
HAL Id: hal-00123999
https://hal.science/hal-00123999

Submitted on 11 Jan 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhancing Dependability of Component-based Systems
Arnaud Lanoix, Denis Hatebur, Maritta Heisel, Jeanine Souquières

To cite this version:
Arnaud Lanoix, Denis Hatebur, Maritta Heisel, Jeanine Souquières. Enhancing Dependability of
Component-based Systems. Reliable Software Technologies Ada-Europe 2007, 2007, Genève, Switzer-
land. pp.41–54. �hal-00123999�

https://hal.science/hal-00123999
https://hal.archives-ouvertes.fr

Enhancing Dependability

of Component-based Systems

Arnaud Lanoix1, Denis Hatebur2, Maritta Heisel2, and Jeanine Souquières1

1 LORIA – Université Nancy 2, Campus Scientifique, BP 239

F-54506 Vandœuvre lès Nancy cedex

{Arnaud.Lanoix,Jeanine.Souquieres}@loria.fr
2 Universität Duisburg-Essen, Abteilung Informatik und Angewandte

Kognitionswissenschaft, D-47048 Duisburg
{Denis.Hatebur,Maritta.Heisel}@uni-duisburg-essen.de

Abstract

We present a method to add dependability features to component-based software systems.

The method is applicable if the dependability features add new behavior to the system,

but do not change its basic functionality. The idea is to start with a software architecture

whose central component is an application component that implements the behavior of the

system in the normal case. The application component is connected to other components,

possibly through adapters. It is then possible to enhance the system by adding dependability

features in such a way that the central application component remains untouched. Adding

dependability features necessitates to evolve the overall system architecture by replacing or

newly introducing hardware or software components. The adapters contained in the initial

software architecture have to be modified, whereas the other software components need not

to be changed. Thus, the dependability of a component-based system can be enhanced in an

incremental way.

1 Introduction

Component orientation is a new paradigm for the development of software-based systems. The

basic idea is to assemble the software by combination of pre-fabricated parts (called software

components), instead of developing it from scratch. This procedure resembles the construction

methods applied in other engineering disciplines, such as civil or mechanical engineering.

Software components are put together by connecting their interfaces. A provided interface of

one component can be connected with a required interface of another component if the provided

1

interface offers the services needed to implement the required interface. An adapter is often

necessary to map the provided services to the required ones.

Hence, an appropriate description of the provided and required interfaces of a software com-

ponent is crucial for component-based development. In earlier papers [13, 19, 24], we have inves-

tigated how to formally specify interfaces of software components and how to demonstrate their

interoperability, using the formal method B.

In the present paper, we study how dependability features [4], such as safety, security or fault

tolerance features, can be added to component-based software. The goal is to retain the initial

software components as far as possible and only add new software components in a systematic

way. This approach works out if the initial software architecture is structured in such a way that

the core functionality is clearly separated from auxiliary functionality that is needed to connect

the components implementing the core functionality to their environment.

To make a software-based system more dependable, new components are added, or existing

components are replaced by more dependable ones, while the core functionality remains the same.

New or modified interfaces must be taken into account. In order to connect these new interfaces to

the given interfaces of “core” components, new adapters must be developed, or existing adapters

must be upgraded. These adapters “shield” the core components by intercepting and possibly

modifying their inputs and outputs.

In Section 2 we describe how we support component-based development using the formal

specification language B. We then describe our method to add dependability features in Section 3.

The method is illustrated by the case study of an access control system, presented in Section 4.

The paper closes with the discussion of related work in Section 5 and concluding remarks in

Section 6.

2 Using B for Component-Based Development

We first briefly describe the formal language B and then explain how we use B in the context of

component-based software. We formally express provided and required interfaces using B models

in order to verify their compatibility.

2

2.1 The Formal Method B

B is a formal software development method based on set theory, which supports an incremental

development process using refinement [1]. Starting out from a textual description, a development

begins with the definition of an abstract model, which can be refined step by step until an im-

plementation is reached. The refinement of models is a key feature for incrementally developing

more and more detailed models, preserving correctness in each step.

The method B has been successfully applied in the development of several complex real-life

applications, such as the METEOR project [6]. It is one of the few formal methods which has

robust and commercially available support tools for the entire development life-cycle, from spec-

ification down to code generation [7]. The B method provides structuring primitives that allow

one to compose models in various ways. Large systems can be specified in a modular way and in

an object-based manner [23, 21]. Proofs of invariance and refinement are part of each develop-

ment. The proof obligations are generated automatically by support tools such as AtelierB [31]

or B4free [14], an academic version of AtelierB. Checking proof obligations with B support tools

is an efficient and practical way to detect errors introduced during development.

