
HAL Id: hal-00123997
https://hal.science/hal-00123997v1

Preprint submitted on 11 Jan 2007 (v1), last revised 16 Feb 2007 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Trustworthy Assembly of COTS Components
Arnaud Lanoix, Jeanine Souquières

To cite this version:
Arnaud Lanoix, Jeanine Souquières. A Trustworthy Assembly of COTS Components. 2006. �hal-
00123997v1�

https://hal.science/hal-00123997v1
https://hal.archives-ouvertes.fr

A Trustworthy Assembly of COTS Components 1

A Trustworthy Assembly of COTS
Components

Arnaud Lanoix∗, Jeanine Souquières∗

*LORIA – Nancy-Université, CNRS

Arnaud.Lanoix@loria.fr Jeanine.Souquieres@loria.fr

Abstract
In component-based software development approaches, components are consid-
ered as black boxes, communicating through required and provided interfaces
which describe their visible behaviors. In the best cases, the provided interfaces
are checked to be compatible with the corresponding required interfaces, but in
general, adapters have to be introduced to connect them. We propose to exploit
existing notations and languages with their associated tools to specify working
systems out of components : UML composite structure diagrams to express the
architecture in terms of components and their interfaces, class diagrams, sequence
diagrams and protocol state machines to describe the behavior of each compo-
nent. Component interfaces will then be expressed in B in order to verify the
interoperability. The use of B assembling and refinement mechanisms eases the
verification of the interoperability between interfaces and the correctness of the
component assembly.

Keywords: component-based development, provided interface, required
interface, interoperability, compatibility, adaptation, assembly

1 Introduction

Recent works have shown that assembling components independently produced and
taking into account the verification of their assembly with appropriate tools is a
promising approach [Szy99]. The underlying idea is to develop software systems
by assembling existing parts, as it is common in other engineering disciplines.
Among the advantages of such approaches, we can cite: (i) reusability of trust-
worthy software components, (ii) reduction of the development costs due to the
reusability, and (iii) flexibility of systems developed by this approach. But, as-
sembling components is not currently well supported by standard design methods
nor adapted to critical applications. On one hand, current technologies of compo-
nents [OMG06, Sun06, Mic, W3C] do not take into account safety requirements, on
the other hand, development and certification processes of critical software, based
on formal methods, is not well suited to component-based approaches.

The development of component-based systems introduces a fundamental evolu-

e-Informatica — Software Development Theory, Practice and Experimentation, c© Wroclaw University of Technology

2 A Trustworthy Assembly of COTS Components

tion in the way systems are acquired, integrated, deployed and modified. Systems
are designed by examining existing COTS (Commercial Off-The-Shelf) components
to see how they meet the expected requirements and decide how they can be inte-
grated to provide the expected functionalities. Next, the system is engineered by
assembling the selected components with some locally developed pieces of code.

As components are COTS, they are seen as black-boxes units which only spec-
ify interfaces and explicit dependencies. An interface describes services offered and
required by a component without disclosing the component implementation. Com-
ponent interfaces are the only access to component informations and functionalities.
The services offered by a component are described by provided interfaces and the
needed services are described by required interfaces.

For different COTS components to be deployed and to work together, they must
interoperate : their interfaces must be compatible through different levels of com-
patibility depending on the requirements of the developed system. The syntactic
level covers signature aspects of attributes and methods provided or required by the
interfaces whereas the semantic level concerns behavioral aspects of the considered
methods and the protocol level covers the allowed sequence of method calls.

The availability of formal languages and tool support for specifying interfaces
and checking their compatibility is necessary in order to verify the interoperability
of components. The idea to define component interfaces using B has been introduced
in an earlier paper [CS05] : semantics and protocols of the component services can
be easily modeled using the B formal method. The use of the B refinement [Abr96]
to prove that two components are compatible at the signature and semantics levels
has been explored in [CHS06]. To guarantee a trustworthy assembly of components,
each connection of a required interface with another provided interface has to be
considered. In the best cases, the provided interface constitutes an implementation
of the required interface. In general cases, to construct a working system out of
components, adapters have to be defined [MLS06]. An adapter is seen as a new
component that realizes a required interface using a provided interface. At the
signature level, it expresses the mapping between required and provided variables
and at the behavioral and protocol levels, it expresses how the required methods are
implemented in terms of the provided ones.

In this paper, we generalize the previous results, taking into account a more
general assembly of components with the use of both cases of interfaces for different
components to be connected. We use the following notations:

• UML 2.0 [OMG05] composite structure diagrams serve to express the overall
architecture of the system in terms of components and interfaces.

