wind stress on the ocean is the agent of dynamic

coupling, and sensitized by a thermocline in close proximity to the surface can provide the

positive Bjerknes-type feedback necessary for coupled anomaly growth and for ENSO.

Previous studies have used a number of regional constraint methods to artificially control

the physics of the tropical Pacific Ocean in coupled models. Elliott et al. (2001) used a very

strong SST restoring term, in essence constraining the oceanic surface heat flux to reproduce a

given pattern of SST. Strong fluxes may be necessary to maintain a given SST trajectory

against evolving ocean and atmospheric dynamics. Given the quick link between the Indian

and Pacific oceans via the Indonesian throughflow (ITF), it is not clear that this constraint on

the tropical Pacific Ocean would not adversely affect the dynamics of the Indian Ocean by

changing the mean properties or variability of the water masses in the ITF. Baquero-Bernal et

al. (2002) used a different constraint, passing to the atmosphere a climatological SST. 

Here we find that a third method, constraining the wind stress seen by the ocean, worked

best at suppressing the interannual variability associated with ENSO while keeping the tropi-

cal Pacific mean state in both ocean and atmosphere closest to the reference simulation. The

constraint was applied in a limited domain covering the tropical Pacific (see Fig. 8). The latitu-

dinal transition lines fall at the poleward edge of the subtropical gyres, and in the wind stress

patterns roughly at the transition between the midlatitude westerlies and the trades, though this

line varies with the seasons. The constrained model experiment (noENSO) was run for 200

years to match REF, constrained with the mean monthly climatology of REF rather than an

observed climatology, in order to keep the comparison between simulations clean.

We here examine the mean state and variability of the ocean and atmosphere in order to

both ensure that ENSO-scale variability has been suppressed, and to confirm that the con-

straint on the physics of the model has not distorted the mean state.
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The mean state of noENSO has changed little from REF in both the surface and subsurface

oceanic fields. There is a small bias in the Pacific towards an eastern Pacific cold state (Fig. 1

bottom row) of less than 0.3 °C in the Pacific cold tongue region. A small bias in the depth of

the 20°C isotherm (Z20) is found in noENSO compared REF in the eastern tropical Pacific

(shallower by about 5 m, not shown), mirroring the surface bias. The mean state of the Indian

Ocean is indistinguishable between noENSO and REF at the surface, and nearly identical in

the subsurface. The mean wind stress field produced by the atmosphere in noENSO is very

close to the REF field, with differences peaking at 0.005 N m

 

-2

 

, while means in the trade wind

regime of the tropical Pacific are typically 0.03-0.1 N m

 

-2

 

. Despite the artificial break in the

physics in the dynamical connection between atmosphere and ocean, the atmosphere produces

a wind stress field that is closely matched to imposed wind stress, and the coupling is therefore

fairly well closed, with little dynamical distortion introduced by the artificial constraint.

The interannual variability of the equatorial Pacific surface ocean and subsurface in

noENSO has been greatly reduced when compared to REF. The variability of ENSO with

respect to the mean seasonal cycle can be seen in SST as the tongue of high variability extend-

ing across the equatorial Pacific Ocean, concentrated in the east (Fig. 3 top right). In noENSO,

in response to the fixed wind stress forcing in the constrained zone, the SST variability in the

equatorial waveguide is dramatically reduced (Fig. 3 bottom row), most strongly directly on

the equator, where wind-driven upwelling dynamics are the dominant thermodynamic control.

The wind stress constraint is a very strong constraint on the ocean dynamics, as the reduction

in variability in Z20 between noENSO and REF demonstrates (Fig. 4 bottom row), with a con-

siderable reduction in a large region in the tropics, particularly strong on the equator and along

the eastern edge of the Pacific Ocean where wind-generated equatorial and reflected coastal

Kelvin waves are a large part of the dynamics. The amplitude of the variability of the Indian

Ocean in noENSO, in both SST and Z20, is little reduced from REF (lower right of Figs. 3 and

4). This last point is revisited in the next section.

The noENSO constraint is quite successful at removing atmospheric signals at ENSO

timescales, and removing the ENSO peak in Pacific Ocean indices (Fig. 5). On the atmo-

spheric side, two typical indices for ENSO variability are the zonal wind stress over the tropi-



 

10

 

cal Pacific, and the sea-level pressure at Darwin, one pole of the Southern Oscillation. The

noENSO simulation has fairly white spectra for these atmospheric indices, demonstrating that

atmospheric variability on the ENSO timescale in the Pacific sector has been effectively sup-

pressed. On the oceanic side, the power spectra of the Niño3.4 SST anomaly index, and an

anomaly index further east (EPAC, incorporating the major region of remaining Pacific vari-

ability in noENSO, 120-90°W, 10°S-10°N), both show that the noENSO constraint acts

strongly on the ocean. The energy of variability on the oceanic side in the Pacific has been dra-

matically reduced in noENSO. 

In the Indian Ocean (bottom row of Fig. 5), the power spectra of SST anomalies in each of

the 2 runs remain quite close to each other. In the western Indian Ocean, the only difference

between REF and noENSO is a mild, barely significant reduction in variability in the model’s

ENSO time band. In the SETIO region the only difference between noENSO and REF is a

very slight reduction of the 2-year signal, though a wavelet analysis reveals a few periods of

remaining significant power (not shown).