2.2 Specifying Component Architectures

We define component-based systems using different kinds of UML 2.0 diagrams [25]:

• Composite structure diagrams serve to express the overall architecture of the system in terms

of components and their required and provided interfaces.

• Class diagrams serve to express interface data models with their different attributes and

methods. An interface data model specifies the data that are passed via a given interface.

• The usage protocol of each interface can be modeled by a Protocol State Machine (PSM).

• Sequence diagrams serve to express the interactions between different components that are

connected via some interface.

Component interfaces are then specified as B models, which increases confidence in the de-

veloped systems: the correctness of the specifications, as well as correctness of the subsequent

refinement process can be checked with tool support. In an integrated development process, the

B models can be obtained by applying systematic derivation rules from UML to B [23, 21].

3

Turnstile

Driver

<< interface >>

TS_R

pushed()

<< interface >>

TS_P

turnstile : LOCKED

unlock()

lock()

Figure 1: Component TurnstileDriver

MODEL
TS P

SEES
Type

VARIABLES
turnstile

INVARIANT
turnstile ∈ LOCKED

INITIALISATION
turnstile := locked

OPERATIONS
unlock =
PRE turnstile = locked
THEN turnstile := unlocked
END;
lock =
PRE turnstile = unlocked
THEN turnstile := locked
END

END

Figure 2: B model of the interface TS P

Let us give an example of a software component called TurnstileDriver, presented in Figure 1. It

represents a software component that can lock and unlock a turnstile. This component has two

interfaces, a provided one TS P and a required one TS R. These interfaces express that another

component, connected to TurnstileDriver, can call the lock() and unlock() methods of TS P, but the

TurnstileDriver can reciprocally call a pushed() method from the connected component when the

turnstile is pushed. A B model of the interface TS P is given in Figure 2.

2.3 Proving Interoperability of Component Interfaces

In component-based architectures, the components must be connected in an appropriate way. To

guarantee interoperability of components, we must consider each connection of a provided and

a required interface contained in a software architecture and try to show that the interfaces are

compatible. Using the method B, we prove that the provided interface is a correct B refinement

of the required interface. This means that the provided interface constitutes an implementation

of the required interface, and we can conclude that the two components can be connected as

intended. The process of proving interoperability between components is described in [13].

Often, to construct a working component architecture, adapters have to be defined, connecting

the required interfaces to the provided ones. An adapter is a new component that realizes the

required interface using the provided interface. At the signature level, it expresses the mapping

between required and provided variables. In [24], we have studied an adapter specification and its

verification by giving a B refinement of the adaptation that refines the B model of the required

interface and includes the provided (previously incompatible) interface.

4

3 Adding Dependability Features to Component-Based Soft-

ware

We now describe our method to add dependability features to a software-based system, whose

software part makes use of component technology. Dependability is the ability to deliver services

that can justifiably be trusted. In particular, we consider dependability properties concerning

security, safety, and fault tolerance. The latter two are relevant mainly for embedded systems,

where some part of the physical world has to be controlled, whereas security is an issue also in

pure data-processing systems.

The basic idea of our method is to leave the core functionality of the system untouched, and

enhance dependability by

• adding dedicated components needed for realizing dependability features, or replacing used

components by more dependable ones;

• constructing and/or upgrading software adapter components that connect the new “depend-

ability components” with the existing (and unchanged) “core” components.

In the following, we first describe the situations where our method can profitably be applied.

Then, we describe how the different kinds of dependability properties can be added.

3.1 Application Scenario

Our method is intended to support the following scenario. We start out with a component-

based system that implements a given “core” functionality, for example, controlling access of

persons to a building. In the software architecture of the system, one or more components (called

application components) can be identified that implement the core functionality. This functionality

is clearly separated from the functionality of the other components, serving for example to connect

the core to the environment (hardware drivers). An example of such a software architecture

is given in Figure 3. It shows a layered architecture with a core component called Application,

which is connected to other software components called SmartcardDriver, NetworkDatabaseDriver and

TurnstileDriver, possibly using adapters.

The core components should be robust to changes: their core functionality is to be left un-

changed. Their connections to other components in terms of provided and required interfaces are

not evolved. This means that enhancing dependability amounts to providing additional behavior

5

that has to be executed in case of hazardous conditions, hardware or software failures, or security

attacks. The system behavior in the normal case, however, remains the same. Instead of changing

the core components, we evolve the adapters independently of the core components by providing

additional functionality and dependability features.

One reason for leaving the core components untouched may be that the core components should

be reusable in different contexts, where dependability need not always be an issue. Another reason

may be that they cannot be changed, because they have been produced by a third party and the

source code is not accessible.