• UML 2.0 class diagrams serve to express interface data model with its different
attributes and operations.

A Trustworthy Assembly of COTS Components 3

• The usage protocol of each interface can be modeled by a Protocol State
Machine (PSM).

• UML 2.0 sequence diagrams serve to express the interactions between the
components to be connected.

• The use of the formal method B [Abr96] and its associated tools serve to specify
interfaces, giving a special attention to correctness, increasing confidence in
the developed systems: correctness of specifications, as well as correctness of
the followed process with verification aspects.

In the following, we present the case study of a simple access control system de-
fined in terms of components with a special focus on the identification component,
itself defined in terms of components. Section 3 exposes the trustworthy assembly
problem in a general manner. Section 4 presents a simple case of trustworthy com-
ponent assembly. Section 5 presents a more general case of component assembly.
Some related works are discussed in Section 6 and Section 7 concludes the paper.

2 Case Study: a Simple Access Control System

We illustrate our purpose with the case study of a simple access control system which
manages the access of authorized persons to existing buildings [Afa00]. Persons who
are authorized to enter the building have to be identified. The needed authentication
informations may be stored on an electronic access card or a sophisticated key or
a bar code pass, etc. Turnstiles block the entrance and the exit of each building
until an authorization is given whereas identification systems are installed at each
entrance and exit of the concerned buildings. The means of identification can be
read to kept out the authentication informations. It can be inserted and ejected and
must be taken by the user before a fixed time of 30 seconds, else it is retracted and
kept by the system.

A partial view of the architecture of the access control system is given Figure 1 as
a UML 2.0 composite structure diagram. Such diagrams contain named rectangles
corresponding to the components of the system; here, we have depicted four com-
ponents : the AccessControl component corresponding to the system requirements,
an Identification component corresponding to the control of the identification, a
Database component which is a passive component knowing informations about the
authorization of each concerned user and a Turnstile component. They are connected
by means of interfaces which may be required or provided. Required interfaces ex-
plicit the context dependencies of a component and are denoted using the “socket”
notation whereas provided interfaces explain which functionalities the considered
component provides and are denoted using the “lollipop” notation.

4 A Trustworthy Assembly of COTS Components

AccessControlIdentification

DB_Re DB_Pr

Turn_ReTurn_Pr

ID_Pr

ID_Re

Database

Turnstile

Figure 1: Partial view of the architecture of the access control system

We will focus on the interactions between the AccessControl and the Identification
components. Requirements concerning the Identification component are expressed
by the two interfaces of the AccessControl component. They have been outlined in
Figure 2; they are modeled by class diagrams with their different attributes and
methods :

<< interface >>

ID_Pr
ip_status :

ID_PR_STATUS

idInserted()

idRead(id : ID)

idEjected()

idTaken()

idRetracted()

<< enum >>

ID_PR_STATUS

IWait

IInserted

IRead

IEjected

ID_Pr_PSM

IWait IInserted

IReadIEjected

idInserted()

idRead(id0)

idEjected()
idTaken()

idRetracted()

(a) Provided interface ID Pr

<< interface >>

ID_Re

ir_status :

ID_RE_STATUS

readId()

acceptId()

refuseId()

<< enum >>

ID_RE_STATUS

WaitId

ReadId

ID_Re_PSM

WaitId ReadId

refuseId()

readId()

acceptId()

(b) Required interface ID Re

Figure 2: Interfaces of AccessControl related to Identification

• ID Pr corresponds to its provided interface related to the Identification compo-
nent with five operations: idInserted, idRead parameterized by some authenti-
cation informations represented by id, id Ejected, idTaken and idRetracted.

• ID Re corresponds to its required interface which must be provided by an Iden-
tification component with three operations, readId, acceptedId and refusedId.

A Trustworthy Assembly of COTS Components 5

Enumerated data types are defined using the stereotype “enum”. The usage pro-
tocol of each interface is modeled by a Protocol State Machine (PSM) as presented
Figure 2. A PSM specifies the external behavior of the component, with the order
of the allowed method calls starting from its initial state.

The B method. It is a formal software development method based on set theory
which supports an incremental development process, using refinement [Abr96]. A
development begins with the definition of an abstract model, which can be refined
step by step until an implementation is reached. The refinement of models is a key
feature for incrementally developing models from textual descriptions, preserving
correctness in each step.

The method has been successfully applied in the development of several complex
real-life applications, such as the METEOR project [BBM99]. It is one of the few
formal methods which has robust and commercially available support tools for the
entire development life-cycle from specification down to code generation [BBP+03].
The B method provides structuring primitives that allow one to compose machines
in various ways. Large systems can be specified in a modular way and in an object-
based manner [MS99, LS01]. Proofs of invariance and refinement are part of each
development. The proof obligations are generated automatically by support tools
such as AtelierB [ste98] or B4free [Cle04], an academic version of AtelierB. Check-
ing proof obligations with B support tools is an efficient and practical way to detect
errors introduced during development.