An inspection of a histogram of the SETIO index variability reveals a significant departure

from a Gaussian distribution, however, in a negative tail that is asymmetric with the positive

anomaly side, in both the REF and noENSO simulations (Fig. 9), as well as to a lesser extent

in SODA, an indication of a dynamical process that amplifies the cold phase of SETIO anom-

alies. This dynamical process is the IOZM. 

The model-produced Indonesian Throughflow (ITF) has a seasonal cycle varying from 3

Sv in February to a peak of 14 Sv in September, which is essentially unchanged by the con-

straint in noENSO, further confirmation that the Pacific Ocean mean state has been success-

fully maintained despite the artificial constraint. The range of interannual variability in the ITF

strength is reduced, as the variability is forced solely from the Indian side. The heat transport

provided by the ITF from the Pacific to Indian Oceans also remains nearly constant in the

mean between the two simulations, though again the interannual variability is somewhat

reduced in noENSO.

A second method of constraint—constraining the SST seen by the atmosphere with the

REF mean seasonal cycle in the tropical Pacific—was tested (the method employed by
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Baquero-Bernal et al. 2002), with a 100-year run. This proved an effective constraint for the

atmosphere, producing spectra of the zonal equatorial Pacific wind stress and Darwin pressure

slightly flatter and more white than the noENSO simulation. However, the ocean state in the

constrained zone, with the negative thermodynamic feedback (Fig. 7) artificially cut, drifted

with a red-noise spectrum, essentially a random-walk thermodynamic response to stochastic

atmospheric forcing (Hasselman 1976; Frankignoul and Hasselman, 1977). The equatorial

waveguide in the Pacific was also nearly as variable as in REF, with thermocline depth vari-

ability reflecting Kelvin waves driven by, but not coupled to, variability in the atmospheric

wind forcing. The artificial constraint in this case strongly impacted the dynamics of the ocean

component of the model, and the coupling in the constrained region was not well closed. The

affected oceanic regions influenced the oceanic state neighboring the constrained zone, includ-

ing the SETIO, and for this reason, analysis of this simulation was abandoned. 

 

3. IOZM evolution

 

The comparison of REF and noENSO in the previous section reveals that the amplitude of

the interannual variability in both the surface (SST) and subsurface (Z20) fields is little

reduced in the tropical Indian Ocean in the absence of ENSO (see Fig. 3, Fig. 4, and Fig. 9).

This section concentrates on the evolution and mechanism of the IOZM that is common to

both simulations, with and without ENSO.

Composite IOZM events for REF and noENSO are constructed to compare the dynamical

evolution of the two events. Years in which the seasonal SON SETIO anomaly is cold by

greater than one standard deviation (37 events for REF and 29 for noENSO) are included in the

composite. A statistical test based on a 95% confidence level that a random drawing without

replacement of an equivalent number of years from the 200 years of the REF or noENSO sim-

ulations would not have as large of an anomaly from the mean state as the composite (Terray et

al. 2003) is used to mask fields in the figures. The evolution of key ocean and atmosphere

anomalies are presented in Fig. 10 for REF, and Fig. 11 for noENSO. The use of alternate indi-

ces as indicators for the IOZM, such as the equatorial zonal wind in the Indian Ocean, yields

similar years and therefore similar results (not shown).
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a. Similarities in the IOZM evolution with and without ENSO

 

The evolution of the IOZM anomalies during both the growth and decay phases in REF

and noENSO is remarkably similar, and in most respects is the evolution described by Gualdi

et al. (2003b). This is a coupled response of the ocean and atmosphere, with upwelling and

cold SST anomalies in the SETIO, accompanied by anomalous easterly winds along the equa-

tor. The common points between the two runs are described here. A statistical test of the sig-

nificance of the similarity in the REF and noENSO IOZM composites was performed by

grouping the 37 REF and 29 noENSO simulation IOZM years, and repeatedly (9999 times)

calculating the difference between the means of a random sample (without replacement) of 37

of these 66 years and the remaining 29 years. This yielded an estimate of the probability den-

sity function in which the actual difference between the REF and noENSO composites could

be placed. From June through November the differences in SLP, precipitation, and lower and

upper-level winds in the two composite sets are very small over the tropical Indian Ocean,

showing a common evolution with (REF) and without (noENSO) the influence of ENSO (not

shown).

The first anomalies in the composite evolution of the IOZM appear in the late spring,

before the onset of the Asian Monsoon season. By June-July, an already coupled response over

the SETIO region involves a lack of precipitation over the region close to the coast of Sumatra

(Fig. 10, upper right panel), provoking a reduction in heating in the atmospheric column with a

reduced latent heat release. The baroclinic atmospheric response to this off-equatorial heating

anomaly includes a Rossby wave response to the west, with an increased SLP, and anticy-

clonic surface wind anomalies with an upwelling component along the Sumatra coast and an

anomalous easterly component along the equatorial waveguide (Matsuno 1966; Gill, 1980;

first row center panel of Figs. 10 and 11). In part collocated with the region of reduced precip-

itation is a region of reduced SST and of reduced thermocline depth (first row left panel in

Figs. 10 and 11). The Z20 anomaly has the characteristic pattern of boundary propagation of

coastal Kelvin waves and the reflection of low-latitude Rossby waves triggered by the arrival

of an anomalous easterly equatorial wind-provoked upwelling equatorial Kelvin wave (a

response noted in sea level observations by Clarke and Liu 1994). The cold SST anomaly
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associated with the Z20 anomaly then reinforces the lack of convection over the region, and its

atmospheric response, strengthening the upwelling-favorable equatorial winds—a wind-ther-

mocline-SST positive feedback.