3.2 General Procedure

Adding dependability features to a given system means to adapt the system to new (depend-

ability) requirements. The new dependability requirements may override existing (functional)

requirements. For example, a functional requirement for an access control system may be that

exactly the persons are admitted to a building who are authorized to be in the building. To find

out if a person has permission, a database is queried. A new security requirement might state that

if the database is corrupted, nobody is admitted any more, even if they are authorized according to

the database. The new requirements are realized by updating existing adapters or developing new

adapters. The adapters shield the application components by intercepting and possibly modifying

their inputs and outputs.

In general, we proceed as follows:

1. Express the new dependability requirements.

2. Express how the new requirements are related to the old ones and among each other.

3. For each dependability requirement, state what components are needed for ensuring it. In-

spect the given system architecture and decide what new components are necessary, and

what components must be replaced or updated.

4. Update the existing adapters and implement new dependability adapters that connect the

core components to the other components.

5. If several dependability adapters are added, it may be suitable to add one or more core

components that handle the new dependability-relevant events.

We use the B method for specifying component interfaces and implementing adapters (and

possibly new core components). First, we can ensure that the components (existing ones and

6

newly introduced ones) can indeed be plugged together as intended (see Section 2.3). Second, the

adapter and application specifications expressed in B can be refined until code is reached.

In the following sections, we describe how to add security, safety and fault-tolerance features.

We do not invent any new mechanisms but show how standard solutions for the given dependability

requirements can be added to a component-based system in an incremental way.

3.3 Adding Security Features

Security is mostly concerned with confidentiality, integrity, and availability. More concrete security

features concern for example authenticity and non-repudiation. In the context of our method,

availability is considered to be a fault-tolerance property; mechanisms for enhancing availability

are described in Section 3.5.

When adding security features to a component-based system, the corresponding adapters will

often implement the secure (i.e., confidential and integrity-preserving) transmission of data. Typ-

ical tasks that have to be performed include:

• checking message authentication codes to ensure integrity

• encrypt or decrypt data to ensure confidentiality

• check credentials to ensure authenticity

Existing security components may be used to realize the required security functionality.

3.4 Adding Safety Features

Safety requirements concern the reaction to hazardous situations in the environment of the system

(for example, fire in a building). In these cases, the system must be put into a safe state. The

safety adapters must be connected to new external components that make it possible to detect a

hazardous situation. Furthermore, they must implement a transition to a safe state, because this

cannot be done by the application components. What can be considered to be a safe state cannot

be stated in general but depends on the specificities of the given system.

3.5 Adding Fault-Tolerance Features

A standard technique to achieve fault tolerance is to introduce redundant components. Two kinds

of fault-tolerance features have to be distinguished. A component-based system can be composed

7

of active or passive components. An active component can inform its environment when a failure

occurs. In contrast, passive components just fail without informing the environment.

To achieve tolerance with respect to active components, the adapter must be able to shutdown

the failed component when it is informed of the failure and switch to a redundant one. To achieve

fault tolerance with respect to passive components, the adapter must check if the component works

correctly, or if a failure has occurred. In such a case, the adapter must take the faulty component

out of service and handle the fault, e.g. by switching to a redundant component.

4 Case Study

We illustrate our method with the case study of a simple access control system, which controls

the access to a building [2]. Persons who are authorized to enter the building are equipped with a

smartcard on which a user identification is stored. The access control system queries a database

to obtain the information if the person is permitted to enter the building. If access is granted, a

turnstile located at the entrance is unblocked, so that the person can enter the building. At the

exit of the building, another turnstile is installed. It is always unblocked and only serves to count

the number of persons who have left the building.

In its initial version, the access control system contains no dependability features. Using

our method described in Section 3, we will add two dependability features to the system by

adding appropriate new components, however leaving the basic functionality untouched. The

first dependability feature concerns security. Using message authentication codes, it is checked

if unauthorized modifications of the database content have occurred. In this case, the person

who wants enter to the building is not admitted, and a facility service is notified. The second

dependability feature concerns safety. A fire detector is added to the system. In case of fire, the

reaction is the following: nobody is allowed to enter the building until the fire is dealt with, and

the facility service is notified.

4.1 Architecture of the System without Dependability Features

The access control system communicates with hardware components (a smartcard reader and the

turnstiles), as well as software components (the database). The controller software of the access

control system is named TurnstileController. Its software architecture is shown in Figure 3, using

the syntax of UML composite structure diagrams. Software components are represented as named

8

boxes, and the interfaces between them are represented by “sockets” (required interfaces) and

“lollipops” (provided interfaces). The figure also shows how the different interfaces are named.

