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1 Introduction.

Le but de cet article est de montrer que les résultats obtenus dans [B.06] s'étendent au cas général d'un germe de fonction holomorphe à l'origine de C n+1 ayant un lieu singulier de dimension 1. On obtient dans ce cadre "général" le résultat suivant, qui généralise les points cruciaux des théorèmes 4. Les théorèmes 5.2.1, 6.2.1. et 6.4.1. de [B.06] qui sont l'essentiel des résultats de cet article se généralisent immédiatement à partir de ce théorème, puisqu'ils n'utilisent l'hypothèse (HH) faite dans [B.06] que pour obtenir ces propriétés des faisceaux de cohomologie du complexe K. Ceci complète donc le "programme" mis en place dans [B.06]. La démonstration du théorème 1.1.1 utilise l'étude de la situation suivante, qui présente un intérêt en elle-même, puisqu'elle relie l'étude d'une famille à un paramètre de fonctions à singularités isolées avec l'étude du "graphe" correspondant, qui est une fonction à lieu singulier de dimension 1. Le lemme suivant permet d'introduire cette situation pour un germe arbitraire de fonction holomorphe à l'origine de C n+1 admettant un lieu singulier de dimension 1. Proposition 1.1.4 Dans la situation de la proposition précédente, il existe un morphisme "naturel" de faisceaux ∇ : E → E vérifiant les propriétés suivantes :

1. Pour ϕ ∈ O D * et x ∈ E on a ∇(ϕ.x) = dϕ dt .b.x + ϕ.∇(x).

Soit

P := {x ∈ E / ∇(x) ∈ b.E}. Alors b -1 .∇ : P → E est une O D * -connexion qui commute à a et b.
3. On a des isomorphismes "naturels" compatibles à a et b :

Ker ∇ ≃ l * (H n ) et E b -1 .∇(P) ≃ l * (H n+1 ). 4. Il existe un sous-O D * [[b]]-module cohérent localement libre G de E vérifiant i) E/G est un O D * -module localement libre. ii) G est stable par a et b -1 .∇. iii) On a G ≃ Ker ∇ ⊗ O D * .
Le théorème 1.1.1 est alors une conséquence simple des propositions 1.1.3 et 1.1.4.

Nous compléterons ce résultat en donnant un critère suffisant permettant "d'estimer concrètement" le sous-module G dont l'existence est montrée dans la proposition 1.1.4 (mais par une méthode fort peu constructive). Nous illustrerons ce critère sur des exemples simples.

Nous conclurons cet article en décrivant le lien entre la connexion b -1 .∇ et les intégrales "à la Malgrange" .

2 La b -1 ∇-régularité.

2.1 Le théorème de b -1 ∇-régularité. 

[[b]]-module Ĝ de E[b -1 ] qui est O D [[b]]-cohérent et stable par b -1 ∇.
Remarques. Il vérifie de plus les propriétés suivantes :

1. On a G = {x ∈ E / ∀ν ∈ N ∇ ν (x) ∈ b ν .E}. 2. Si x ∈ E vérifie b -1 ∇(x) ∈ G + O D [[b]].x alors x ∈ G.
En particulier on a Ker∇ ⊂ G.

Si des germes

ϕ ∈ O D \ {0} et x ∈ E sont tels que ϕ.x ∈ G alors x ∈ G. 4. Si des germes ϕ ∈ O D \ {0} et x ∈ G sont tels que ϕ.x ∈ b.G alors x ∈ b.G. Supposons maintenant que E soit b -1 ∇-régulier sur S * . Alors G est O D [[b]]
localement libre de rang fini sur S * et il est stable par a. De plus il vérifie les deux propriétés suivantes:

i) Le sous-faisceau Ker ∇ est localement constant sur S * , de fibre un (a,b)module régulier géométrique.

ii) Sur tout ouvert simplement connexe U ⊂ S * , on a un isomorphisme

Γ(U, G) ≃ Γ(U, Ker ∇) ⊗ C O S * (U ).
Remarque. Comme l'application t : S * → D * est un revêtement holomorphe fini, on pourra identifier S * et D * dans les considérations locales.