The Z20 anomaly pattern propagates westward as Rossby waves with higher phase speeds

closer to the equator. The anomalies grow through the late Indian monsoon season (August-

September, second row of Figs. 10 and 11), with a reinforcement of the oceanic and atmo-

spheric anomalies described above. In addition to provoking upwelling equatorial Kelvin

waves due to their easterly component, the anomalous winds drive an Ekman pumping that

extends across the Indian basin, downwelling on both sides of the equator (not shown), but

stronger to the south due to the anticyclonic nature of the wind anomalies there. The deepening

thermocline response can be seen in the western and particularly in the southwestern tropical

Indian Ocean away from the equator, while in the east the upwelling signal from the equatorial

and coastal Kelvin waves and reflected Rossby waves dominates. The locally-forced deepened

thermocline also propagates westward as a Rossby wave (Xie et al. 2002). The oceanic anom-

alies evolve in a manner similar to those in the forced ocean simulations (Murtugudde et al.,

2000 and Vinayachandran et al., 2002), through this mix of locally and remotely forced influ-

ences (also Rao et al., 2002 and Feng and Meyers, 2003). The WTIO thermocline away from

the equator continues to deepen through and past the peak of anomalies in the SETIO, though

the associated SST response is quite mild in both simulations (left panels of Figs. 10 and 11).

At the peak of the IOZM, which in the model occurs about one month later (November)

than in reality, the anomaly patterns described above are at their most intense (third row of

Figs. 10 and 11). On the oceanic side, the thin thermocline and associated cold SST anomalies

have propagated as coastal Kelvin waves far into the Bay of Bengal and along the Indonesian

coast, and communicate far into the interior in near-equatorial regions via Rossby wave propa-

gation. The negative precipitation anomaly has spread to include the entire near-equatorial

region. 

There is a strong meridional component to the surface wind anomalies in the ETIO, visible

throughout the IOZM (center column of Figs. 10 and 11). In the early part of the IOZM this

represents an early northward penetration in the seasonal cycle of the southern hemisphere
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southeasterly trade winds, while later (August-September) it can be interpreted as an intensifi-

cation of the surface winds associated with the monsoon. In the model climatological October-

November, the absolute cross-equatorial winds are quite weak, since the centers of monsoon

convection over India and southeastern Asia have disappeared. While this remains the case in

the IOZM composite, the lack of rain over the equatorial zone allows a continued northward

penetration of the southern hemisphere trades at the surface, into the zone of weak climatolog-

ical convection still remaining over the Bay of Bengal.

The first significant difference between the composites comes in October-November in the

atmosphere. The REF IOZM surface and upper-level winds over the eastern equatorial Indian

Ocean indicate a weaker Walker circulation than in the noENSO IOZM, a signature of the El

Niño events present in the REF simulation. The ocean anomalies associated with the IOZM

remain indistinguishable between the two simulations.

In December-January, the model climatological winds along the coast of Sumatra have

reversed sign and are downwelling-favorable, as the main center of convection has shifted

south and eastwards during the development of the Australian Monsoon. This deepens the

thermocline (not shown), perhaps contributed to by downwelling equatorial Kelvin waves trig-

gered in the western basin (Gualdi et al. 2003b). The deepened thermocline interrupts the

Bjerknes feedback and brings the end of the IOZM. The thin thermocline anomalies begin to

propagate westward offshore of Sumatra (last row in Figs. 10 and 11). A weak zonal gradient

in precipitation anomaly remains, with an increase in the rainfall northeast of Madagascar and

a remaining lack of precipitation in the eastern equatorial Indian Ocean. At this time, the two

IOZM simulations (REF and noENSO) begin to diverge, with significant differences over the

Maritime Continent and in the equatorial Pacific, the signature of the peak of the El Niño

events present in REF and absent in noENSO.

 

b. IOZM atmosphere-ocean feedbacks active in the model

 

Li et al. (2003) suggest that there are two positive feedbacks involved in the IOZM, one

being the Bjerknes-type wind-thermocline-SST feedback described above, the other being a

seasonally positive feedback between the wind, evaporation, and SST. The seasonal cycle of

wind along the Sumatra coast (Fig. 2) means that during the boreal summer and fall, wind
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anomalies associated with the IOZM add to the total wind speed, while in other seasons, they

reduce it. One factor in the latent heat loss from the ocean is wind speed, so enhanced wind

speeds over the Sumatra coastal region could further reduce SST, positively feeding back into

the precipitation and associated wind anomaly patterns during boreal summer and fall.

These two feedbacks are diagnosed in the model with simple scatter plots relating key indi-

ces. For the Bjerknes-type feedback (Fig. 12), each of the three pairs of relevant indices (equa-

torial wind with Sumatra Z20, Sumatra Z20 with Sumatra SST, and Sumatra SST with

equatorial wind) show fairly tight positive relationships, confirming the active role of the

wind-thermocline-SST feedback. The strongest deviations come during the SON IOZM peak.

The locally-forced upwelling wind and Sumatra Z20 do not have a very clear relationship (Fig.