For each interface of Figure 2, we give a B model as presented Figure 3: each
model consists of a set of variables, invariant properties of those variables and op-
erations. The state of the model, i.e. the set of variables values, is modifiable by
operations, which must preserve its invariant:

• in the ID Pr model, the variable id status has four possible states and its initial
state is IWait. After an idInserted() call, its state is changed to IInserted,

• the ID Re model expresses the required behaviors of the card reader. A vari-
able, namely ip status, gives its state, which is initialized with WaitId.

In an integrated development process, the B models can be obtained by applying
systematic derivation rules from UML to B [MS99, LS02].

Our purpose is to define the AccessControl component using COTS, i.e. existing
components available on the market.

6 A Trustworthy Assembly of COTS Components

MODEL
ID Pr

SEES
Type

VARIABLES
ip status

INVARIANT
ip status ∈ ID PR STATUS

INITIALISATION
ip status := IWait

OPERATIONS
idInserted =

PRE ip status = IWait
THEN ip status := IInserted
END ;

idRead(id) =
PRE id ∈ ID ∧

ip status = IInserted
THEN ip status := IRead
END ;

idEjected =
PRE ip status = IRead
THEN ip status := IEjected
END ;

idTaken =
PRE ip status = IEjected
THEN ip status := IWait
END ;

idRetracted =
PRE ip status = IEjected
THEN ip status := IWait
END

END

(a) Provided interface ID Pr

MODEL
ID Re

SEES
Type

VARIABLES
ir status

INVARIANT
ir status ∈ ID RE STATUS

INITIALISATION
ir status := WaitId

OPERATIONS
readId =

PRE ir status = WaitId
THEN ir status := ReadId
END ;

acceptId =
PRE ir status = ReadId
THEN ir status := WaitId
END ;

refuseId =
PRE ir status = ReadId
THEN ir status := WaitId
END

END

(b) Required interface ID Re

Figure 3: B Models for the interfaces of AccessControl

3 Component Trustworthy Assembly

Components must be assembled in an appropriate way. Interoperability means
the ability of components to communicate and to cooperate despite differences in
their implementation language, their execution environment, or their model abstrac-
tion [YS97]. Two components are interoperable if all their interfaces are compati-
ble [CHS06]. More precisely, it means that, for each required interface of a considered
component, there exists a compatible interface which is provided by another exist-
ing component. Three main levels of interfaces compatibility are considered and
checked:

• the syntactic level covers static aspects and concerns the interface signature.
Each attribute of the required interface must have a counterpart in the pro-
vided one; for each method of the required interface, there exists an operation
of the provided interface with the same signature,

• the semantic level covers behavioral aspects,

• the protocol level deals with the expression of functional properties (like the
order in which a component expects its methods to be called).

A provided interface can propose more functionalities (attributes, methods, be-
haviors, protocols, etc.) than the required one needs, but all the functionalities used

A Trustworthy Assembly of COTS Components 7

by the required interface must be proposed by the provided one. The process of
proving interoperability between components is described in [CHS06].

Often, to construct a working assembly out of components, adapters have to be
defined, connecting the required interfaces to the provided ones. An adapter is a new
component that realizes the required interface using the provided interface. At the
signature level, it expresses the mapping between required and provided variables.
At the behavioral and protocol levels, it expresses how the required operations are
implemented in terms of the provided ones. In [MLS06], we have studied the adapter
specification and its verification using B. We have given a B model of the adapta-
tion that must refine the B model of the required interface including the provided
incompatible interface.

More generally, the component assembly concerns the use of both type of in-
terfaces for different components to be connected. We show that the component
assembly is a generalization of the adaptation problem : a new specific compo-
nent is introduced to manages the needed components. It realizes all the required
interfaces of the considered components using their provided interfaces.

4 A Simple Case of Component Trustworthy As-

sembly

Let us use a COTS component Identification1 whose description is given Figure 4 to
answer the requirements of AccessControl presented Section 2. It is a card reader
equipped with two lights, a green one and a red one. These lights indicate if the
authorization has been accepted (the green light turns on) or denied (the red light
turns on). The two lights cannot be turned on at the same time.