:Network

Database

Driver

:Turnstile

Driver

:Smartcard

Driver

Ap_P_Sm

Ap_R_DB Ap_P_TSE Ap_R_TSE AP_P_TSX

TurnstileController

:Application

:Turnstile

Driver

DBAdapter EntryAdapter ExitAdapter

ND_P TS_R TS_P TS_R TS_P

Smartcard Reader Database Entry Turnstile Exit Turnstile

Figure 3: Software architecture for the TurnstileController

The software architecture of the TurnstileController is a layered one. The highest layer, i.e., the

Application component, implements the core functionality of the access control system. The lowest

layer consists of the software drivers that connect the software to the hardware components. A

driver comes with the hardware components and should not be modified. Hence, adapters may be

necessary to connect the application component to the software drivers. These adapters make up

the middle layer of the architecture.

Figure 4 shows the interfaces of the Application component in more detail. For each required

and each provided interface, an interface class is specified in UML notation. The interface class

shows the operations belonging to the interface, together with their parameters. For example, the

interface class Ap P Sm describes a provided interface of Application: it expresses that Application

implements one method, namely card inserted(uid), which has a user identifier uid as its parameter.

This method may be called by another component connected to the interface Ap P Sm.

The access control system uses three kinds of external components, namely a smartcard reader,

a network database, and two copies of a turnstile. The corresponding drivers that control these

components are named SmartcardDriver, NetworkDatabaseDriver and TurnstileDriver, respectively. Their

interfaces are shown in Figure 5.

9

Application

<< interface >>

Ap_P_TSX
left_building()

<< interface >>

Ap_R_TSE
unblock()

<< interface >>

Ap_P_TSE
entered()

<< interface >>

Ap_R_DB
has_permission(UserID, DoorID) : Permission

<< interface >>

Ap_P_Sm
card_inserted(UserID)

Figure 4: The different interfaces of the Application

Smartcard
Driver

<< interface >>

Ap_P_Sm
card_inserted(UserID)

(a) SmartcardDriver

Network

Database

Driver

<< interface >>

ND_P

 getDBEntry(UserID, DoorID) :
 <Permission, MAC>

(b) NetworkDatabaseDriver

Turnstile

Driver

<< interface >>

TS_R

pushed()

<< interface >>

TS_P

turnstile : LOCKED

unlock()

lock()

(c) TurnstileDriver

Figure 5: Components used by the TurnstileController

4.1.1 The DBAdapter

As an example of an adapter, we explain the DBAdapter. Figure 6 gives a scenario of its be-

havior. The Application calls one of its required methods, namely has permission(uid,did), which

must be implemented by DBAdapter. Parameters of the method are a user identification uid and

a door identification did. As is shown in Figure 5, the database driver offers an operation getB-

DEntry(uid,did), which yields a permission and a message authentication code as its result. To

implement has permission(uid,did), the DBAdapter just calls the method getBDEntry(uid,did) and re-

turns only the permission to the application component.

:Application :DBAdapter :Network

DatabaseDriver
has_permission(uid,did)

getDBEntry(uid,did)

getDBEntry(_) : <perm,mac>

has_permission(_) : perm

Figure 6: Sequence diagram for the DBAdapter

As Figure 4 shows, the required interface Ap R DB of Application has to be implemented, i.e.,

an implementation of the operation has permission(uid,did) has to be provided. This is achieved by

the DBAdapter component, which uses the provided interface ND P. In Figure 7, we show how the

10

corresponding B models are organized. To verify the correctness of the assembly, we specify a B

model of the DBAdapter, which includes the B model of ND P and refines the B model of Ap R DB.

REFINES INCLUDES

MODEL

 Ap_R_DB

OPERATIONS

 has_permission

END

REFINEMENT

 DBAdapter

END

MODEL

 ND_P

OPERATIONS

 getDBEntry

END

Figure 7: B architecture for the DBAdapter

4.2 Adding Dependability Features to the Access Control System

We now add two dependability features to the system, one for security and one for safety. We also

introduce a new core component called Safety / Security / Service Application that handles security-

and safety-related events by notifying the facility service. To realize the dependability features, we

must introduce tree new components: Secret, FacilityServiceDriver and FireDetectorDriver. Descriptions

of the interfaces of these components are given in Figure 8. The resulting new software architecture

is shown in Figure 9.

4.2.1 The SecurityAdapter

The security feature concerns the integrity of the database. Its content is now checked using a

message authentication code (MAC). The new component Secret is introduced for storing secrets

that are needed to check the MAC.