12 lower left). Therefore the atmospheric response of the zonal equatorial winds and the ocean

dynamical response that brings this upwelling signal from the equator to the Sumatra coast as

equatorial and coastal Kelvin waves are more important in the model than locally-driven

upwelling (consistent with Murtugudde et al., 2000).

On the other hand, the suggested positive WES feedback along the Sumatra coast does not

exist in the model. While a generally positive relationship between wind speed and latent heat

loss exists in the boreal winter and spring seasons (Fig. 13, negative half of first panel), it is not

very clear in boreal summer and fall (positive half), during the IOZM. The strongest latent heat

losses are in fact not associated with colder SSTs, but with the warmest (middle panel of Fig.

13). Instead of the latent heat loss controlling the SST, the SST controls the latent heat loss,

particularly during the IOZM. The second major variable other than wind speed in the latent

heat flux is the difference between the specific and saturation specific humidity. The relation-

ship between the modeled SST and air temperature is very tightly correlated. When air temper-

atures are low the saturation specific humidity is reduced, the relative humidity increased

towards saturation, and as a consequence, the latent heat flux is limited.

The regions of SST cooling during the growth of the IOZM are in fact associated with pos-

itive net air-sea heat fluxes due to the cold SSTs and an increase in solar radiation, a damping

negative feedback.
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4. IOZM triggers and the link with the Pacific

 

The largest differences revealed by the statistical test between the IOZM composites from

the two simulations occur in the triggering stage, in April-May, and after the peak of the IOZM

in December-January. 

 

a. A meridional trigger in the ENSO-suppressed simulation

 

The meridional Hadley-type anomaly described below that appears as the trigger for the

IOZM in the noENSO simulation is a coherent signal in the composite, and therefore the com-

mon triggering mechanism for all IOZM events in this simulation without the influence of

ENSO, which make up 29 of the 200 years.

The first significant anomalies in composite event arrive in the Indian Ocean in February

and March and establish cooler SSTs in the SETIO region (Fig. 14 first row). The late Austra-

lian monsoon surface circulation is reinforced, with a low pressure anomaly off the northwest-

ern Australian coast, and a high pressure anomaly centered further west over the south central

Indian Ocean, a reinforcement of the Mascarene high. These are accompanied by anomalous

winds that add to the mean, southerly over the south central Indian Ocean and northwesterly

along the Sumatra Coast and further west near the equator. These winds follow strengthened

convection and rainfall in the southern hemisphere, in February in a zonal region centered over

10°S extending from the central to the eastern Indian Ocean, in March spanning northwestern

Australia and far eastern Indonesia. The increased cloudiness associated with the increased

rainfall and an increased latent heat loss due to stronger winds reduce the net air-sea heat flux

(not shown). The result is that by April, the SST in the SETIO region is anomalously cold.

The colder SSTs in the SETIO contribute to a reduction in the convection and rainfall in

this region during the late spring. In the mean model climatology the SETIO rainfall increases

from April through June, before decreasing as the center of convection shifts northward with

the development of the Asian monsoon. Responding to the SETIO cold anomaly and therefore

an increase in the meridional surface temperature between the SETIO and regions to its north,

an early northward shift in convection occurs, accompanied by a northward shift in the south-

easterly trades (seen as anomalous southeasterlies south of the equator in Fig. 14, second row).
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This anomalous Hadley circulation is apparent in April-May over the central and eastern tropi-

cal Indian Ocean, with an excess of precipitation on and north of the equator and a lack of pre-

cipitation in the SETIO, extending zonally both west and east. The surface winds have a strong

southerly component, while the 200 mb winds have a strong northerly component. This cell

represents an early strengthening of the eastern portion of the climatological Hadley cell of the

Asian monsoon circulation, which has begun to penetrate north of the equator, bringing the

southern hemisphere southeasterly trades to the equator. It can also be thought of as a quicker-

than-normal seasonal change between a strong Australian and a strong eastern portion of the

Asian monsoon circulations.

The consequence of this anomalous Hadley cell for the Indian Ocean is that the conditions

for the positive growth of the IOZM anomaly have been set up—the early northward penetra-

tion of the southeasterly trades brings an upwelling easterly wind component to the equator,

and the reduced convection over the SETIO is accompanied by a reduction in atmospheric col-

umn heating. This leads to the westward-displaced Matsuno-Gill anticyclonic surface wind

response, and a thermocline and SST response to these anomalous winds that reinforces the

drop in SST, further reducing the precipitation—the positive feedback described in Section 3.

There are no driving anomalies in or over the Pacific Ocean during the triggering phase in

the noENSO IOZM composite. Later, since there remains a thermodynamic coupling over the

constrained tropical Pacific, there is an oceanic response under the zone of increased convec-

tion and rainfall in the South China Sea and northwestern tropical Pacific, a reduction in the

surface salinity and in the surface temperature (top left panel of Fig. 11, salinity not shown).