Preuve. 1. On a sur U les relations

Notons G k := {x ∈ E / ∀ν ∈ [0, k] ∇ ν (x) ∈ b ν .E}, pour k ∈ N. On a donc G = ∩ k≥0 G k . Pour montrer que G est un O D -module, il suffit de voir que c'est le cas pour chaque G k . Mais pour ϕ ∈ O D et x ∈ E on a ∇ ν (ϕ.x) = ν j=0 C j ν .ϕ (j) .b j .∇ ν-j (x) (@) ce qui montre que si x ∈ G k on aura ϕ.x ∈ G k . La somme de sous-O D [[b]]-modules stables par b -1 ∇ est encore stable par b -1 ∇. Donc il existe bien un plus grand sous-O D [[b]]-module Γ de E, stable par b -1 ∇. L'inclusion de tout sous-O D [[b]]-module stable par b -1 ∇ dans G est immédiate. Pour prouver 1), c'est à dire l'égalité G = Γ il suffit donc de montrer que G est stable par b -1 ∇. Or ∇(G k ) = {∇(x) /x ∈ G k } ⊂ {y ∈ E / ∇ ν (y) ∈ b ν+1 E ∀ν ∈ [0, k -1]} et {y ∈ E / ∇ ν (y) ∈ b ν+1 E ∀ν ∈ [0, k -1]} est contenu dans {bz / z ∈ E / ∇ ν (z) ∈ b ν .E ∀ν ∈ [0, k -1]} ⊂ b.G k-1 . On a donc bien ∇(G) ⊂ b.G. Si x ∈ E vérifie b -1 ∇(x) ∈ G + O D [[b]].x considérons G := O D [[b]].x + G. On a alors , pour y ∈ G, ∇(α.x + y) = α ′ .bx + α.∇(x) + b.G ⊂ b.(O D [[b]].x + G) où α ′ désigne la dérivée et t de α ∈ O D [[b]]. Ceci montre que G = G et donc que x ∈ G. Si maintenant on a ϕ.x ∈ G avec ϕ ∈ O D \ {0} et x ∈ E
: U → U p := t -1 (t(p)) ∩ U donnant le diagramme commutatif U f ×t Φ×t / / U p × ∆ f ×Id D × ∆ = / / D × ∆ où (Φ × t) est un homéomorphisme et U p une boule de Milnor en p pour la restriction f p de f à t = t -1 (t(p)).
dω j = (m + u) df f ∧ ω j + df f ∧ ω j-1 ∀j ∈ [1, k] avec la convention ω 0 ≡ 0.

L'espace vectoriel engendré par les classes de cohomologie induites sur

{f = ε} ∩ U par les ω j est égal au sous-espace vectoriel engendré par

e 1 , • • • , e k de H n-1 ({f = ε} ∩ U, C).
Dans ces conditions le sous-faisceau de Ker ∇ |∆ engendré par 

[dω 1 ], • • • , [dω k ] est libre de rang k sur C[[b]], et il est stable par a. Sa fibre est le (a,b)-module à pôle simple de rang k de C[[b]]-base ε 1 , • • • , ε k avec a.ε j = (m + u).b.ε j + b.ε j-1 avec la convention ε 0 = 0. Le sous-faisceau de O ∆ [[b]]-module engendré par [dω 1 ], • • • , [dω k ] est

Estimation de G.

Commençons par remarquer que l'on a, localement sur S * , équivalence entre l'égalité G = E et l'appartenance de ∂f ∂t à J / (f ), l'idéal jacobien relatif de f . En effet, dès que ∂f ∂t ∈ J / (f ), on a dx ∈ P et donc, à fortiori dx ∈ G. On notera que ∂f ∂t ∈ J / (f ) n'a lieu quand la déformation de la singularité donnée par t → f t est localement triviale.

Proposition 2.2.1 Notons M k , pour k ≥ 1, l'image de M k . Ωn / dans E, où M désigne l'idéal de O X engendré par x 1 , • • • , x n . Supposons qu'il existe un entier k tel que M k . ∂f ∂t ⊂ M k+1 .J / (f ). (*) Alors le plus grand sous-O D [[b]]-module (cohérent) G de E, stable par a et b -1 ∇ contient M k .
Preuve. Nous allons montrer que sous notre hypothèse

G := M k est stable par a et b et il vérifie ∇(G) ⊂ b.G.
La stabilité par a est évidente. Pour montrer la stabilité par b, nous allons montrer que b.G est l'image dans E de M k+1 .J / (f ).Ω n / , ce qui implique en particulier la stabilité par b. 

Si ω = d / ξ avec ω ∈ M k .Ω n / , on peut choisir ξ ∈ M k+1 .Ω n-1 / . On aura alors b[ω] = [d / f ∧ ξ] qui est bien dans M k+1 .J / (f ).Ω n / . Réciproquement, si η ∈ M k+1 .J / (f ).Ω n / on peut écrire η = d / f ∧ ξ avec ξ ∈ M k+1 .Ω n-1 / . Alors d / ξ ∈ M k .Ω n / et
∇(ω) = d / f ∧ ∂ξ ∂t - ∂f ∂t .ω. Comme pour [ω] ∈ G on peut choisir ξ et donc ∂ξ ∂t ∈ M k+1 .Ω n-1 / , on a, grâce à l'inclusion (*), ∇(ω) ∈ M k+1 .J / (f ).Ω n / ⊂ b.G.
Il n'est pas difficile de montrer directement que, dans la situation de la proposition précédente, G est un sous-O D [[b]]-module cohérent de E qui contient localement b N .E pour N ≫ 1. On a ainsi une preuve directe de la b -1 ∇ régularité dans ce cas.