The DBAdapter that connects the Application to the database is changed to use the component

Secret. It is renamed to SecurityAdapter. A behavioral scenario is presented in Figure 10: the

SecurityAdapter still receives a call of the method has permission(uid,did) from the Application. It still

queries the database. But now, the SecurityAdapter checks the message authentication code for

each database return. In case of a violation (checked 6=ok), it notifies the Safety / Security / Service

Secret

<< interface >>

S_P

 is_signature_ok(UserID, DoorID,
 Permission, MAC) : CHECKED

(a) Secret

Facility
Service
Driver

<< interface >>

FS_R
reset_alarm()

<< interface >>

FS_P
raise_alarm

 (MESSAGE)

(b) FacilityServiceDriver

Fire

Detector

Driver

<< interface >>

FD_R

fireDetected()

(c) FireDetectorDriver

Figure 8: New components used by the TurnstileController

11

:Smartcard
Driver

Ap_P_Sm

TurnstileController

:Application

Ap_R_DB

AP_P_TSX

Ap_R_TSEAp_P_TSE

SecurityAdapter SafetyAdapter

ExitAdapter

:Turnstile
Driver

TS_R TS_P

:Turnstile
Driver

TS_R TS_P

:Network
Database

Driver

ND_P

:Fire
Detector
Driver

:Secret

S_P

:Facility
Service
Driver

FS_R FS_P

Safety / Security / Service Application

FD_R

SSS_P_SeA SSS_P_SaA SSS_R_SaA

Service Fire DetectorSmartcard Reader Database Entry Turnstile Exit Turnstile

Figure 9: Software architecture for the dependable TurnstileController

Application before it denies access. The Application component remains unchanged.

:Application :SecurityAdapter :Network
DatabaseDriver

has_permission(uid,did)
getDBEntry(uid,did)

getDBEntry(_) : <perm,mac>

:SSSApplication :Secret

is_signature_ok(uid, did, perm, mac)

is_signature_ok(_) : checked

has_permission(_) : perm

{checked = ok}

{else}

alt

has_permission(_) : 'denied'

notify_violation

Figure 10: Sequence diagram for the SecurityAdapter

Here, we see that the new security requirement has a higher priority than the initial functional

requirement: if a manipulation of the database is detected, then the access is denied even to

persons that normally have permission to enter the building.

The B architecture of SecurityAdapter is given in Figure 11. Again, the required interface

Ap R DB has to be implemented, however this time not only using the provided interface ND P,

but also the provided interfaces S P of Secret, and SSS P SeA of Safety / Security / Service Application.

We give the B specification of the SecurityAdapter in Figure 12. The OPERATIONS section

contains the operation has permission to be implemented, which is defined in terms of the operations

12

REFINES INCLUDES

MODEL

 Ap_R_DB

OPERATIONS

 has_permission

END

REFINEMENT

 SecurityAdapter

END

MODEL

 ND_P

OPERATIONS

 getDBEntry

END

MODEL

 S_P

OPERATIONS

 is_signature_ok

END

MODEL

 SSS_P_SeA

OPERATIONS

 notify_violation

END

INCLUDES

INCLUDES

Figure 11: B architecture for the SecurityAdapter

REFINEMENT
SecurityAdapter

REFINES
Ap R DB

SEES
Type

INCLUDES
ND P,
S P,
SSS P SeA

OPERATIONS
permi ← has permission(uid, did) =
VAR mac, checked IN

permi, mac ← getDBEntry(uid, did) ;
checked ← is signature ok(uid, did, permi, mac) ;
IF ¬(checked = ok) THEN

notify violation ;
permi := denied

END
END

END

Figure 12: B model of the SecurityAdapter

provided by the included interfaces. Using the B models, we formally prove that the assembly

correctly implements the requirements.

4.2.2 The SafetyAdapter

The safety feature we add to the system concerns the reaction to fire. If a fire occurs, the entry

turnstile must remain blocked: nobody is allowed to enter the building until the fire is extinguished

(we assume the fire brigade uses another entry). Here, the adapter EntryAdapter has to be changed

to receive messages from the fire detector. It is renamed to SafetyAdapter. The SafetyAdapter blocks

the entry turnstile in case of a fire and informs the Safety / Security / Service Application.

Figure 13 shows two sequence diagrams concerning the SafetyAdapter, one for normal behavior,

the other explaining the safety reaction of the adapter when it receives a fire detected call: the

turnstile will be locked until the fire alert is canceled. Here, we see an example of how signals from

the application component are intercepted: the unblock signals of the Application are not passed on

to the entry turnstile; hence, it remains blocked.