 

b. Two types of triggers in the reference simulation

 

A separation of the REF IOZM cases into two groups, those that occur with El Niño events

(using the index described in Guilyardi et al. 2003) and the rest, reveals two mechanisms in

boreal spring that can trigger an IOZM event. The same statistical test, placing the actual dif-

ference between the two groups in an Monte Carlo-derived estimate of the probability density

function of the difference, was used to determine the significant differences between the REF

IOZM/El Niño and REF IOZM/no El Niño composites.
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The subset of REF IOZM/no El Niño events, 30 of the 37 REF IOZM, shares many fea-

tures of the noENSO simulation IOZM composite (compare Fig. 15 and Fig. 14), including the

reinforcement of the seasonal circulation in the southeastern Indian Ocean in February-March,

accompanied by an excess in precipitation centered over 10°S. A setup of anomalously cold

SSTs in the SETIO region following the strengthened Australian monsoon circulation contrib-

utes to a later lack in April-May rainfall, accompanied by an increase in the rainfall further

north. There is an anomalous Hadley circulation over the eastern equatorial Indian Ocean in

April-May, with zones of southerly cross-equatorial flow at the surface and the return north-

erly flow at 200 mb (Fig. 15 second row). As before, the early northward penetration across

the equator of the southeasterly trades and lack of SETIO rainfall provide the triggering anom-

alies that lead to the positive feedback of IOZM growth. As in the composite noENSO IOZM,

there is no involvement of anomalies in the Pacific Ocean, so processes in and over the Pacific

Ocean do not appear to contribute to this type of IOZM development.

Another way in which the IOZM is triggered in the REF simulation, clearly absent in

noENSO, is associated with the developing phase of El Niño anomalies in the Pacific. The

evolution of the subset of REF IOZM events coincident with a full El Niño, 7 of the 37 REF

IOZM, is shown in Fig. 16. On the oceanic side, the thin thermocline anomaly appears early

and is well-developed by April-May. It responds to an equatorial easterly wind anomaly in the

eastern Indian Ocean that is more zonal than those found in Indian-only IOZM events. This

zonal wind anomaly develops as the atmosphere responds to an eastward shift in the center of

convection with the developing El Niño, which over the Maritime Continent draws the equato-

rial surface winds towards it (second row of Fig. 16, compare with second row of Fig. 15).

Centered over the SETIO and crossing the equator is a region of reduced precipitation, accom-

panied by the now-familiar Matsuno-Gill anticyclonic response and the upwelling-favorable

easterly wind anomaly on the equator, triggering the early growth of the IOZM. At upper lev-

els the anomalous winds have a strong easterly component linking the regions of increase and

decrease in precipitation. The anomalies over the Maritime Continent describe a largely zonal

anomaly of the boreal spring Walker circulation, which through the reduction in convection

over the ETIO leads to the IOZM event. The IOZM is also clearly seen in composites of El
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Niño events in REF, evolving as described above, confirmation of the robust relationship

between the two. This triggering mechanism has been discussed by Yu and Rienecker (2000),

Annamalai et al. (2003), and Gualdi et al. (2003b).

This link to a Walker-type IOZM triggering mechanism in April-May, connected to a

developing El Niño, allows an understanding of the statistically significant but only moder-

ately strong correlation between ENSO and the IOZM seen in the model (right two panels, Fig.

6). In REF, there are two triggering paths that lead to the initial growth of the IOZM. One sub-

set of IOZM events is connected to the changes in convection and the Walker circulation due

to a developing El Niño event in the boreal spring (upper path in the schematic Fig. 17). The

direct change to the equatorial Walker circulation leads to a dynamic atmospheric response to

the lack in heating over the SETIO (central schematic in Fig. 17) and a dynamic oceanic

response, and finally to the coupled growth of the IOZM. However, in the model as in the cli-

matological record, IOZM events can exist when the Pacific not in an El Niño state. In the

model the trigger for all the noENSO IOZM events and all of the REF IOZM events not asso-

ciated with an El Niño has a meridional character associated with an anomalous April-May

ETIO Hadley circulation, with increased precipitation on and north of the equator and reduced

precipitation over the SETIO. This grows out of cooler SETIO SSTs that came from a rein-

forcement of the seasonal wind patterns in February-March (lower path in Fig. 17). The result,

as in the Walker-type trigger, is a dynamical ocean response to anomalous equatorial winds

that leads to the coupled growth of the IOZM.

 

5. Discussion: model dynamics and the observed climatological system

 

Can the identified dynamics of this Hadley-type triggering mode in the coupled model be

found in climatological analyses? How might differences between the mean observed and

model climatologies mentioned in Section 2c color the conclusions? 

In the modern climatological record of the last 50 years, there are three years in which the

Indian Ocean has developed a strong IOZM with the Pacific Ocean not in an El Niño state,

1961, 1967, and 1994, and three (1972, 1982, 1997) that have developed with an El Niño (Saji

and Yamagata, 2003b).
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Taking first the years of IOZM associated with a neutral ENSO phase, our first question is

whether they exhibit the same anomalous Hadley cell circulation in the triggering phase of the

IOZM as seen in the model. In 1994, the early evolution of anomalies in the Indian Ocean has

a number of similarities with the model noENSO composite IOZM. This evolution is shown

from oceanic and atmospheric reanalyses in Fig. 18. In February-March, a reinforcement of

the mean surface circulation and increased precipitation over the ETIO, associated with a rein-

forced Mascarene high in the south central Indian Ocean and reinforced winds along the

Sumatra coast, overlies a region of anomalously cold SSTs. Anomalously strong latent heat

losses due to the strong winds (seen in the SOC climatology, not shown) contribute to the cold

SSTs. Associated with the cooler SSTs, precipitation over a zonal swath in the eastern Indian

ocean centered at 10°S is reduced in April-May, and is stronger further north, allowing an

early northward penetration of the surface southeasterly trades. This situation is very similar to

that found in April-May in the noENSO IOZM composite (Fig. 11). In June-July a strong lack

of precipitation over the SETIO, compensated in this case by a strong increase in precipitation

over the South China Sea and the Philippines, sets up a situation with a broad southerly surface

cross-equatorial flow and upper level northerly flow over the Maritime Continent, an anoma-

lous Hadley circulation similar to that seen in the model, though greater in latitudinal extent.

