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Abstract 

 

[1] This study presents a detailed comparison between three ENSO precursors which can 

predict across the spring persistence barrier: the anomalous equatorial Pacific upper ocean 

heat content, the zonal equatorial wind stress anomaly in the far-western Pacific and SST 

anomalies in the South-East Indian Ocean (SEIO) during the late boreal winter. A new 

correlation analysis confirms that El Niño (La Niña) onsets are preceded by significant cold 

(warm) SST anomalies in the SEIO during the late boreal winter after the 1976-77 climate 

regime shift. Thus, the objective is to examine the respective potential of these three ENSO 

precursors to predict ENSO events across the boreal spring barrier during recent decades. 

Surprisingly, in this focus, cross-validated hindcasts of the linear regression models based on 

the lagged relationship between Niño3.4 SST and the predictors suggest that SEIO SST 

anomalies during the late boreal winter is the more robust ENSO predictor. 
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1. Introduction 

 

[2] Predicting the occurrence the El Niño-Southern Oscillation (ENSO) phenomenon several 

months in advance is a major goal of climate research. During recent years, dynamical models 

have been used to this end, but despite great efforts and significant progress, they encounter 

many difficulties to forecast the timing, structure and amplitude of ENSO events [Landsea 

and Knaff, 2000]. On the other hand, statistical models show modest, but still significant skill 

in forecasting various ENSO indices such as Niño3.4 Sea Surface Temperature (SST) [Clarke 

and Van Gorder, 2003]. In this study, we discuss a new ENSO precursor, SEIO SSTs during 

late boreal winter, and demonstrate through various linear regression exercices that this new 

parameter leads to a significant improvement in ENSO statistical prediction across the so-

called boreal spring persistence barrier during recent decades [Torrence and Webster, 2000]. 

 

2. A selection of robust ENSO precursors. 

 

[3] Two critical factors have been identified to have a close relationship with the onset of El 

Niño events and are pivotal in many ENSO prediction exercises [Clarke and Van Gorder, 

2003]. First, the equatorial Pacific upper ocean heat content anomaly during the boreal winter 

preceding El Niño onset plays an important role in ENSO evolution [Meinen and McPhaden, 

2000]. Second, the local wind anomalies over the western Pacific and Indian Ocean warm 

pool region have also been considered as a cause for ENSO variability [McPhaden et al., 

1998]. Both are two excellent ENSO predictors that can predict across the boreal spring 

[Clarke and Van Gorder, 2003]. Drawing on the experience of two very recent studies [Terray 

et al., 2005, Terray and Dominiak, 2005], a further predictor is introduced here, SEIO SSTs 

during boreal winter. The two aforementioned studies suggest that SEIO SST anomalies have 
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a delayed and/or prolonged impact on ENSO variability through two mechanisms: an external 

forcing of local wind anomalies over the Pacific warm pool and a modulation of the regional 

Hadley cell in the southwest Pacific [Terray and Dominiak, 2005]. Several other very recent 

studies have also confirmed that SST and convective anomalies over the eastern Indian Ocean 

are physically linked to the wind anomalies over the western Pacific [Kug et al., 2005]. These 

findings suggest that the Indian Ocean could be one more important factor in contributing to 

ENSO evolution during the recent decades. 

 

[4] Figure 1 shows the lag correlations between December-January Niño3.4 SSTs and the 

previous February-March surface zonal wind [from NCEP/NCAR reanalysis, Kalnay et al., 

1996], 20°C isotherm depth [from the SODA data, Carton et al., 2000] and SST [from the 

Extended Reconstruction of global SST, Smith and Reynolds, 2004] over the Indo-Pacific 

area. Computations are made for the 1977-2001 period, to avoid possible effects due to the so-

called 1976-77 climate regime shift [Nitta and Yamada, 1989], as it is known that ENSO 

precursors changed significantly around this date [Wang, 1995]. This correlation analysis 

illustrates the significance of the two ENSO precusors introduced by Clarke and Van Gorder 

[2003], the western equatorial Pacific zonal wind (130°E-160°E, 5°S-5°N, black frame in 

Figure 1a, UWPAC hereafter) and the equatorial Pacific upper ocean heat content (130°E-

80°W, 5°S-5°N, black frame in Figure 1b, hereafter Z20). Consistent with the ENSO 

recharge-oscillator paradigm [Jin, 1997], the mean depth of the February-March 20°C 

isotherm over the equatorial Pacific is positively and significantly correlated (0.72) with 

Niño3.4 SSTs ten months after. This suggests that the amount of warm water in the tropical 

Pacific builds up prior to El Niño onset. Thus, a substantial heat content anomaly in the 

Pacific Ocean mixed layer seems to be a necessary contition for El Niño growth. The 

significant positive correlation (0.75) between February-March surface zonal wind over the 
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western Pacific Ocean warm pool region and December-January Niño3.4 SSTs also confirms 

that the wind anomalies in this area is an important factor for ENSO variability (Figure 1a). 