Figures 14 and 15 show how the SafetyAdapter is specified in B. It implements the interfaces

SSS R SaA, Ap R TSE, FD R, and TS R, using the interfaces SSA P SaA, Ap P TSE, and TS P. The B

13

:Application :SafetyAdapter :TurnstileDriver

unblock()
unlock()

pushed()

blocked

unblocked

entered()
lock()

blocked

(a) normal behavior

:SSSApplication :SafetyAdapter :TurnstileDriver:Application :FireDetector
Driver

loop(0,*)

unblock()

reset_fire()

lock()

fireDetected

fire_detected()

blocked

unblocked

notify_fire()

(b) fire detection

Figure 13: Sequence diagrams for the SafetyAdapter

REFINES

INCLUDES

MODEL

 TS_P

OPERATIONS

 unlock

 lock

END

REFINEMENT

 SafetyAdapter

END

MODEL

 Ap_P_TSE

OPERATIONS

 entered

END

MODEL

 SafetyAdapter

_abs

END

MODEL

 Ap_R_TSE

OPERATIONS

 unblock

END

MODEL

 TS_R

OPERATIONS

 pushed

END

INCLUDESEXTENDS

EXTENDS

MODEL

 SSS_P_SaA

OPERATIONS

 notify_fire

END

INCLUDES

MODEL

 SSS_R_SaA

OPERATIONS

 reset_fire

END

EXTENDS

MODEL

 FD_R

OPERATIONS

 fire_detected

END

EXTENDS

Figure 14: B architecture for the SafetyAdapter

14

model called SafetyAdapter abs is needed for technical reasons: a B model can only refine a single

B model and not several ones.

REFINEMENT
SafetyAdapter

REFINES
SafetyAdapter abs

INCLUDES
TS P, Ap P TSE, SSS P SaA

SEES
Type

VARIABLES
entry

INVARIANT
entry ∈ ENTRY STATES
∧ (turnstile = locked ⇒

entry ∈ {blocked, fireDetected})
∧ (turnstile = unlocked ⇒

entry = unblocked)

INITIALISATION
entry := blocked

OPERATIONS
unblock =
IF entry = blocked
THEN

unlock ;
entry := unblocked

END;
pushed =
IF entry = unblocked
THEN

entered ;
lock ;
entry := blocked

END;

fire detected =
IF entry 6= fireDetected
THEN

IF turnstile = unlocked
THEN

lock
END;
notify fire ;
entry := fireDetected

END;
reset fire =
IF entry = fireDetected
THEN

entry := blocked
END

END

Figure 15: B model of the SafetyAdapter

We do not describe the new application component Safety / Security / Service Application in detail.

It serves to pass on a security or safety alarm to the facility service, and it receives a message from

the facility service when the alarm is canceled.

With this case study, we have shown how dependability features can be added to a component-

based system in a modular manner. Other dependability features could be added to the access

control system in the same way. Examples are an authentication mechanism for the smartcard

interface, a redundant arrangement of fire detectors, or checking for memory errors.

5 Related Work

A lot of studies have already been done on component-based approaches. Beugnard et al. [8]

propose to define contracts for components, distinguishing four levels of contracts: syntactic, be-

havioral, synchronization, and quality of service. They do not introduce data models for interfaces,

and it cannot easily be checked if two components can be combined. Roshandel and Medvidociv

[29] propose to specify four different views of software components, namely the interface, static

behavior, dynamic behavior, and interaction protocol views. To ensure dependability, the consis-

tency of the different views is checked. Cheesman and Daniels [12] propose a process to specify

component-based software, which starts with an informal requirements description and produces

an architecture showing the components to be developed or reused, their interfaces and their

dependencies. This approach follows the principle of design by contract [22].

Canal et al. [11] use a subset of the polyadic π-calculus to deal with component interoperability

only at the protocol level. The π-calculus is well suited for describing component interactions. The

15

limitation of this approach is the low-level description of the used language and its minimalistic

semantics. Bastide et al. [5] use Petri nets to specify the behavior of CORBA objects, including

operation semantics and protocols. The difference to our approach is that we take into account the

invariants of the interface specifications. Zaremski and Wing [34] propose an interesting approach

to compare two software components. It is determined whether one component can be substituted

for another. They use formal specifications to model the behavior of components and the Larch

prover to prove the specification matching of components. Others [18, 32] have also proposed

to enrich component interface specifications by providing information at signature, semantic and

protocol levels. Henzinger and Alfaro [3] propose an approach allowing the verification of interfaces

interoperability based on automata and game theories: this approach is well suited for checking

the interface compatibility at the protocol level.

The above approaches do not consider adapters. Concerning component adaptation, several

proposals have already been made. Some practice-oriented studies have been devoted to analyze

different issues when one is faced to the adaptation of a third-party component [17]. A formal

foundation of the notions of interoperability and component adaptation is set up in [33]. Compo-

nent behavior specifications are given by finite state machines, which are well known and support

simple and efficient verification techniques for the protocol compatibility.

Braccalia et al. [9, 10] specify an adapter as a set of correspondences between methods and

parameters of the required and provided components. The adapter is formalized as a set of

properties expressed in π-calculus. From this specification and from both interfaces, they generate

a concrete implementable adapter. Reussner and Schmidt present adapters in the context of

concurrent systems. They consider only a certain class of protocol interoperability problems and

generate adapters for bridging component protocol incompatibilities, using interface described by

finite parameterized state machines [30, 28].