The surface expression of this Hadley circulation, the northward penetration of the southeast-

erly trades, has an easterly upwelling component on the equator, and a thermocline and SST

response are visible in April-May, stronger in June-July. This reinforces the lack of precipita-

tion over the SETIO, yielding a Matsuno-Gill atmospheric response to this lack of heating, and

the IOZM has been triggered, growing through its peak in October. The 1994 IOZM differs

from the noENSO model run composite in August-September, where there is a zonal Walker

character to the anomalous atmospheric circulation, associated with a warming of the central

Pacific and an eastward shift of the Pacific Warm Pool and precipitation (Fig. 18 fourth row).

This Walker anomaly may contribute to the strength of the IOZM. The triggering phase from

February through May remains, however, similar to the Hadley-type trigger described in the

model composites.
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In 1997, a very strong El Niño event occurred along with an IOZM event (Fig. 19). The

eastward shift in the Pacific Warm pool and center of convection and rainfall begins early,

already evident in February-March. In the model, this eastward shift, taking place in April-

May (Fig. 16), was not as far east, and the immediate compensation was a reduction in precip-

itation over the eastern equatorial Indian Ocean. In April-May 1997 the increase in convection

and precipitation has reached the dateline, and the compensating decrease is in the far western

Pacific Ocean. By June-July there is a strong lack of precipitation over the SETIO region,

accompanied by the Matsuno-Gill anticyclonic atmospheric response, and a dynamical ocean

response to the upwelling-favorable winds—and the IOZM has been triggered. These anoma-

lous patterns intensify through the peak of the IOZM in October-November 1997 (Yu and Rie-

necker 2000). While the details of the IOZM in 1997 differ from the model IOZM/El Niño

composite, the major IOZM trigger, the eastward April-May shift in convection associated

with the developing El Niño, is consistent.

Not all climatological IOZMs are triggered by the two paths identified in the model runs,

the 1961 IOZM evolved differently. The All-India Monsoon Rainfall index (Parthasarathy et

al. 1995) identifies 1961 as the strongest monsoon on record. The Northeast Monsoon season

ended unusually early, in February-March an early northward movement of the southern

southeasterly trades had occured. By April-May the Southwest Monsoon flow had begun, with

strong northward cross-equatorial flow and a Findlater Jet, and strong precipitation anomalies

over India and the eastern coast of the Bay of Bengal. This early monsoon circulation impeded

the usual development of westerly equatorial winds in the Indian Ocean, and thus the spring

equatorial oceanic Wyrtki jet, yielding a shallower thermocline and cooler SST in the ETIO.

This distortion of the monsoonal circulation led to a reduction in precipitation over the Mari-

time Continent, perhaps responding to the cool SSTs in the eastern Indian Ocean. The 1961

IOZM was thus triggered by mechanisms rather different than those modeled here—one con-

clusion is that the model does not capture all the modes of variability exhibited by the natural

system.

The coupled model has a bias towards a shallow boreal fall ETIO thermocline and high

SST variability, for the reasons outlined in Section 2. The recent climate record suggests, how-
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ever, that IOZM events in the absence of El Niño, similar to those modeled, can and have

occured. One question relevant to predictability that might be addressed by future research is

whether threshold levels for anomalies necessary to trigger the IOZM can be identified.

 

6. Summary

 

This paper has addressed the debate over the dynamical links between the IOZM and

ENSO, essentially asking the question: can the IOZM exist without ENSO? What are the trig-

gers for the IOZM? What dynamical processes lead to the statistically significant but not inev-

itable phase-locking between El Niño and IOZM events?

We have used two runs of a coupled model, one freely evolving and the other regionally

constrained with model seasonal mean wind stresses to suppress ENSO, to examine the

dynamics of the IOZM. We find that the IOZM can exist in the absence of ENSO, and that it

evolves with virtually the same coupled dynamics as IOZM events in the reference simulation.

In the model, the wind-thermocline-SST Bjerknes positive feedback is the key dynamical

mechanism at work in IOZM growth, with the propagation of equatorial upwelling by oceanic

Kelvin and Rossby waves more important than locally wind-driven upwelling along the

Sumatra coast. The surface heat flux, driven by an increase in solar radiation as well as

decrease in latent heat loss and longwave radiation, acts as a negative damping feedback on

IOZM growth.

There are two triggering events for the IOZM. The first is the only way in which IOZM

events are triggered in the noENSO simulation, and appears in boreal spring as an anomalous

meridional Hadley cell with as surface expression an early northward penetration across the

equator of the southeasterly trades in the eastern tropical Indian Ocean. This Hadley cell

responds to cooler SETIO SSTs left by anomalously strong seasonal winds in the late austral

summer, consequently shifting the center of atmospheric convection northwards.