Identification1

<< interface >>

Ident_Re
ip_status :

ID_PR_STATUS

idInserted()

idRead(id : ID)

idEjected()

idTaken()

idRetracted()

Ident_Re_PSM

IWait IInserted

IReadIEjected

idInserted()

idRead(id0)

idEjected()
idTaken()

idRetracted()

<< interface >>

Ident_Pr
green : SWITCH

red : SWITCH

readIdent()

acceptIdent()

refuseIdent()

<< uses >>

<< realizes >>
<< enum >>
SWITCH

On

Off

Ident_Pr_PSM

Init
Lights

Off

refuseIndent()

readIdent()

acceptIdent()

Green

On

Red

On

readIdent()

readIdent()

Figure 4: An existing component Identification1

The component Identification1 is equipped with two interfaces:

8 A Trustworthy Assembly of COTS Components

• Its provided interface, namely Ident Pr, related to a system controller. Its two
variables green and red give the state of two lights: the green light must be
turned on if the authorization has been accepted (acceptIdent), otherwise the
red light must be turned on (refuseIdent). An invariance property expresses
that the two lights cannot be turned on at the same time, as expressed in the
B model given Figure 5.

• Its required interface Ident Re, related to a system controller which is similar
to the ID Pr provided interface of the AccessControl component previously
defined.

MODEL
Ident Pr

SEES
Type

VARIABLES
green, red

INVARIANT
green ∈ SWITCH ∧
red ∈ SWITCH ∧
¬(green = On ∧ red = On)

INITIALISATION
green := On,
red := Off

OPERATIONS
readIdent =

PRE green 6= red
THEN

green := Off ‖
red := Off

END ;

acceptIdent =
PRE green = Off ∧ red = Off
THEN green := On
END ;

refuseIdent =
PRE green = Off ∧ red = Off
THEN red := On
END

END

Figure 5: B Model of the interface Ident Pr of Identification1

To ensure that the assembly of components Identification1 and AccessControl is
trustworthy [MLS06], we must prove that the corresponding interfaces are compat-
ible, see Figure 6. We decompose this proof into two steps.

Access
Control

<< interface >>

Ident_Pr

...

<< interface >>

ID_Re

...

<< uses >><< realizes >>

<< realizes >>

Adapter1

<< uses >>

<< interface >>

Ident_Re

...

<< interface >>

ID_Pr

...

<< uses >>
<< realizes >>

<< realizes >>

Identification1

Figure 6: Identification1 and AccessControl assembly

4.1 Compatibility between Ident Re and ID Pr

We have to prove that ID Pr realizes Ident Re. This property can be expressed by
the B refinement concept as presented Figure 7. When using B4free, we prove that

A Trustworthy Assembly of COTS Components 9

the B model of ID Pr is a correct refinement of the B model of Ident Re. That means
that the methods of the provided interface implement directly the methods of the
required interface. In this example, the proof of this refinement is obvious.

MODEL

 Ident_Re

OPERATIONS

 idInserted

 idRead(id)

 idEjected

 idTaken

 idRetracted

END

REFINES

MODEL

 ID_Pr

OPERATIONS

 idInserted

 idRead(id)

 idEjected

 idTaken

 idRetracted

END

Figure 7: B compatibility between Ident Re and ID Pr

We conclude that the required interface Ident Re of the component Identification1
is compatible with the provided interface ID Pr of the AccessControl component. The
interoperability is verified at the signature, semantic and protocol levels.

4.2 Adaptation between ID Re and Ident Pr

When looking at the required interface ID Re of the component AccessControl, as
expressed Figure 2, it is obvious that it is not directly compatible with the interface
Ident Pr of the component Identification1, see Figure 4. We propose to introduce a
new component, called Adapter1, to map correctly these two incompatible interfaces.
In terms of UML, this new component realizes ID Re, using Ident Pr.

The correction of this adaptation can be proved using the B method. It is
expressed by the schema presented Figure 8, in which Adapter1 is modeled by a
refinement which:

• refines the B model of the required interface ID Re and

• includes the B model of the provided interface Ident Pr.

REFINESINCLUDES

MODEL

 Ident_Pr

OPERATIONS

 readIdent

 acceptIdent

 refuseIdent

END

REFINEMENT

 Adapter1

END

MODEL

 ID_Re

OPERATIONS

 readId

 acceptId

 refuseId

END

Figure 8: B adaptation between ID Re and Ident Pr

The B model of the component Adapter1 proposed Figure 9 expresses the map-
ping between the two interfaces. The invariant clause, or gluing invariant, makes
the correspondence between the required and the provided attributes. The variable

10 A Trustworthy Assembly of COTS Components

REFINEMENT
Adapter1

REFINES
ID Re

SEES
Type

INCLUDES
Ident Pr

INVARIANT
((green 6= red)

⇒ ir status = WaitId)
∧ ((green = red = Off)

⇒ ir status = ReadId)

OPERATIONS
readId =

BEGIN
readIdent

END ;
acceptId =

BEGIN
acceptIdent

END ;
refuseId =

BEGIN
refuseIdent

END
END

Figure 9: B Model for the component Adapter1

ir status required by the access control is defined in terms of the two variables green
and red provided by the identification. The operation clause defines how the required
methods, i.e. readId, acceptedId and refusedId are implemented by the provided ones,
readIdent, acceptedIdent and refusedIdent.