Exemples.

Exemple 1. On se propose d'étudier le cas où f (t, x) = P (x) + t.Q(x) avec P et Q deux germes de fonctions holomorphes à l'origine de C n .

Lemme 2.3.1 Supposons P à singularité isolée à l'origine et supposons que l'on ait M k+1 .J(Q) ⊂ M k+1 .J(P ) pour un entier k ≥ 0, où M désigne l'idéal maximal de l'origine dans C n . Alors on a M k+1 .J / (f ) = M k+1 .J(P ) où M désigne l'déal engendré par M dans O C n+1 . Si on a de plus Q ∈ M.J(Q), ce qui est vérifié en particulier si Q est quasi homogène, on obtiendra l'inclusion M k . ∂f ∂t ⊂ M k+1 .J / (f ) et la proposition précédente donnera que M k ⊂ G sur S = {t = 0} au voisinage de l'origine.

Preuve. L'hypothèse permet donc d'écrire chaque x α . ∂Q ∂x j pour α ∈ N n , vérifiant |α| = k + 1, comme combinaison linéaire à coefficients holomorphes des x β . ∂P ∂x i . Si γ désigne le vecteur colonne des x α . ∂P ∂x j et δ le vecteur colonne des x α . ∂Q ∂x j on aura donc δ = R.γ où R est une matrice à coefficients holomorphes dans C n . Comme les x α . ∂P ∂x j +t. ∂Q ∂x j forment un système générateur sur O C n+1 de M k+1 .J / (f ), on aura une relation matricielle Γ = (Id + t.R).γ où Γ désigne le vecteur colonne des x α . ∂P ∂x j + t. ∂Q ∂x j . Pour |t| ≪ 1 la matrice Id + t.R sera inversible et on a ainsi établi l'égalité M k+1 .J / (f ) = M k+1 .J(P ) au voisinage de l'origine dans C n+1 . Cette égalité montre que le lieu singulier de f est contenu dans S au voisinage de l'origine, et si Q(0) = 0, ce qui est imposé par l'appartenance de Q à M.J(Q), on aura égalité. On conclut immédiatement car

Q ∈ J / (f ) implique Q ∈ J(P ).
Illustrons ceci par un exemple simple "explicite".

Exemple 2. Il s'agit de calculer l'exemple suivant dans lequel on a n = 2 : P (x, y) = x 4 + y 4 , Q(x, y) = x 2 .y 2 et donc f (x, y, t) = P (x, y) + t.Q(x, y) qui est une déformation à µ-constant pour t = ±2, d'hypersurfaces à singularités isolées de C 2 dont le faisceau des modules de Brieskorn n'est pas localement constant. En effet le birapport des quatre droites de C 2 que l'on obtient pour chaque valeur de t et qui vaut 6 -t-2 4 est une fonction localement injective, ce qui montrent que ces germes de fonctions holomorphes ne sont jamais localement deux à deux analytiquement équivalentes.

6 Il s'agit de calculer le birapport des quatre racines de l'équation z 4 + t.z 2 + 1 = 0. Ce nombre est défini modulo le groupe du birapport. Par exemple 1 -(-t-2 4 ) = t+2 4 représente la même classe de birapport.

Cependant l'hypothèse M 2 .J(Q) ⊂ M 2 .J(P ) du lemme précédent est satisfaite, où ici, on a simplement M := (x, y). On vérifie aussi immédiatement que Q ∈ J(P ). On aura donc G = M.

Explicitons le calcul de ∇. On a

∂f ∂x = 4x 3 + 2t.xy 2 ∂f ∂y = 4y 3 + 2t.x 2 y. et donc 8.x 3 y = 2y ∂f ∂x -tx.( ∂f ∂y -2t.x 2 y) = 2t 2 .x 3 y + 2y ∂f ∂x -tx. ∂f ∂y . On obtient ainsi 2(4 -t 2 ).x 3 y = 2y ∂f ∂x -tx. ∂f ∂y ∈ J / (f ) et (1) 2(4 -t 2 ).xy 3 = 2x ∂f ∂y -ty. ∂f ∂x ∈ J / (f ) par symetrie. (2) 
On en déduit que

4.x 5 = x 2 . ∂f ∂x -2t.x 3 y 2 ∈∈ J / (f ) et (3) 4.y 5 = y 2 . ∂f ∂y -2t.x 2 y 3 ∈ J / (f ) par symetrie. (4) 
Grâce aux relations

4.x 4 = -2t.x 2 y 2 + x. ∂f ∂x (5) 4.y 4 = -2t.x 2 y 2 + y. ∂f ∂y (6) une O D [[b]]-base de E est donc donnée par
(1, x, y, x 2 , y 2 , xy, x 2 y, xy 2 , x 2 y 2 ).dx ∧ dy.