These anomalous winds have an easterly component on the equator, provoking upwelling

Kelvin waves which rapidly reach the Sumatra coast and spread north and south as coastal

Kelvin waves, reducing the depth of the thermocline and decreasing SSTs on the equator and

the eastern boundaries, and propagating westward into the interior as Rossby waves. The
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reduction in SSTs in the SETIO further inhibits convection and precipitation, leading to a

dynamical Matsuno-Gill atmospheric response with a westward-displaced anticyclonic wind

anomaly, including an easterly equatorial component over the Indian Ocean, and the IOZM

undergoes a coupled growth. The early evolution described by this model-simulated Hadley

cell trigger is similar to the situation in 1994 from February through May, one of few events in

the recent climatological record in which an IOZM event evolved without the concurrent

development of El Niño.

The second triggering mechanism for the IOZM only appears in the reference simulation

including ENSO variability, and appears in boreal spring (April-May) as an anomalous zonal

Walker cell connecting the eastern tropical Indian Ocean and the Pacific Warm Pool region. It

is associated with the developing El Niño, which brings an eastward shift of the convection

and precipitation in the western tropical Pacific Ocean, driving an anomalous subsidence and

lack of precipitation further west over the SETIO. The lack of precipitation over the SETIO is

then accompanied by the dynamical Matsuno-Gill atmospheric response. This second trigger

then leads to the same coupled dynamical response that is the early growth of the IOZM as the

first. 

The presence of this trigger connected to the development of El Niño, already described by

Yu and Rienecker (2000), Annamalai et al. (2003) and Gualdi et al. (2003), explains the phase-

locking often seen between Indian Ocean and Pacific Ocean interannual variability, and signif-

icant seasonally-stratified anticorrelation seen between SETIO and Niño3.4 SST anomalies in

both the climatological record and the coupled model. The presence of the first, Hadley cell

anomaly triggering mechanism, allows us to understand the existence of IOZM variability

independent of the Pacific ENSO state.

One major question not addressed by this work is what causes the reinforced seasonal

winds and eastward Mascarene high shift during the late austral summer, the first significant

anomalies in the Hadley-cell IOZM trigger. These anomalies bear a strong resemblance to the

subtropical dipole described by Behera and Yamagata (2001). Terray et al. (2003, 2004b)

found that the same shift in the Mascarene high, associated with underlying SST anomalies,

persisted and weakened the following late Indian summer monsoon Hadley circulation, being
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therefore a consistent predictor of monsoon strength. It has been suggested that such anoma-

lies are related to the Antarctic circumpolar wave (Peterson and White 1998; Fachereau et al.

2003), or to the Pacific ENSO state (Kidson and Renwick 2002). Meehl and Arblaster (2002)

reported that the strength of the Australian monsoon circulation was tied to that of the preced-

ing Indian summer monsoon, and viewed the entire Indo-Pacific tropical system, including the

monsoonal circulations, ENSO, and the equatorial Indian dipole, as part of a coupled system

linked by the Walker circulations, with a boreal spring state transition that sets the stage for the

phase of the tropical biennial oscillation. These modes of variability appear interrelated to var-

ious degrees, and their connections merit further study. Isolation of local mechanisms in cou-

pled models, the approach used here to study the IOZM, may be one fruitful avenue of further

research.
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FIGURES AND CAPTIONS

FIG. 1. Comparisons of mean SST for the SODA dataset, the 200-year reference run (REF), the 200-year wind-
stress-constrained run (noENSO), and the difference between noENSO and REF. Mean panels have contour
interval of 1°C and SST greater than 26°C is shaded grey. The difference panel has contour interval of 0.2°C,
negative contours solid line, positive contour dashed line, with a maximum of 0.7°C just west of Peru at 12 °S.
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FIG. 2. The time evolution over one year of various indices important to the dynamical evolution of the IOZM,
from: mean climatological observations (thin line), the mean seasonal cycle from the REF simulation (thick line),
and the composite evolution during an IOZM event from the REF simulation (thick dotted line). For, from top:
the zonal wind stress in an equatorial box (70-90°E, 2°S-2°N), the upwelling (exactly southeasterly) component
of the wind stress in the box along the Sumatra coast (on map above, a rectangle 4° wide and 8.5° long oriented at
an angle of 45° to the equator), the zonal current in the equatorial box, the depth of the 20°C isotherm, and SST,
both in the Sumatra box. Climatological wind stress comes from SOC, oceanographic quantities from SODA.
Quantities in the Sumatra box were averaged over oceanic grid points.
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FIG. 3. Comparisons of the interannual variability in SST: standard deviation of the SST with respect to the
mean seasonal cycle for the SODA analysis, and the runs REF and noENSO. The ratio of the standard deviations
noENSO/REF is shown in the lower right panel.

FIG. 4. Comparisons of the interannual variability in 20°C isotherm (Z20) depth: standard deviation of Z20 with
respect to the mean seasonal cycle, for SODA data, the REF and noENSO simulations, and the ratio noENSO/
REF.