These westerly wind anomalies can induce eastward propagating equatorial Kelvin waves and 

have also been proposed to be a trigger for some El Niño events. Finally, the highest 

correlations with the SST fields are found in the Indian Ocean (-0.77). The SEIO area (90°E-

122°E, 5°S-45°S, black frame in Figure 1c) seems to be another strategic factor for 

determining of developing El Niño or not before the onset [Terray and Dominiak, 2005]. 

Thus, this precursor is also a good candidate for ENSO prediction across the boreal spring 

barrier. 

 

3. Linear prediction results 

 

[5] We assess now the usefulness of SEIO SSTs to improve the limited amount of skill of 

current statistical models in predicting ENSO from the late boreal winter season (February-

March) before the El Niño onset. To this end, we developed various regression models for 

forecasting Niño3.4 SST anomalies for different time averages (October-December, 

November-January, December-February) around the ENSO peak season, using only 

February-March anomalies of the predictors. As a measure of the predictive skill, we compare 

the observed Niño3.4 SST with the values calculated from regression equations based 

successively on all years with the 1977-2001 time span, except the forecast year. To assess the 

forecast potential, three statistics have been used: the correlation coefficient (COR) between 

the observed and forecast Niño3.4 SST, the Root-Mean-Square-Error (RMSE) and the so-

called Performance Parameter (PP): 

 

PP = 1 – (RMSE/SD)2     (1) 
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where SD is the standard-deviation of Niño3.4 SST for the respective season. When PP is 

greater (lower) than zero the forecast is better (worse) than a climatological forecast. 

 

[6] We start by discussing the three simple linear regression models where each predictor 

serves as sole imput (Table 1). For the October-December season, the SEIO and UWPAC 

models yield virtually the same RMSE and correlation coefficient between predicted and 

observed Niño3.4 SSTs, with correlation coefficients of 0.7 and RMSE of 0.68, while the 

forecast performance of Z20 is inferior using this cross-validated method. For longer time 

leads, SEIO exhibits consistently higher correlations and lower RMSEs than Z20 and 

UWPAC. Surprisingly, the predictive skills for SEIO precursor are also better when the time 

lead between the predictor and predictand is increased. Finally it is interesting to note that all 

of these univariate models perform better than a climatological forecast since PP is always 

greater than zero. 

 

[7] Figure 2 shows the observed and forecast October-December Niño3.4 SST for all the 

univariate models. Each predictor exhibits successful forecasts, but also major failures. The 

Z20 model has a high predictive skill for La Niña events, but this model has major failures for 

predicting El Niño events, excepted the 1997-98 El Niño. Interestingly, this latter event is 

very well-captured by the UWPAC model. This is consistent with results stressing the crucial 

importance of the March 1997 westerly wind burst over the Pacific warm pool for the onset of 

the 1997-98 El Niño [Wang and Weisberg, 2000]. However, the performance of this last 

model for other ENSO events is rather poor. The SEIO model has a high predictive skill in the 

first half of the record, while this model has a substantially degraded performance for the 

more recent period. Finally, all three univariate models have major difficulties in the 1990s 
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when ENSO events are known to be particularly unusual. During the 1991-94 time interval, a 

substantial warming is observed in the central Pacific and even if these years correspond to 

one or several events is a controversial matter [Trenberth and Hoar, 1996; Van Loon et al., 

2003]. These results serve to emphasize that a complicated combination of atmospheric and 

oceanic conditions are necessary for El Niño to occur [McPhaden et al., 1998]. 

 

[8] A natural way of improving the univariate models is to add new variables (table 2). 

Comparison of Table 2 with Table 1 bears out the overall remarkably superior performance of 

the updated models. Note that SEIO remains the most important predictor since the models 

have a higher predictive skill over nearly all the forecast lead times when SEIO is included in 

the model. Nevertheless, the other two elements add useful information which always 

improve the performance skill of the univariate SEIO model (cf. Table 1). It appears clearly 

that the most efficient model is built using SEIO and UWPAC. Regardless of which lead time 

is chosen, the same hierarchy is found with this model performing somewhat better than the 

others, followed by Z20-SEIO model and afterwards Z20-UWPAC. This result confirms that 

SEIO SSTs are not only a precursor of Niño 3.4 SSTs via the zonal wind anomalies over the 

far western equatorial Pacific, but also via a modulation of the regional Hadley cell in the 

Southwest Pacific ocean [Terray and Dominiak, 2005]. Moreover, this regression exercise 

also suggests that the Z20 precursor is of subordinate importance in predicting ENSO 

variability from the late boreal winter setting. 