Soit ω := x.dy -y.dx. Pour un monôme m homogène de degré δ(m) on a

d / (m.ω) = δ(m) + 2 4 . d / f f ∧ m.ω (7) 
ce qui donne

a(m) = δ(m) + 2 4 .b(m). (8) 
On a également

∇(d(m.ω)) = d / f ∧ ∂(m.ω) ∂t -x 2 y 2 .d(m.ω) (9) et donc ∇(m) = -x 2 y 2 .m. (10) Comme x 2 y 2 .M ⊂ J / (f ), on voit que b -1 ∇ opère sur G = M. Par exemple, comme 2(4 -t 2 ).x 3 y 2 = 2y 2 ∂f ∂x -txy. ∂f ∂y (11) = d / f ∧ (2y 2 dy + t.xydx) (12) on aura b -1 ∇(x) = t.x 2(4 -t 2 )
.

Donc (4 t 2 ) 1 4 .x sera (localement) dans Ker ∇ pour |t| < 2. Comme ∇(1) = -x 2 y 2 / ∈ b.E, pour tester directement la b -1 ∇-régularité de E, posons E 1 := E ⊕ O D .ε, où l'on définit ε := b -1 (x 2 y 2 ). Alors on obtient, puisque a(x 2 y 2 ) = 3 2 b(x 2 y 2 ) les relations suivantes : aε = 1 2 .bε et ∇ε = b -1 ∇(x 2 y 2 ) = b -1 (-x 4 y 4 ).
Explicitons b -1 (-x 4 y 4 ). On a d'après (1) 2(4 -t 2 ).x 4 y 4 = d / f ∧ (2xy 4 dy + t.x 2 y 3 dx) (13) ce qui donne 2(4 -t 2 ).x 4 y 4 = b(2y 4 -3t.x 2 y 2 ) et donc d'après ( 6)

2(4 -t 2 ).x 4 y 4 = b(-4t.x 2 y 2 + d / f ∧ (- 1 2 y.dx)) = b(-4t.x 2 y 2 + 1 2 .b(1)). On a donc b -1 ∇(ε) = 2t 4 -t 2 .ε - 1 4(4 -t 2 )
.1.

Ceci permet de conclure que

E 1 est stable par b -1 ∇. On obtient ainsi directement la b -1 ∇-régularité pour E dans cet exemple. Le O D [[b]]-module O D [[b]].1⊕O D [[b]].ε est stable par a et b -1 ∇, via les formules: a.ε = 1 2 .bε, a.1 = 1 2 .b.1 b -1 ∇(1) = -ε, b -1 ∇(ε) = 2t 4 -t 2 .ε - 1 4(4 -t 2 )
.1.

Exemple 3. Soient p, q, r trois entiers ≥ 3 tels que 1 p + 1 q + 1 r < 1 et posons f (x, y, z, t) = x p + y q + z r + txyz.

Remarquons que l'on a f ∈ M 3 et donc J / (f ) ⊂ M 2 . Montrons que, sur l'ouvert S * := {t = 0} de C, les hypothèses de la proposition 2.2.1 sont vérifiées avec k = 1. D'abord on a J / (f ) = (p.x p-1 + t.yz, q.y q-1 + t.xz, r.z r-1 + t.xy).

Les relations ∂f ∂x = p.x p-1 + t.yz ∂f ∂y = q.y q-1 + t.xz ∂f ∂z = r.z r-1 + t.xy donnent pq.x p-1 .y q-1 = t 2 .xyz 2 + M 2 .J / (f ) ainsi que t.x p-1 .y q-1 = -r.z r-1 .x p-2 y q-2 + M 2 .J / (f ) puisque x p-2 y q-2 ∈ M 2 . On a donc t 3 .xyz 2 + pqr.z r-1 .x p-2 y q-2 + M 2 .J / (f ) ou encore, puisque p, q, r, sont au moins égaux à 3 et t = 0,

t 3 .xyz 2 (1 + pqr t 3 .z r-3 x p-3 y q-3 ) ∈ M 2 .J / (f ). (@)
On aura aussi t.x p y = -r.x p-1 z r-1 + x p-1 . ∂f ∂z t 2 .x p y = -r.t.x p-1 z r-1 + M 2 .J / (f ) = rq.y q-1 .x p-2 .z r-2 + M 2 .J / (f ) = rq.y 2 .x.z.(y q-3 .x p-3 .z r-3 ) + M 2 .J / (f ) ∈ M 2 .J / (f ) d'après (*). On a donc, en utilisant encore le fait que x, y, z jouent le même rôle, que

M. ∂f ∂t ⊂ M 2 .J / (f ) ainsi que M.f ⊂ M 2 .J / (f ).
Il nous reste seulement à voir que ∂f ∂t .h ∈ J / (f ) implique h ∈ M; ceci résulte du fait que ∂f ∂t ∈ J / (f ) . Preuve. Comme on a p.x p = q.y q = r.z r = -t.α modulo M.J / (f ),

on aura f -(1 -ρ).tα ∈ M.J / (f ) avec ρ = 1 p + 1 q + 1 r . ( 14 
)
On en déduit en particulier que a.α ∈ M 2 .J / (f ) et donc que ab -1 α est bien dans Γ. La stabilité par b -1 a en découle alors puisque la relation

M.f ⊂ M 2 .J / (f ) donne a.G ⊂ M 2 .J / (f ) ⊂ b.G.
Remarques.

