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[11 A new 0.5° resolution Mediterranean climatology of
the mixed layer depth based on individual profiles of
temperature and salinity has been constructed. The
criterion selected is a threshold value of temperature
from a near-surface value at 10 m depth, mainly derived by
a method applied on the global (de Boyer Montégut et al.,
2004 dBMO04). With respect to dBMO04, the main
differences reside in the absence of spatial interpolation
of the final fields and in the improved spatial resolution.
These changes to the method are necessary to reproduce
the Mediterranean mixed layer’s behavior. In the derived
climatological maps, the most relevant features of the
basin surface circulation are reproduced, as well as the
areas prone of the deep water formation are clearly
identified. Finally, the role of density in the definition
of the mixed layer’s differing behaviors between the
oriental and the occidental regions of the basin is presented.
Citation: D’Ortenzio, F., D. Iudicone, C. de Boyer Montegut,
P. Testor, D. Antoine, S. Marullo, R. Santoleri, and G. Madec
(2005), Seasonal variability of the mixed layer depth in the
Mediterranean Sea as derived from in situ profiles, Geophys. Res.
Lett., 32, 112605, doi:10.1029/2005GL022463.

1. Introduction

[2] The Mixed Layer (ML) is one of the most recurrent
features of the ocean and its variability strongly influences
the upper ocean physics [Pickard and Emery, 1990]. It is
also where major biological and chemical processes occur,
which have a strong influence on the Earth’s climate
[Falkowski et al., 1998]. Various attempts to produce a
global scale estimation of the Mixed Layer Depth (MLD)
have been repeatedly [Kara et al., 2003; Levitus, 1982;
Monterey and Levitus, 1997], underlining some difficulties
in establishing an objective and global criterion for defining
the MLD adequately.

[3] Recently, de Boyer Montegut et al. [2004] (hereinafter
referred to as dBMO04) described the global MLD variability
with a previously unmatched richness of details, by means of
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a new 2° resolution MLD climatology based on individual
profile estimates. The MLD was obtained with a criterion
based on temperature only, allowing exploitation of the large
amount of available temperature profiles (10 times more then
the salinity profiles) and hence, producing climatological
monthly gridded maps without large gaps due to the lack of
salinity data.

[4] Although the Mediterranean is one of the most
studied oceans of the world [Williams, 1998], a climato-
logical basin scale study of the MLD is lacking. Indeed,
the basin requires particular attention due to its peculiarities.
The circulation is characterized by the presence of sub-basin
gyres, intense mesoscale activity and a strong seasonal
variability related to highly variable atmospheric forcing
strongly affected by orographic constraints [Malanotte-
Rizzoli et al., 1997; Millot, 1999]. The main effect is high
variability at relatively small scales in the upper layers,
which calls for an accurate and specific utilization of the
available data.

2. Data and Method

[s] The primary source of data for this study was the
MEDAR/MEDATLAS project [Fichaut et al., 2002],
which comprises also data from the World Ocean Database
2001 [Conkright et al., 2002]. Additional profiles were
obtained from the Mediterranean Forecasting System
Toward Environmental Prediction [Pinardi et al., 2003]
data bases, and from seven cruises conducted by the
authors. Finally, 252,961 profiles were collected, including
data from 1940 to 2004, and comprising mechanical
bathythermograph, expandable bathythermograph and
conductivity-temperature-depth data (39.8%, 45,7% and
14,5% of the total respectively). Following dBMO04,
MLD was calculated from each single profile using a
AT = 0.2°C criterion. In addition, a density criterion with
a threshold value Aoy corresponding to a fixed AT =
0.2°C, was also used [Levitus, 1982, see also dBMO04,
equation in section 4.3] to compute MLD from salinity-
temperature profiles. Duplicates were eliminated and the
quality control described by dBM04 was applied, allowing
237,681 and 32,604 estimates of the MLD in the Medi-
terranean for each criterion.

[6(] The MLD estimates derived from the temperature
criterion were then binned in boxes of 0.5° latitude by
0.5° longitude. For each box and for each climatological
month, the median was calculated when 3 or more values
were present. With respect to dBM04, the number of MLD
estimations left no significant gaps in the MLD field, thus
avoiding the need for interpolation of the maps on missing
data. A smoothing, based on a nearest neighborhood
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Figure 1. Mediterranean MLD climatology, based on a temperature difference criterion of AT = 0.2°C, applied to

individual profiles.

algorithm on a 1.5° x 1.5° box) was applied to eliminate
some low-level noise.