In contrast to the above approaches, we prefer to use the B method, because it allows us to

not only consider component compatibility at the protocol level, but also at the signature and

semantic levels, and because of its tool support.

A general approach to wrappers for common security concerns is described in [16]. Popov et

al. [26] show that wrappers are components that monitor and ensure the non-functional proper-

ties at interfaces between components. They improve dependability by adding fault tolerance.

Prospective wrappers are a way of structuring the provision of standard fault-tolerance functions,

such as error detection, confinement and recovery, plus the less common function of preventing

16

failures, in a component-based design where dependability is a concern. In [15], the authors pro-

pose to structure fault-tolerant component-based systems that use off-the-shelf components, at

the architectural level, using constructs similar to the multi-versioning connector [27].

In contrast to the above approaches, our method stresses the methodological aspects of evolving

a given component-based system to make it more dependable. In an earlier paper [20], we have

addressed to problem of adding features to component-based systems. But there, we did not use

the B method, and the newly integrated features did not concern dependability, but the addition

of new functionality.

6 Conclusions

The success of the component-construction paradigm in mechanical and electrical engineering

has led to calls for its adoption in software development. We have described a method to add

dependability features to component-based software systems. We start from an initial software

architecture describing the system for the normal case. Dependability is then enhanced in an

incremental way, by modifying adapter components and possibly adding new adapter or new

application components.

Using the formal method B and its refinement and assembling mechanisms to model the com-

ponent interfaces and the adapters, we pay special attention to the question of guaranteeing the

interoperability between the different components. The B prover guarantees that the adapter

is a correct implementation of the required functionalities in terms of the existing components.

With this approach, the verification of the interoperability between the connected components is

achieved at the signature, the semantic and the protocol levels.

In summary, the advantages of our approach are the following:

• Dependability features can be added one by one, as needed.

• The necessary changes to the software architecture are local; the functionality for the normal

case is not changed.

• The core components and the dependability features can be further evolved independently

of each other.

• Our method gives guidance on how the addition of dependability features can be performed

in a systematic way.

17

• Using B, it can be checked that the components of the evolved software architecture indeed

interoperate as intended.

• The B specifications of the new or evolved software components can be used as the starting

point of an implementation. For this purpose, the B refinement mechanism can be used.

In this way, we have proposed a “dependable” process for making component-based systems

more dependable.

References

[1] J.-R. Abrial. The B Book. Cambridge University Press, 1996.

[2] Afadl2000. Etude de cas : système de contrôle d’accès. In Journées AFADL, Approches
formelles dans l’assistance au développement de logiciels, 2000. actes LSR/IMAG.

[3] L. Alfaro and T. A. Henzinger. Interface automata. In 9 th Annual Aymposium on Founda-
tions of Software Engineering, FSE, pages 109–120. ACM Press, 2001.

[4] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxonomy
of dependable and secure computing. IEEE Trans. on Dependable and Secure Computing,
1(1):11–33, Jan. 2004.

[5] R. Bastide, O. Sy, and P. A. Palanque. Formal specification and prototyping of CORBA
systems. In ECOOP ’99: Proceedings of the 13th European Conference on Object-Oriented
Programming, pages 474–494. Springer-Verlag, 1999.

[6] P. Behm, P. Benoit, and J.M. Meynadier. METEOR: A Successful Application of B in a
Large Project. In Integrated Formal Methods, IFM99, volume 1708 of LNCS, pages 369–387.
Springer Verlag, 1999.

[7] D. Bert, S. Boulmé, M-L. Potet, A. Requet, and L. Voisin. Adaptable Translator of B
Specifications to Embedded C Programs. In Integrated Formal Methods, IFM’03, volume
2805 of LNCS, pages 94–113. Springer Verlag, 2003.

[8] A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins. Making components contract
aware. IEEE Computer, pages 38–45, July 1999.

[9] A. Braccalia, A. Brogi, and F. Turini. Coordinating Interaction Patterns. In Symposium on
Applied Computing (SAC’2001). ACM Press, 2001.

[10] A. Bracciali, A. Brogi, and C. Canal. A formal approach to component adaptation. In Journal
of Systems and Software, 2005.

[11] C. Canal, L. Fuentes, E. Pimentel, J-M. Troya, and A. Vallecillo. Extending CORBA inter-
faces with protocols. Comput. J., 44(5):448–462, 2001.

[12] J. Cheesman and J. Daniels. UML Components – A Simple Process for Specifying Component-
Based Software. Addison-Wesley, 2001.

[13] S. Chouali, M. Heisel, and J. Souquières. Proving Component Interoperability with B Re-
finement. Electronic Notes in Theoretical Computer Science, 160:157–172, 2006.