 

[9] Figure 3 shows cross-validated Niño3.4 SST time series forecast for November-December 

for the “two predictors” models. Considering the UWPAC-SEIO model, we observe that 

many El Niño or La Niña events are correctly identified, especially in the 1980s when this 

model predicts the occurrence and amplitude of ENSO events. The very strong 1997-98 El 
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Niño is also identified, but with a weaker amplitude. Discrepancies between the forecast and 

observed values for the UWPAC-SEIO model correspond to some consecutive years of 

anomalously warm or cold Niño3.4 SSTs, such as 1986-87 or 1991-94. For this last time 

interval, Goddard and Graham [1997] suggest that the 1993-94 event is partly due to the 

persistence of warm SSTs in the central equatorial Pacific, these features being not linked to 

the selected precursors. Now considering the Z20–SEIO model, we observe a high predictive 

skill of La Niña events. This is consistent with the behaviour of these two predictors in an 

univariate setting, as seen on Figure 2. On the other hand, this model performs poorly on El 

Niño events. Consistent with the work of Wang and Weisberg [2000], the Z20-UWPAC 

model predicts the very strong 1997-98 El Niño with the highest predictive skill in all the 

models presented in this study. However, the performance of this model is largely degraded 

for the rest of the record. In synthesis, it appears that UWPAC-SEIO model is surely the best 

one in predicting ENSO variability. But other models are able to lead to better predictions on 

specific occasions, again illustrating the complexity of the Pacific climate system. 

 

 [10] Surprisingly, the Z20-UWPAC-SEIO model does not lead to any significant 

improvement in predictive skill whatever the time lead may be (Table 3). This model exhibits 

a similar efficiency as the UWPAC-SEIO model. This raises again the question of the 

importance of the Z20 precursor during recent decades. Does one need to consider that Z20 is 

a crucial parameter for ENSO prediction because of its physical relevance [Jin, 1987; Meinen 

and McPhaden, 2000] ? This question needs further exploration. First, the weakness of the 

SODA data is a possible factor for explaining the present results. In order to check the 

reliability of the SODA reanalysis, the Z20 time series has been recomputed from the BMRC 

ocean thermal analysis [Smith, 1995] which covers the period 1980-2001. The correlation 

coefficient between the SODA and BMRC February-March Z20 time series is as high as 0.93 
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during the 1980-2001 time span and is significant at the 99% confidence level. The possibility 

that the results may improve with the BMRC analysis has been further examined by 

performing additional cross-validated regression experiments where the Z20 time series is 

computed from the BMRC data. The statistics for these experiments are reported in Table 4. It 

is noteworthy that the predictive skills of the experiments using the BMRC index are not 

significantly better than the skills obtained from the models using the SODA reanalysis with 

similar correlation coefficients, but higher RMSEs. This suggests that the poor performance 

of the Z20 parameter is not due to a deficiency of the SODA data. Thus, according to the 

principle of parsimony which requires that a statistical model should employ a number of 

predictors as small as possible, the multiple linear regression model with all three precursors 

as input offers no advantage. Of course, this conclusion is only valid for the specific time 

leads examined here. For longer time leads (eg for more than one year), Z20 remains a highly 

significant precursor (not shown) since the transition for SEIO SST anomalies occurs in early 

boreal winter when the seasonal wind over the eastern Indian Ocean turns from southeasterly 

to northwesterly (Terray et al., 2005). 

 

4. Concluding remarks. 

 

[11] This study explores the robustness of ENSO precursors which have not been previously 

considered. In addition to well-recognized precursors of El Niño onsets, such the Z20 and 

UWPAC parameters during the late boreal winter, a further predictor is examined here, 

namely SST anomalies in the SEIO. Various statistical prediction models for predicting 

Niño3.4 SST were constructed based on the lag relationship between Niño3.4 SST and these 

three predictors observed during the late boreal winter. Surprisingly, the most prominent 

precursor is SEIO SSTs, whereas the much less powerful precursor is the Z20 parameter. The 
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forecast skill is considerably better for the models which use SEIO SST as a predictor over 

different lead times during the 1977-2001 period. 

 

[12] Considering the best model, the UWPAC-SEIO model, the highly significant correlations 

and PP scores between the forecast and observed Niño3.4 SST index indicate that about half 

of the interannual variability of Niño3.4 SST can be predicted from antecedent circulation and 

(Indian) oceanic departures during the late boreal winter, ten months before the peak phase of 

ENSO events. It is conjectured, that the regression models would yield a substantially inferior 

performance for prediction proper- that is, for years beyond the last year on which the 

regression model is based due to the large body of analyses already conducted on the selected 

precursors. However, this contention could not be verified from the short database used here. 