The proof of this refinement is obvious. As a consequence, Adapter1 implements
ID Re in terms of Ident Pr. We are able to assemble Identification1 to AccessControl
through Adapter1.

5 A General Case of Component Trustworthy As-

sembly

Let us define an identification component corresponding to the previous require-
ments given section 4 in terms of three existing COTS components, namely CardReader,
Timer and MultiLights. The component CardReader is used to read the authentica-
tion informations on an access card and the component Timer to indicate the time
limit. Green and red lights are provided by the component MultiLights.

The general case of component assembly concerns the use of both type of inter-
faces for different components to be connected. A new specific component is defined
to manages these components. It realizes all the required interfaces of the considered
components using their provided interfaces.

5.1 Existing COTS components

The functionality of each component is known by its interface descriptions presented
below as UML 2.0 diagrams associated to B models for behavioral and protocol spec-
ifications.

A Trustworthy Assembly of COTS Components 11

The component CardReader. This component reads identification informations
from an access card. It is equipped with two interfaces, as presented Figure 10,
a provided one named Card Pr with three methods (readCard(), ejectCard() and re-
tractCard()) and a required one named Card Re which receives messages from its
controller by the way of five methods.

CardReader

<< interface >>

Card_Pr

readCard()

ejectCard()

retractCard()

<< interface >>

Card_Re

cardInserted()

cardRead(id : ID)

cardTaken()

Card_Pr_PSM

Read Eject

Retract

readCard()

ejectCard()retractCard()

ejectCard()

Card_Re_PSM

Inserted Read

Taken

cardInserted()

card

Read(id)
cardTaken()

cardRead(id)

Figure 10: Component CardReader and its interfaces Card Pr and Card Re

The component Timer. As presented Figure 11, this component has two inter-
faces. The provided one, Timer Pr, offers two functionalities: it can be started with
a fixed time and interrupted before the timeout is reached. When the timeout is
reached, the timer sends this information through its required interface Timer Re.

Timer
<< interface >>

Timer_Pr

status : SWITCH

start(time : Integer)

interrupt()

<< interface >>

Timer_Re

timeReached()
Timer_Pr_PSM

Off

On

start(time)

interrupt()

Figure 11: Component Timer and its interfaces Timer Pr and Timer Re

The component MultiLights. This component presented Figure 12 is a light box
that proposes several color lights. It offers, by the way of its provided interface
MLight Pr, the next functionalities: the chosen light can be turned on and turned
off. When the light is turned off, one can choose a light color from predefined ones.

5.2 The component Identification2

A component Identification2 can be defined by assembling these three existing com-
ponents, as depicted Figure 13 in order to fulfill the requirements. The required

12 A Trustworthy Assembly of COTS Components

MultiLights

<< interface >>

MLight_Pr

color : COLOR

switch : SWITCH

choose(new : COLOR)

on()

off()

<< enum >>

COLOR

Blue

Green

Red

Yellow

Purple

MLight_Pr_PSM

Off

On

on()
Off()

choose(color)

Figure 12: Component MultiLights and its provided interface MLight Pr

and provided interfaces Ident Re and Ident Pr of Identification2 have to be defined in
terms of the components CardReader, Timer and MultiLights through their interfaces
Card Re, Card Pr, Timer Re, Timer Pr and MLight Pr.

Identification2

CardReader

Timer

MultiLights

Card_Pr

Card_Re

MLight_Pr

Timer_Pr

Timer_Re

Controller

Ident_Re

Ident_Pr

Figure 13: Architecture of the component Identification2

A “new” component Controller is introduced to manage the interactions between
all these interfaces. Identification2 delegates to Controller its interfaces Ident Re and
Ident Pr:

• Controller realizes for Identification2 the interface Ident Pr, and

• Controller uses through Identification2 the interface Ident Re.

Figure 14 shows the sequence of operation calls between all the components to be
assembled to produce Identification2.