3. The Mediterranean MLD Variability

[7] Figure 1 presents the monthly climatology of the
Mediterranean MLD obtained from the analysis of indi-
vidual in situ profiles using a AT criterion. Remarkable
features are as follows:

[8] 1. The Mediterranean MLD seasonal variability is
characterized by a basin scale deepening from November to
February—March and an abrupt restratification in April,
which is maintained throughout the summer and early
autumn. The station DYFAMED (Ligurian Sea) offers the
possibility to verify the MLD seasonal variability in at least
one particular location [Marty et al., 2002]. At DYFAMED,
the maximum deepening of the ML and the beginning of
the vertical mixing in the surface layer occur respectively in
January—February and in November. Therefore, the sea-
sonal cycle obtained from the presented climatology results
in very good agreement with the DYFAMED observations.

[o] 2. The Eastern Mediterranean (EMED) displays MLD
values generally higher than the Western basin (WMED),
with the important exception of the Gulf of Lions region.
This is mainly due to the permanent or quasi permanent
features observed in the oriental basin [Malanotte-Rizzoli et
al., 1997]. A local maximum in the Rhodes gyre area
(~28°E 35°N) is visible only in January [Napolitano et
al., 2000] while in March a local maximum is observed in
the region Southwest of Peloponnisos (~22°E 35°N)
[Malanotte-Rizzoli et al., 1997]. A deepening of the ML

is observed in March to the south of Cyprus (~33°E 33°N),
where an eddy was recurrently observed and presumed to be
permanent [Kress and Herut, 2001]. Similarly, in the Ionian
Sea, southeast of the Italian peninsula, a 100—150 meter
patch in the MLD is observed in the February map, in
agreement with the results of Hopkins [1978] describing a
permanent cyclone in this region and a deepening of the
MLD.

[10] 3. The maximum values of the MLD are observed in
February and in February—March for the Gulf of Lions
(~5°E 42°N) and the Southern Adriatic Sea (~18°E 42°N),
respectively, which are regions of Deep Water Formation
(DWF) through deep convection processes [Artegiani et al.,
1997; Mertens and Schott, 1998]. The identification of these
regions represents a successful test for the methodology
although the climatological MLD may underestimate the
actual values, which are known to be occasionally deeper.

[11] Maps of the percent median deviation (o, defined

profiles

as x—— > |MLD; — MLD,,cgian|, see dBMO04) were cal-

Nprofites

culated on a monthly basis to evaluate the spreading of the
MLD estimations in each mesh box (Figure 4"). The ey
values are generally below 40% for most of the basin and
most of the year, without evident regional patterns. How-
ever in winter and partially in spring (April), the o, values
increase strongly throughout the whole basin, reaching the
maximum values in the Gulf of Lions area (~300%). DWF

"Auxiliary material is available at ftp:/ftp.agu.org/apend/gl/
2005GL022463.
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regions are the most variable, because of the irregular
intensity and occurrence of the DWF process. High values
of qge, are also found along the most relevant frontal
regions of the basin (i.e. in the Ionian Sea along the 35°N
parallel and in the North WMED along the 38°N parallel
between the Balearic Islands and Sardinia). In these areas,
the mesoscale activity associated with the fronts, as well as
the variability of the fronts themselves, produce strongly
variable MLD intra box estimations, which result in high
Qgey Values.

4. Comparison With Density-Based Estimates:
The Role of Salinity

[12] In many regions, the base of the mixed layer is
defined by vertical temperature and salinity gradients occur-
ring at the same depth. In these conditions, thermocline,
halocline and picnocline coincide, resulting in a similar
estimation of the MLD, regardless of the selected criterion
(temperature or density). However, under particular con-
ditions, temperature and salinity variations may be
decoupled, producing differences in the MLD values
obtained via the diverse criteria. It is important then to
investigate the different effect of salinity and of temperature
on the mixed layer depth evaluation. When both salinity
and temperature measurements are available for the same
profile, the two MLD criteria are then applied and the
difference between the estimates (MLDy - MLD,) is
averaged on a seasonal basis and on each 1 degree grid
point. The differences were significant only in winter
(January, February, March, Figure 2, the other seasons are
not shown). Despite the large areas without any information
(due to the lack of density profiles), it is possible to sketch
out some comments. The temperature based MLD is deeper
than the density based MLD mainly in the WMED and in
the proximity of the Sicily Strait, whereas in the EMED the
two estimates show no relevant differences. The character-
istics of the water masses in the two sub basins can explain
the observed discrepancies.