1. Le cas p = q = r = 3 relève du premier exemple traité plus haut. 3 Intégration "à la Malgrange".

Les cas

3.1

Lemme 3.1.1 Soit n un entier au moins égal à 2. On a un morphisme de complexes

• • • / / ( Ker df ) n-1 d / / ( Ker df ) n d / / α ( Ker df ) n+1 / / β 0 • • • / / 0 / / P b -1 ∇ / / E / / 0
où α est induite par la projection "évidente" de Ωn sur Ωn / et où β est l'inverse de l'isomorphisme ∧dt : Ωn / → Ωn+1 . Il induit des isomorphismes (a,b)-linéaires sur les faisceaux de cohomologie, si on remplace ( Ker df ) 0 par ( Ker df ) 1 ∩ Ker d en degré 0 dans le premier complexe (avec l'inclusion évidente).

Preuve. Vérifions déjà les égalités

α • d = 0 et β • d = b -1 ∇ • α. Si u + dt ∧ v est dans ( Ker df ) n-1 avec u ∈ Ωn-1 / et v ∈ Ωn-2 / , on aura d / f ∧ u = 0 et (α • d)(u + dt ∧ v) = d / u. On trouve donc bien zéro dans P ⊂ E. Pour d / ξ + dt ∧ η ∈ ( Ker df ) n on aura (β • d)(d / ξ + dt ∧ η) = β(dt ∧ ( ∂d / ξ ∂t -d / η)) = ∂d / ξ ∂t -d / η = d / ( ∂ξ ∂t -η). La condition df ∧ (d / ξ + dt ∧ η) = 0 donne ∂f ∂t .d / ξ = d / f ∧ η et on a donc ∇(α(d / ξ + dt ∧ η)) = ∇(d / ξ) = d / f ∧ ( ∂ξ ∂t -η)
ce qui donne bien l'égalité désirée. La fin de la preuve consiste alors à vérifier que les morphismes induits en cohomologie coïncident avec ceux des propositions 4. 

  3.1 et 4.3.2 de [B.06]. Théorème 1.1.1 Soit f un germe de fonction holomorphe à l'origine de C n+1 et notons par K := ( Ker df • , d • ) le complexe obtenu par complétion formelle le long de Y := {f = 0} à partir du sous-complexe du complexe de de Rham des formes holomorphes sur C n+1 annulées par ∧df . Les faisceaux de cohomologie du complexe K vérifient les propriétés suivantes : 1. Le faisceau H 1 est de support Y et isomorphe à C Y ⊗E 1 où le (a,b)-module E 1 est défini par E 1 := C[[b]].e 1 et a.e 1 = b.e 1 1 2. Le faisceau H n est à support dans S. C'est un système local sur S * := S\{0} de (a,b)-modules réguliers géométriques 2 . De plus ce faisceau n'a pas de section non nulle supportée par l'origine et n'a pas de b-torsion. Sa fibre à l'origine est donc également un (a,b)-module régulier géométrique. 3. Le faisceau H n+1 est à support dans S. Il vérifie la propriété du prolongement analytique 3 sur S * . L'espace vectoriel H 0 {0} (S, H n+1 ) est, modulo un sous-module de b-torsion de dimension finie sur C, un (a,b)-module régulier géométrique. 4. Les autres faisceaux de cohomologie du complexe K sont nuls. 1 Il s'identifie à C[[z]] avec a := ×z et b := z 0 .

  Lemme 1.1.2 Soit f un germe de fonction holomorphe à l'origine de C n+1 dont le lieu singulier S est de dimension 1. Pour l ∈ (C n+1 ) * générique, le lieu critique Σ du germe d'application (f, l) : (C n+1 , 0) → (C 2 , 0) est de dimension 1 et contient S; on a donc l'égalité Σ = S au voisinage de S * . De plus la restriction de l à Σ est propre et finie avec un unique point de ramification à l'origine. La famille (f t ) t∈D où f t := f |{l=t} et où D est un disque ouvert centré à l'origine dans C assez petit, est sur D * une famille à µ-constant le long de S * . Dans la situation du lemme précédent, on fixera un voisinage ouvert V de S * dans C n+1 de sorte que Σ ∩ V = S * et on notera par E le complexe image directe par la restriction de l à V du complexe ( Ω• / , d • / ) où Ω• / désigne le complété formel "en f " du faisceau des formes l-relatives sur C n+1 et où d • / est la différentielle l-relative correspondante. On a alors les résultats suivants. Proposition 1.1.3 Dans la situation précisée ci-dessus le seul faisceau de cohomologie non nul en degré = 1 du complexe E est celui de degré n que l'on notera E. C'est un faisceau cohérent localement libre sur le faisceau (cohérent) de C-algèbres O D * [[b]]. Il est naturellement muni d'un morphisme de faisceau O D * -linéaire a vérifiant a.b -b.a = b 2 et continu pour la topologie b-adique. Chaque fibre de E est ainsi munie d'une structure de (a,b)-module régulier géométrique. Le faisceau de cohomologie en degré 1 est le O D * [[b]]-module libre de rang 1 engendré par la classe e 1 := [d / f ] qui vérifie a.e 1 = b.e 1 .