To prove that the assembly of CardReader, Timer and MultiLights through Con-
troller is correct, we must prove that Controller:

• realizes the provided interface Ident Pr delegated by Identification2,

• realizes the required interface Card Re of CardReader,

A Trustworthy Assembly of COTS Components 13

AccessControl

Controller CardReader Timer MultiLights

Identification2

readIdent()
readCard()

cardRead(id)
idRead(id)

acceptIdent()
start(30)

choose (Green)

on()

ejectCard()
idEjected()

refuseIdent()
start(30)

choose (Red)

on()

ejectCard()idEjected()

cardInserted()
idInserted()

cardTaken()

idTaken()
interrupt()

off()

off()
retractCard()

timeReached()

idRetracted()

alt

alt

Figure 14: Sequence diagram for the Identification2 component

14 A Trustworthy Assembly of COTS Components

• realizes the required interface Timer Re of Timer,

• using the provided interfaces Card Pr, Timer Pr and MLight Pr of the three
existing components, and the required interface Ident Re delegated by Identifi-
cation2.

This UML2.0 architecture can be expressed by the B architecture given Figure 15
with two levels of refinement:

• the B abstract model, Controller abs, which extends all the interfaces to be
realized,

• the B refinement model, Controller, which

– includes all the interfaces to be used, and

– refines the abstract model Controller abs.

EXTENDS

REFINES
EXTENDS

INCLUDES

INCLUDES

INCLUDES

INCLUDES

EXTENDS

MODEL

 Ident_Pr

OPERATIONS

 readIdent

 acceptIdent

 refuseIdent

END

MODEL

 Controller_abs

END

REFINEMENT

 Controller

END

MODEL

 Timer_Re

OPERATIONS

 timeReached

END

MODEL

 Card_Re

OPERATIONS

 cardInserted

 cardRead(id)

 cardTaken

END

MODEL

 Card_Pr

OPERATIONS

 readCard

 ejectCard

 retractCard

END

MODEL

 MLight_Pr

OPERATIONS

 choose(new)

 on

 off

END

MODEL

 Ident_Re

OPERATIONS

 idInserted

 idRead(id)

 idEjected

 idTaken

 idRetracted

END

MODEL

 Timer_Pr

OPERATIONS

 start(time)

 interrupt

END

Figure 15: B architecture of the component Controller

The B refinement model Controller of the example is given Figure 16:

• the available components are included, i.e. Ident Re, Card Pr, Timer Re and
MLight Pr

• its gluing invariant expresses how to obtain the required attributes green and
red from the attributes color and switch of the provided interfaces,

• the operations clause describes all the needed methods in terms of the used
ones.

A Trustworthy Assembly of COTS Components 15

Let us consider the needed method acceptIdent() of the Ident Pr interface of
Identification2. This method is called when an inserted card has been autho-
rized to enter the building. The required result, as expressed in the sequence
diagram of Figure 14 must be that a green light is turned on during a fixed
time and the card is ejected. This requirement is expressed in the B operation
by:

– a timer is started: start(30),

– the light’s color is fixed to green, choose(green) before the light is turned
on, on,

– the card is ejected, ejectCard, and

– the environment is informed, isEjected.

REFINEMENT
Controller

REFINES
Controller abs

SEES
Type

INCLUDES
Ident Re, Card Pr,
Timer Pr, MLight Pr

INVARIANT
((color = Green ∧ switch = On)

⇒ green = On)
∧ (¬(color = Green ∧ switch = On)

⇒ green = Off)
∧ ((color = Red ∧ switch = On)

⇒ red = On)
∧ (¬(color = Red ∧ switch = On)

⇒ red = Off)

OPERATIONS

/* Ident Pr */
readIdent =

BEGIN
readCard

END ;
acceptIdent =

BEGIN
start(30) ‖
BEGIN

choose(Green) ; on
END ‖
ejectCard ‖
idEjected

END ;

refuseIdent =
BEGIN

start(30) ‖
BEGIN

choose(Red) ; on
END ‖
ejectCard ‖
idEjected

END ;

/* Timer Re */
timeReached =

BEGIN
retractCard ‖
off ‖
idRetracted

END ;

/* Card Re */
cardInserted =

BEGIN
idInserted

END ;
cardRead(id) =

BEGIN
idRead(id)

END ;
cardTaken =

BEGIN
off ‖
interrupt ‖
idTaken

END ;

END

Figure 16: B Model of the component Controller

The B prover generates 168 trivial proof obligations and 30 non-trivial ones which
are automatically proved. We conclude that the proposed component Controller is a
correct implementation of the required functionalities in terms of the three existing
components. With the B prover, we check

• that Controller refines all the required interfaces. This guarantees that the
required behavioral and protocol aspects are preserved by the assembling. Of
course, the signature level is also considered,

• the correctness of the use of the provided interfaces by the inclusion of their
B interface models.