[13] In the Mediterranean, the surface circulation is
strongly affected by water of Atlantic origin, which flows
castward driven by the thermohaline circulation [Robinson
and Golnaraghi, 1995]. Along the pathway, mixing occurs,
caused by the strong air-sea interactions or by straits
constraint. On the temperature and salinity fields respec-
tively, the diverse effects of mixing and of the subsequent
restratification could result in a decoupling of the two
variables, which in turn may lead to a difference in the
MLD estimates. In the WMED, the presence of strong
horizontal gradients in salinity produces important varia-

Figure 2. Winter map of the MLD difference between a
AT = 0.2°C and a variable Aoy corresponding to a fixed
AT decrease of 0.2°C.
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Figure 3. Examples of Mediterranean profiles showing
three different vertical situations. (left) and (middle)
NWMED; (right) Aegean Sea. Temperature, salinity and
density are indicated with red, blue and black lines. Dots
indicate the MLD as obtained with temperature (red) and
density (black) based criteria.

tions in density, with a consequent shoaling of the MLD.
Since the WMED surface waters are strongly vertically
thermally homogeneous, the temperature based MLD esti-
mation often results in deeper estimations than the density
based criteria. Such an effect is not present in the EMED,
where salinity and temperature act together on density
variation, resulting in similar MLD values, regardless of
the chosen criterion. Remarkably, the whole Aegean Sea is
characterized by density-compensated profiles, an oceanic
feature that importance has only recently been acknowl-
edged [Kara et al., 2003]. Analysis of individual profiles
revealed that temperature and salinity gradients have com-
pensating effects on density, resulting in a density ratio
surprisingly close to 1 (see dBM04, Figure 10a, and text
therein for a discussion). Figure 3 shows some profiles
illustrating these cases. In the first example (Figure 3 (left)),
the strong vertical homogeneity of the temperature profile,
which is a characteristic of the North WMED area, prevents
a correct identification of the “true” ML with the tempe-
rature based criteria. In addition, a low surface stratification
around 0.1°C is also present in the profile, which may be
due to diurnal variability (the hour of the measurements was
16 pm) and is therefore not taken into account in the
definition of our seasonal varying mixed layer depth. The
“real” ML is determined by a salinity gradient closer to
the surface by about 40 meters, which is well captured by
the density based criteria. In the central panel, an example
of a “double” ML is displayed, probably derived by an
intrusion or a subduction of a different water mass below
the actual ML. Once again, the temperature criterion is not
able to identify the first ML, the difference in temperature
being too small there with respect to the selected AT
Finally, in the right panel, an Aegean Sea profile is depicted,
illustrating the compensation mechanism (described in
dBMO04), which induces a wrong estimate in the density
based approach in the MLD identification.

[14] The temperature based criterion results appear to be
less suitable to identify the MLD during the winter WMED
conditions. However:

[15] 1. The differences between the MLD obtained with
the two selected criteria are on average ~10 meters and
rarely exceed 40 meters, resulting then below 20% of the
MLD values (see Figure 2).

[16] 2. The most relevant differences between the tem-
perature and the density criteria occur mainly where the
Qgey 18 elevated (compare Figure 2 with Figure 4).
Subsequently, the intra-box and the interannual variability
encompass the differences between the diverse criteria,
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suggesting the use of a statistically robust criterion (i.e.
including as many different situations as possible).

[17] In summary, it is evident that the temperature based
criterion is not able to account for all the Mediterranean
conditions which can influence the MLD variability. This is
particularly true for the winter North WMED, where very
specific oceanic conditions occur. Nevertheless, using the
temperature based criterion, the high number of temperature
profiles allows to create a robust MLD variability statistics,
which is not possible to obtain using the density profiles
only, and then to compensate the occasionally less accurate
estimations of the MLD actual values.

5. Conclusion

[18] A new MLD climatology in the Mediterranean
allowed a first synoptic description of the basin-scale ML
variability to be illustrated. A recently developed approach
to estimate the oceanic MLD was applied on a comprehen-
sive Mediterranean in situ data base, containing more than
200.000 profiles from various sources. The data quality
control and the applied methodology (described in dBM04)
were specifically developed for ML studies.

[19] With respect to dBMO04, the present approach dis-
played two main differences. Firstly, the resolution of the
final maps was finer (0.5 degree) and permitted a more
detailed description of the specific Mediterranean features.
Secondly, the absence of interpolation procedures was
possible thanks to the large amount of data used. Even if
some gaps were still present, it was preferred to keep the
retrieved fields unchanged. This is a major issue to avoid
any spatial interpolation or reconstruction of missing values
and/or misinterpretations.

[20] The identification of most of the relevant features of
the basin, and in particular the DWF sites, demonstrated the
accuracy of the method even for a regional sea with weak
and small scale gradients. Finally, the proposed MLD
climatology represents a suitable alternative to the existing
atlas, especially for studies focusing on the vertical rather
than horizontal dynamics. The climatology is available from
the first author on request.
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