[14] Clearsy. B4free. Available at http://www.b4free.com, 2004.

18

[15] P. A. de Guerra, C Mary, F. Rubira, A. Romanovsky, and de Lemos R. A fault-tolerant
software architecture for COTS-based software systems, 2003.

[16] C. Fetzer and Z. Xiao. HEALERS: A Toolkit for Enhancing the Robutness and Security of
Existing Wrappers. In Proc. International Conference on Dependable Systems and Networks,
2003.

[17] D. Garlan, R. Allen, and J. Ockerbloom. Architectural Mismatch: Why Reuse is so Hard.
IEEE Software, 12(6):17–26, 1999.

[18] J. Han. A comprehensive interface definition framework for software components. In The
1998 Asia Pacific software engineering conference, pages 110–117. IEEE Computer Society,
1998.

[19] D. Hatebur, M. Heisel, and J. Souquières. A method for component-based software and system
development. In Proceedings of the 32tnd Euromicro Conference on Software Engineering And
Advanced Applications, pages 72–80. IEEE Computer Society, 2006.

[20] M. Heisel and J. Souquières. Adding features to component-based systems. In M.D. Ryan,
J.-J. Ch. Meyer, and .-D. Ehrich, editors, Objects, Agents and Features, LNCS 2975, pages
137–153. Springer-Verlag, 2004.

[21] H. Ledang and J. Souquières. Modeling class operations in B: application to UML behav-
ioral diagrams. In ASE’2001 : 16th IEEE International Conference on Automated Software
Engineering. IEEE Computer Society, 2001.

[22] B. Meyer. Object-Oriented Software Construction. Prentice-Hall, second edition, 1997.

[23] E. Meyer and J. Souquières. A systematic approach to transform OMT diagrams to a B
specification. In Proceedings of the Formal Methods Conference, LNCS 1708, pages 875–895.
Springer-Verlag, 1999.

[24] I. Mouakher, A. Lanoix, and J. Souquières. Component adaptation: Specification and verifi-
cation. In R. Reussner W. Weck and C. Szyperski, editors, 11th International Workshop on
Component Oriented Programming (WCOP’06), pages 23–30, 2006.

[25] Object Management Group (OMG). UML Superstructure Specification, 2005. version 2.0.

[26] P. Popov, L. Strigini, S. Riddle, and A. Romanovsky. Protective Wrapping of OTS com-
ponents. In 4th ICSE WWorkshop on Component-Based Software Engineering: Component
Certification and System Prediction, 2001.

[27] M. Rakic and N. Medvidovic. Increasing the confidence in off-the-shelf components. In
Symposium on Software Reusability, pages 11–18, 2001.

[28] R. H. Reussner, He. W. Schmidt, and I. H. Poernomo. Reasoning on software architectures
with contractually specified components. In A. Cechich, M. Piattini, and A. Vallecillo, editors,
Component-Based Software Quality: Methods and Techniques. 2003.

[29] R. Roshandel and N. Medvidovic. Multi-view software component modeling for dependability.
In R. de Lemos, C. Gacek, and A. Romanovsky, editors, Architecting Dependable Systems II,
LNCS 3069, pages 286–306. Springer Verlag, 2004.

[30] H. W. Schmidt and R. H. Reussner. Generating adapters fo concurrent component protocol
synchronisation. In I. Crnkovic, S. Larsson, and J. Stafford, editors, Proceeding of the 5th
IFIP International conference on Formal Methods for Open Object-based Distributed Systems,
2002.

[31] Steria – Technologies de l’information. Obligations de preuve: Manuel de référence, version
3.0, 1998.

19

[32] A. Vallacillo, J. Hernandez, and M. Troya. Object interoperability. In Object Oriented Tech-
nology: ECOOP’99 Workshop Reader, pages 1–21, 1999.

[33] D. D. M. Yellin and R. E. Strom. Protocol specifications and component adaptors. ACM
Trans. Program. Lang. Syst., 19(2):292–333, 1997.

[34] A. M. Zaremski and J. M. Wing. Specification matching of software components. ACM
Transactions on Software Engineering and Methodology, 6(4):333–369, 1997.

20

	Introduction
	Using B for Component-Based Development
	The Formal Method B
	Specifying Component Architectures
	Proving Interoperability of Component Interfaces

	Adding Dependability Features to Component-Based Software
	Application Scenario
	General Procedure
	Adding Security Features
	Adding Safety Features
	Adding Fault-Tolerance Features

	Case Study
	Architecture of the System without Dependability Features
	The DBAdapter

	Adding Dependability Features to the Access Control System
	The SecurityAdapter
	The SafetyAdapter

	Related Work
	Conclusions