16 A Trustworthy Assembly of COTS Components

6 Related Works

In an earlier paper [HHS06], we have investigated the necessary ingredients a compo-
nent specification must have in order to be useful for assembly of a software system
out of components. These ingredients are independent of concrete component mod-
els. We have proposed a method consisting of four steps to guide this process.

Several proposals for verifying the interoperability between components have
been made. In [EF02], Estevez and Fillottrani analyze how to apply algebraic spec-
ifications with refinement to component development, with a restriction to the use
of modules that are described as class expressions in a formal specification language.
They present several refinement steps for component development, introducing in
each one design decisions and implementation details.

Our work focuses on the verification of interoperability of components through
their interfaces using B assembling and refinement mechanisms.

Zaremski and Wing [ZW97] propose an approach to compare two software com-
ponents. They determine whether one required component can be substituted by
another one. They use formal specifications to model the behavior of components
and exploit the Larch prover to verify the specification matching of components.

In [CFP+01], a subset of the polyadic π-calculus is used to deal with the compo-
nent interoperability at the protocol level. π-calculus is a well suited language for
describing component interactions. Its main limitation is the low-level description
of the used language and its minimalistic semantic. In [Han98, Han00], protocols
are specified using a temporal logic based approach, which leads to a rich specifica-
tion for component interfaces. Henzinger and Alfaro [AH01] propose an approach
allowing the verification of interfaces interoperability based on automata and game
theories: this approach is well suited for checking the interface compatibility at the
protocol level. In [BCH05], the three levels of interface compatibilities are considered
on web service interfaces described by transition systems.

Several proposals for component adaptation have already been made. The need
of adaptation and assembly mechanisms was recognized in the late nineties [BW96,
HO99, CLC05]).

Some practice-oriented studies have been devoted to analyze different issues when
one is faced with the adaptation of a third-party component [GAO99]. A formal
foundation to the notion of interoperability and component adaptation was set up
in [YS97]. Component behavior specifications are given by finite state machines
which are well known and support simple and efficient verification techniques for
the protocol compatibility. Braccalia & al [BBC05] specify an adapter as a set
of correspondences between methods and parameters of the required and provided
components. An adapter is formalized as a set of properties expressed in π-calculus.
From this specification and from both interfaces, they generate a concrete imple-
mentable adapter.

A Trustworthy Assembly of COTS Components 17

Reussner and Schmit consider a certain class of protocol interoperability prob-
lems in the context of concurrent systems. For bridging component protocol in-
compatibilities, they generate adapters using interfaces described by finite state
machines [SR02, RSP03].

Automatic generation of adapters are limited as one has to ensure the decid-
ability of the interfaces inclusion problem, which is necessary to perform automated
interoperability checks; one could only generate adapters for specific classes of as-
sembly.

In our approach, we are not only concerned with specific classes of interoperabil-
ity but with adapters in general. We propose to give general schemes to specify and
verify adapters, not to generate them automatically.

7 Conclusion and Perspectives

We have presented a component-based approach to specify systems with high safety
requirements. This approach concerns the first steps of the system development
life-cycle, from the requirements phase to the specification one, and aims at using
existing languages and tools. Components are considered as black-boxes described
by their visible behavior and their required and provided interfaces. To construct
a working system out of existing components, adapters are introduced. An adapter
is a new component that expresses the mapping between required and provided
variables and how required methods are implemented in terms of the provided ones.
We have presented a general schema of assembly with both cases of interfaces.

The use of the B formal method and its refinement mechanisms to model the
component interfaces and the adapters allows us to define rigorously the interop-
erability between components and to check it with support tools. The B prover
guarantees that the adapter is a correct implementation of the required functional-
ities in terms of the existing components. Within this approach, the verification of
the interoperability between the connected components is done at three levels, the
signature, the semantic and the protocol levels.

We are currently working on extending this approach when additional abnormal
behaviors are introduced to increase dependability of our component architecture
and to preserve the normal cases. We have introduced two kinds of dependability
mechanisms, one for security and one for safety.

References

[Abr96] J.-R. Abrial. The B Book. Cambridge University Press, 1996.

18 A Trustworthy Assembly of COTS Components

[Afa00] Afadl2000. Etude de cas : système de contrôle d’accès. In Journées
AFADL, Approches formelles dans l’assistance au développement de logi-
ciels, 2000. actes LSR/IMAG.

[AH01] L. Alfaro and T. A. Henzinger. Interface automata. In 9 th Annual
Aymposium on Foundations of Software Engineering, FSE, pages 109–
120. ACM Press, 2001.