Nevertheless, the limited experiments conducted here do support the proposition that the 

Indian Ocean is now a crucial parameter in ENSO evolution. Thus, the inclusion of SEIO 

SSTs as a predictor may further improve the predictive skill of the current dynamical or 

statistical models which are currently used to forecast equatorial Pacific SST. 

 

Acknowledgements: The BMRC upper Pacific Ocean 20°C isothern depth was kindly provided by Neville 

Smith. We thank Keith A. J. Rodgers for comments and careful re-reading of the manuscript. 
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Figure captions 

Figure 1: a) Correlation analysis of December-January Niño3.4 (5°S-5°N/190°E-240°E) SST 

time series with February-March 10-m zonal wind over the tropical Indian and Pacific Oceans 

ten months before for 1977-2001 period. The correlation coefficients significant at the 10% 

confidence level according to a phase-scrambling bootstrap test (Davison and Hinkley, 1997) 

are shaded. b) Same as a) but for the February-March mean depth of the 20°C isotherm. c) 

Same as a) but for the February-March SST fields. 

Figure 2: October-December Niño3.4 SST, observed (solid line and closed squares) and 

forecast by the Z20 (dotted-dashed line and open circles), UWPAC (dashed line and grey-

filled circles) and SEIO (dotted line and closed circles) univariate regression models without 

involving data for the forecast year. The horizontal dotted lines show the seasonal mean, 

mean minus one standard-deviation and mean plus one standard-deviation Niño3.4 SST 

values. 

Figure 3: Same as figure 2) but for UWPAC-SEIO, Z20-SEIO and Z20-UWPAC bivariate 

regression models. UWPAC-SEIO model is dotted line and closed circles, Z20-SEIO model is 

dashed line and grey-filled circles and Z20-UWPAC is dotted-dashed line and open circles. 
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Table Captions 

Table 1: Appraisal of Niño3.4 SST predictions from the February-March season for different 

lead times (10-12, 11-01, 12-02) around the peak phase of ENSO events by simple linear 

regression models using one predictor (UWPAC, Z20 or SEIO) as sole imput. The forecast 

skill of the models is assessed by cross-validated RMSE, COR and PP statistics calculated 

from the observed and forecast Niño3.4 SST by each model without involving data of the 

forecast year. Correlation coefficients significant at the 10%, 1%, 0.01% levels are indicated 

by one (*), two (**) and three stars (***), respectively. 

Table 2: Same as Table 1, but for the two-predictors regression models using two elements as 

input from the set of UWPAC, Z20, SEIO precursors. 

 

Table 3 : Same as Table 1, but for the three-predictors regression model using all the 

UWPAC, Z20, SEIO precursors. 

 

Table 4 : Same as Table 1, but for the one and three-predictors regression models using the 

Z20 precursor computed from the BMRC reanalysis during the 1980-2001 period. 
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Forecast period Regressors RMSE COR PP

10-12
Z20

UWPAC
SEIO

0.74
0.67
0.68

0.62 **
0.70 ***
0.69 ***

0.40
0.51
0.50

11-01
Z20

UWPAC
SEIO

0.78
0.73
0.67

0.63
0.68
0.74

**
**
***

0.42
0.49
0.57

12-02
Z20

UWPAC
SEIO

0.77
0.75
0.67

0.62
0.64
0.73

**
**
***

0.40
0.44
0.55



Forecast period Regressors RMSE COR PP

10-12
Z20 - UWPAC

UWPAC - SEIO
Z20 - SEIO

0.67
0.58
0.64

0.71 ***
0.79 ***
0.73 ***

0.52
0.64
0.55

11-01
0.71
0.60
0.65

0.71
0.79
0.76

***
***
***

0.51
0.65
0.59

12-02
0.72
0.63
0.65

0.68
0.75
0.75

**
***
***

0.48
0.60
0.57

Z20 - UWPAC
UWPAC - SEIO

Z20 - SEIO
Z20 - UWPAC

UWPAC - SEIO
Z20 - SEIO



Forecast period Regressors RMSE COR PP
10-12

SEIO - UWPAC - Z20
0.59
0.63
0.65

0.78 **
0.78 ***
0.76 ***

0.62
0.62
0.58

11-01
12-02



Forecast period Regressors RMSE COR PP

10-12
Z20_BMRC

SEIO - UWPAC - Z20_BMRC
0.77
0.62

0.62 **
0.78 ***

0.42
0.62

11-01
0.80
0.64

0.65
0.80

**
***

0.45
0.65

12-02
0.77
0.69

0.67
0.75

**
***

0.47
0.58

Z20_BMRC
SEIO - UWPAC - Z20_BMRC

Z20_BMRC
SEIO - UWPAC - Z20_BMRC
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