1.

  Comme b est injective sur E, il s'injecte dans E[b -1 ]. 2. Comme Ĝ est cohérent sur O D [[b]] il existe N ∈ N tel que Ĝ soit contenu dans b -N .E. On en déduit alors l'existence localement sur D * d'un sous-O D [[b]]-module cohérent G := b N . Ĝ de E, stable par b -1 ∇ et contenant b N .E. Il est facile de voir que, réciproquement l'existence d'un tel G donne la b -1 ∇-régularité. Proposition 2.1.2 Il existe sur D un plus grand sous-O D [[b]]-module G de E, stable par b -1 ∇.

  montrons par récurrence sur ν ∈ N que l'on a ∇ ν (x) ∈ b ν .E. La propriété étant claire pour ν = 0 supposons-la vraie pour ν -1 et montrons-la pour ν. Comme on a la relation (@) on déduit de l'hypothèse ϕ.x ∈ G et de l'hypothèse de récurrence que ϕ.∇ ν (x) ∈ b ν .E. Mais sur D * le faisceau E/b ν .E est localement O D -libre 4 on en déduit que ∇ ν (x) ∈ b ν .E. On en conclut que x ∈ G, ce qui achève la preuve du point 3). Le point 4) se montre de la même façon en utilisant l'égalité (essentiellement établie plus haut) b.G = {x ∈ E / ∀ν ∈ N ∇ ν (x) ∈ b ν+1 .E}. Supposons maintenant que E est b -1 ∇-régulier. Alors le faisceau G est O D [[b]]-cohérent : en effet si G désigne le plus grand sous-faisceau O D [[b]]-cohérent stable par b -1 ∇ (un tel G existe et il est cohérent car toute suite croissante de sous-O D [[b]]-modules cohérents de E est localement stationnaire) on a G ⊂ G.
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  car c'est le cas pour ν = 1 et donc pour tout ν en raisonnant par récurrence sur la suite exacte 0 → b k .E b k+1 .E → E b k+1 .E → E b k .E → 0. puisque b k : E b.E → b k .E b k+1 .E est un isomorphisme de faisceaux de O D -modules. De plus, s'il existe x ∈ G \ G, la considération de O D [[b]].x + G contredit la maximalité de G. On a donc G = G. Mais l'absence de O D -torsion de G b.G prouvée au 4) précédent, montre que le faisceau G est O D -localement libre de rang fini sur D * . Les assertions i) et ii) sont alors des conséquences simples du théorème de Cauchy, en utilisant le fait que l'on sait à priori que Ker ∇ ≃ Ĥn a des fibres qui sont des (a,b)-modules réguliers géométriques, en tant que sous-(a,b)-modules de (a,b)modules réguliers géométriques (voir [B.06]).

  Proposition 2.1.4 Dans la situation ci-dessus considérons une base de Jordan e 1 , • • • , e k d'un bloc de Jordan de la monodromie de f pour la valeur propre exp(2iπ.u) où u ∈ [0, 1[, agissant sur H n-1 ({f = ε} ∩ U, C). Alors il existe un entier m ≥ 0 et des (n -1)-formes holomorphes ω 1 , • • • , ω k sur U vérifiant les propriétés suivantes:

  stable par a et libre de rang k sur O ∆ [[b]]. Il est contenu dans G. De plus, pour deux blocs de Jordan distincts, les sous-faisceaux de O ∆ [[b]]-modules ainsi obtenus sont en somme directe dans G.On remarquera que grâce à notre trivialisation locale, pour chaque p ′ ∈ ∆, les restrictions de la base e 1 , • • • , e k à {f p ′ = ε} induiront une base de Jordan d'un bloc de Jordan de taille k pour la monodromie de f p ′ agissant sur H n-1 ({f p ′ = ε}, C).Preuve. L'existence de l'entier m et des (n -1)-formes holomorphes vérifiant les propriétés 1) et 2) résultede [B.84]. Les sections sur l'ouvert ∆ du faisceau Ĥn induites par les formes dω j vérifient les relations :a.[dω j ] = (m + u).b.[dω j ] + b.[dω j-1 ] ∀j ∈ [1, k]qui ne sont qu'une réécriture des relations du 1). Montrons l'indépendance sur C[[b]]. Si on a une relation sur un ouvert connexe ∆ ′ ⊂ ∆ k j=1 s j .[dω j ] ∈ d(Γ(∆ ′ , Ker df )) où s j ∈ C[[b]], on obtient une relation sur C[[f ]] des classes correspondantes, ce qui donne la nullité des coefficients, puisque que ces classes sont indépendantes dans le système de Gauss-Manin localisé en f et donc aussi dans le réseau holomorphe puisqu'il est sans torsion 5 . On en déduit la même propriété pour son complété formel en f par platitude de C[[f ]] sur C{f }. L'indépendance sur O ∆ [[b]] s'en déduit en raisonnant pour chaque t ∈ ∆ fixé, grâce à la remarque qui suit l'énoncé de cette proposition. L'inclusion dans G est immédiate puisque les [dω j ] sont dans Ker ∇. L'indépendance pour des bases de blocs de Jordan distincts (et aussi pour une base de Jordan complète) s'obtient de façon analogue. Démonstration du théorème. Compte tenu de la proposition précédente, il nous suffit de montrer qu'il existe localement sur S * un entier N tel que le O ∆ [[b]]-module G ⊂ G construit à partir d'une base de Jordan de la monodromie de f agissant sur l'espace vectoriel H n-1 ({f = ε} ∩ U, C) tel que l'on ait b N .E ⊂ G. Ceci résulte immédiatement du fait que le réseau du système de Gauss-Manin engendré par les formes holomorphes construites à partir de la base de Jordan considérée est méromorphiquement équivalent au réseau engendré par les formes méromorphes de la forme dω/df avec dω ∈ Ker df ∩ Ker d, où ω est holomorphe. Ceci fournit (localement) l'entier N cherché. D'où la b -1 ∇-régularité de E.

  donne un élement [d / ξ] ∈ G dont l'image par b est [η]. Ceci prouve notre assertion. On a alors, pour ω = d / ξ,

  Notons par G := M.Ω n / d / f ∧ d / Ω n-2 / . Comme le fibré vectoriel sur S * défini par E b.E est trivial, on constate facilement que le O S [[b]]-module Γ := G + O S [[b]].b -1 α de E[b -1 ] où α := xyz, est stable par a, b, b -1 ∇ et b -1 a sur S * .

<

  Preuve. Soit ∆ ⊂ H × C un polydisque. L'hypothèse de trivialité topologique permet de trouver ψ ∈ C ∞,n-1 c/f (f -1 (∆)) une (n -1)-forme d-fermée induisant pour chaque (s, t) ∈ ∆ la classe définie par γ s,t dansH n-1 c (f -1 t (s), C) ≃ H n-1 (f -1 t (s), C). Pour ξ ∈ Ω nt) ∈ ∆.Commençons par prouver l'holomorphie de F sur ∆. Comme F est manifestement une fonction continue, il suffit de prouver que son ∂ au sens des distributions est nul. Considérons alors une forme test θ ∈ C ∂F, θ >= -< F, ∂θ >= -f -1 (∆) ξ ∧ ψ ∧ d(f * (θ))puisque ∂θ = dθ et puisque loin du lieu critique de f le théorème de Fubini banal s'applique à des fonction continues. Comme on ad(ξ ∧ ψ ∧ f * (θ)) = ξ ∧ ψ ∧ d(f * (θ)))puisque dψ = 0 et que dξ ∧ f * (θ) est de type (n + 2, 1) donc nulle, la formule de Stokes permet de conclure à l'holomorphie de F . Pour calculer ∂F ∂s au sens des distributions, considérons maintenant une forme testζ dt ∧ ζ >= -< F, d(dt ∧ ζ) >=f -1 (∆) ξ ∧ ψ ∧ d(f * (dt ∧ ζ)).Comme on a dξ = d / ξ + dt ∧ ∂ξ ∂t la formule de Stokes donne< ∂F ∂s .ds, dt ∧ ζ >= f -1 (∆) d / ξ ∧ ψ ∧ f * (dt ∧ ζ).Le théorème de Fubini donne alors ∧ ψ .ds ∧ dt ∧ ζ ce qui donne bien notre formule de dérivation "en s". Soit ζ une forme-test choisie comme plus haut. On a< ∂F ∂t .dt, ds ∧ ζ >= -< F, d(ds ∧ ζ) >=f -1 (∆) ξ ∧ ψ ∧ d(f * (ds ∧ ζ)).La formule de Stokes donne alors< ∂F ∂t .dt, ds ∧ ζ >= f -1 (∆) ∂ξ ∂t ∧ dt ∧ ψ ∧ d / f ∧ f * (ζ) + d / ξ ∧ ψ ∧ ∂f ∂t .dt ∧ f * (ζ) puisque f * (ds) = df = d / f + ∂f ∂t .dt. On trouve alors, puisque∇(d / ξ) = d / f ∧ / ξ) ∧ ψ ∧ dt ∧ f * (ζ).On a donc bien, à nouveau grâce au théorème de Fubini, la formule annoncée, pour d / ξ ∈ E : Remarquons que si I : E → O H×C est le morphisme de faisceau localement défini par [d / ξ] → γs,t d / ξ d / f , on a établi les égalités suivantes : (∂ s ) • I • b = I et (∂ t ) • I = I • (b -1 ∇) de morphismes de faisceaux respectivement de E à valeurs dans O H×C et de P à valeurs dans O H×C .