0.60

0.
60

0.80

0.
80

1.00

1.00

1.00

1.20
1.40

40S

20S

0

20N

40N

0.40

0.40

0.60 0.60

0.60

0.60

0.60

0.80

0.80

0

1

2 °C

0.40

0.40

0.40

0.400.4
0

0.60

0.60

0.60

0.80

50E 100E 150E 160W 110W

40S

20S

0

20N

40N

0.40 0.60
0.80

0.80

1.00

1.00 1.20

50E 100E 150E 160W 110W
0

1

2

REFSODA

noENSO noENSO / REF ratio

812

12

12

1212

16

16 16

16

16

16

16

20

20

20

2424 24

24

24

28
2828

28

40S

20S

0

20N

40N

4

4

4

4

4

4

8 8

8 88

8 8

8

8

8

12

12
1212

12

12
12

12

16

1616

16

16

16
16

16

20
20

20

20

20

24

2424 24

24

24

28

28

28

28

28 28

0

15

30 m

4

4

4

4
44

4

4

4 4

4

8

8

8

8

8

8

8

8

12

12

12
12

12

12

12

16
1616

16

16

16

16

20
20

20

20

20

20 2424

24

24

24

24

28

28

2828 28

28

28

50E 100E 150E 160W 110W

40S

20S

0

20N

40N

0.20

0.40

0.40

0.60

0.60

0.80

0.80

0.
800.80

1.
00

1.00 1.00

1.00

50E 100E 150E 160W 110W
0

1

2

REFSODA

noENSO noENSO/REF ratio



31

FIG. 5. Power spectra of representative atmospheric (Darwin, Australia sea level pressure and zonal wind in the
equatorial Pacific, top 2 panels) and oceanic indices in the Pacific (the Nino3.4 and eastern equatorial Pacific SST
anomaly indices, middle 2 panels) and Indian (WTIO and SETIO SST anomalies, bottom 2 panels) oceans, for
climatological data (thin black line), and the REF (thick black line), and noENSO (thick grey line) simulations,
calculated using the multi-taper method. Pale lines parallel to the main traces indicate the 95% confidence
interval.

Niño3.4 EPAC

10
-1

10
0

10
-3

10
-2

10
-1

10
0

Frequency

Po
w

er
 S

p
ec

tr
u

m
 M

ag
n

it
u

d
e

10
-3

10
-2

10
-1

10
0

WTIO

10
-1

10  year
-10

SETIO

Eq Pac Wind

10
 2

10
 1

10
0

Darwin SLP

50E 100E 150E 160W 110W

20S

0

20N

WTIO SETIO
NIÑO3.4

Eq Pac zonal wind

Darwin

EPAC

1y2y4y 1y2y4y

1y2y4y 1y2y4y

1y2y4y 1y2y4y



32

FIG. 6. Lead-lag correlations between seasonal indices of SST anomaly in the SETIO (top panels) and the
WTIO (bottom panels) with the monthly Pacific Niño3.4 SST anomaly timeseries, in both observations (OBS,
Reynolds and Smith, 1994) and the REF simulation. The dark and light horizontal bands delimit the 95 and 99%
confidence intervals, while the season for the Indian Ocean index (SON for SETIO and NDJ for WTIO, the
season of maximum interannual variability) is marked by the vertical band, showing the zero-lag correlation. 
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FIG. 7. A schematic of the coupling between the modeled atmosphere and ocean, emphasizing the agents of
exchange between the models. The atmosphere sees the ocean SST as a boundary condition, forcing a response in
both the net heat flux across the interface (via the bulk formulae) and in the wind produced (through atmospheric
dynamics). The ocean sees the net heat flux as well as the wind stress produced by the atmospheric model, and in
turn produces an SST field. The boxes mark fields exchanged between components that could be used to constrain
the coupled model.

FIG. 8. The zone in the tropical Pacific Ocean in which coupling was constrained, shown on the ORCA2 ocean
model grid. Linearly interpolated transition zones exist between 25 and 35°N/S, and in the ITF region between
125 and 135°W at 9°S, with a slope of 60° in lat/lon space. In experiment noENSO, the wind stress seen by the
ocean was blended (fully inside the zone, partially in the transition zones) with the REF mean seasonal cycle
winds, at monthly resolution with linear interpolation in time.
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FIG. 9. Normalized histograms of the Niño3.4 and SETIO monthly SST anomaly timeseries from the SODA
analysis, REF and noENSO. The vertical axis is arbitrary but to the same scale. The standard deviation of the
distribution is marked by the grey shading. While Pacific variability has been effectively suppressed in noENSO,
the SETIO remains nearly as active as REF. The negative tail in SETIO is somewhat reduced in the noENSO run,
but still present.
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FIG. 12. Scatter plots of key absolute indices involved in the wind-thermocline-SST (Bjerknes-type) positive
feedback from the noENSO simulation, with SON values in black, others in grey. From top, left to right, the zonal
wind stress in an equatorial box spanning 60-90°E, 2°S-2°N vs. the 20°C isotherm depth in the box indicated off
the coast of Sumatra, the Sumatra Z20 vs. Sumatra SST, and Sumatra SST vs. equatorial zonal wind stress. The
lower left panel shows the relationship between the Sumatra alongshore upwelling component of the wind stress
and Z20 in the same box.

FIG. 13. Scatter plot of key indices involved in the wind-evaporation-SST coupled feedback from the noENSO
simulation, SON values in black, others in grey. From left to right, the Sumatra alongshore component of the
wind stress (which in all seasons is the major axis of the wind) vs. the Sumatra latent heat loss from the ocean,
Sumatra latent heat loss vs. Sumatra SST, and Sumatra SST vs. Sumatra alongshore wind stress. This is not a
positive feedback in the model during the IOZM season.
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