  ∇ contenant b N .E pour N assez grand (localement sur D * ). Ceci équivaut à l'existence localement sur D * d'un entier N tel que l'on ait ∇ j E ⊂ b j-N .E pour tout j ≥ 0. On dira que E est b -1 ∇-régulier si E est localement sur D * contenu dans un sous-O D

	Soit n ≥ 2 un entier. On se place sous l'hypothèse (H 0) de [B.06], c'est à dire que f : (C n+1 , 0) → (C, 0) est un germe non constant de fonction holomorphe à lieu singulier de dimension 1. On considère un représentant de Milnor f : X → D de ce germe dont le lieu singulier, S := {x ∈ X / df x = 0}, est une courbe de X dont chaque composante irréductible passe par l'origine et telle que S * := S \ {0} soit lisse et réunion disjointe de disques topologiques épointés. On suppose donnée une fonction non singulière t : X → D telle que sa restriction à S fasse de S un revêtement ramifié seulement à l'origine du disque D et telle que l'on ait S * = {dt ∧ df = 0} au voisinage de S * . On a montré dans [B.06] que sous l'hypothèse (H 0) il existe toujours de telles fonctions t au voisinage de l'origine. On a défini ∇ : E → E dans [B.06] et on a montré que b -1 ∇ est une O D -connexion sur E[b -1 ] qui commute à a et b. La notion de régularité qui est introduite ci-dessous signifie qu'il existe localement sur D * un O D [[b]]-réseau cohérent stable par b -1 Définition 2.1.1

  Théorème 2.1.3 Sous l'hypothèse (H 0) de [B.06] E est b -1 ∇-régulier sur S * . Démonstration. Comme près du point p ∈ S * la famille des fonctions à singularités isolées donnée par t → f t est à µ-constant elle est topologiquement triviale au voisinage de p. En identifiant S * et D

* via la fonction t au voisinage de p, on a donc l'existence d'un voisinage U de p dans X et une application continue Φ

  = f et ne s'annule pas sur {t = 0}. 3. La relation M.f ⊂ M 2 .J / (f ) implique que le plus grand sous-(a,b)-module à pôle simple de f t pour chaque t = 0 est la fibre en t de M.

	1 p + 1 q + 1 r < 1 résulte de l'étude de [B.06] puisque l'on a
	W :=	1 p	.x.	∂ ∂x	+	1 q	.y.	∂ ∂y	+	1 r	.z.	∂ ∂z	+ (1 -ρ).t.	∂ ∂t
	qui vérifie W.f													

On a donc G = M = M.E dans ce cas.

  2.6. et 4.2.8. de [B.06]. C'est à dire une section locale sur un ouvert de H×C, où exp : H → D * est le revêtement universel du disque pointé, du système local dont les fibres sont les espaces vectoriels H n-1 (f -1 t (s), C), où nous avons posé f t (x) = f (x, t).

	∂ ∂s γs,t	ξ =	γs,t	d / ξ d / f
	qu'il faut lire sous la forme						
	primitive "en s" de		γs,t		d / ξ d / f		=	γs,t	d / f ∧ ξ d / f	.
	Pour tout d / ξ ∈ E on a la formule de dérivation "en t"
	∂ ∂t γs,t	ξ =	γs,t	∇(d / ξ) d / f
	que l'on peut lire sous la forme						
	∂ ∂t γs,t	d / ξ d / f	=	γs,t	b -1 ∇(d / ξ) d / f
	pour d / ξ ∈ P.						

Pour (s, t) ∈ C×C voisin de (0, t 0 ) considérons une famille horizontale multiforme (en s) de (n -1)-cycles compacts 7 γ s,t ⊂ {f (x, t) = s}. Nous utilisons ici la trivialité topologique locale de l'application (f, t) : C n+1 → C 2 dont le lieu critique est {x = 0} × C au voisinage de S * × {0}, grâce à la locale constance de µ sur S * . Il s'envoie sur {s = 0} ⊂ C 2 . Proposition 3.1.2 Pour tout d / ξ ∈ E on a la formule de dérivation "en s" 7

Voir [B.05] ou [B.06].

C'est à dire que toute section sur un ouvert connexe V de S * qui est nulle sur un ouvert non vide de V est nulle.

La a-torsion coïncide avec la b-torsion et cette dernière est nulle (voir [B.06]).