[BBC05] A. Bracciali, A. Brogi, and C. Canal. A formal approach to component
adaptation. In Journal of Systems and Software, 2005.

[BBM99] P. Behm, P. Benoit, and J.M. Meynadier. METEOR: A Successful Ap-
plication of B in a Large Project. In Integrated Formal Methods, IFM99,
volume 1708 of LNCS, pages 369–387. Springer Verlag, 1999.

[BBP+03] D. Bert, S. Boulmé, M-L. Potet, A. Requet, and L. Voisin. Adaptable
Translator of B Specifications to Embedded C Programs. In Integrated
Formal Method, IFM’03, volume 2805 of LNCS, pages 94–113. Springer
Verlag, 2003.

[BCH05] D. Beyer, A. Chakrabarti, and T. A. Henzinger. Web service interfaces.
In Proceedings of the 14th International World Wide Web Conference
(WWW 2005), pages 148–159. ACM Press, 2005.

[BW96] A. W. Brown and K. C. Wallnan. Engineering of component-based sys-
tems. In ICECCS ’96: Proceedings of the 2nd IEEE International Con-
ference on Engineering of Complex Computer Systems (ICECCS ’96),
page 414. IEEE Computer Society, 1996.

[CFP+01] C. Canal, L. Fuentes, E. Pimentel, J-M. Troya, and A. Vallecillo. Extend-
ing CORBA interfaces with protocols. Computer Journal, 44(5):448–462,
2001.

[CHS06] S. Chouali, M. Heisel, and J. Souquières. Proving Component Interop-
erability with B Refinement. Electronic Notes in Theoretical Computer
Science, 160:157–172, 2006.

[CLC05] I. Crnkovic, S. Larsson, and M. Chaudron. Component-based develop-
ment process and component lifecycle. In 27th International Conference
Information Technology Interfaces (ITI). IEEE, 2005.

[Cle04] Clearsy. B4free. Available at http://www.b4free.com, 2004.

A Trustworthy Assembly of COTS Components 19

[CS05] S. Chouali and J. Souquières. Verifying the compatibility of component
interfaces using the B formal method. In International Conference on
Software Engineering Research and Practice, 2005.

[EF02] E. Estevez and P. Fillottrani. Algebraic Specifications and Refinement
for Component-Based Development using RAISE. Journal of Computer
Science and Technologie, 2(7), 2002.

[GAO99] D. Garlan, R. Allen, and J. Ockerbloom. Architectural Mismatch: Why
Reuse is so Hard. IEEE Software, 12(6):17–26, 1999.

[Han98] J. Han. A comprehensive interface definition framework for software
components. In The 1998 Asia Pacific software engineering conference,
pages 110–117. IEEE Computer Society, 1998.

[Han00] J. Han. Temporal logic based specification of component interaction pro-
tocols. In Proceedings of the Second Workshop on Object Interoperability
ECOOP’2000, pages 12–16. Springer-Verlag, 2000.

[HHS06] D. Hatebur, M. Heisel, and J. Souquières. A Method for Component-
Based Software and System Development. In IEEE Computer Society,
editor, Proceedings of the 32tnd Euromicro Conference on Software En-
gineering And Advanced Applications, 2006.

[HO99] G. Heineman and H. Ohlenbusch. An evaluation of component adap-
tation techniques. Technical Report WPI-CS-TR-98-20, Department of
Computer Science, Worcester Polytechnic Institute, February 1999.

[LS01] H. Ledang and J. Souquières. Modeling class operations in B: application
to UML behavioral diagrams. In ASE’2001 : 16th IEEE International
Conference on Automated Software Engineering. IEEE Computer Society,
2001.

[LS02] H. Ledang and J. Souquières. Contributions for modelling UML state-
charts in B. In Third International Conference on Integrated Formal
Methods - IFM’2002, Turku, Finland, 2002.

[Mic] Microsoft. .Net. http://www.microsoft.com/net.

[MLS06] I. Mouakher, A. Lanoix, and J. Souquières. Component Adaptation:
Specification and Verification. In Proc. of the 11th Int. Workshop on
Component Oriented Programming (WCOP 2006), pages 23–30, July
2006.

20 A Trustworthy Assembly of COTS Components

[MS99] E. Meyer and J. Souquières. A systematic approach to transform OMT
diagrams to a B specification. In Proceedings of the Formal Method Con-
ference, LNCS 1708, pages 875–895. Springer-Verlag, 1999.

[OMG05] Object Management Group (OMG). UML Superstructure Specification,
2005. version 2.0.

[OMG06] Object Mangagement Group (OMG). Corba Component Model Specifi-
cation, 2006. version 4.0.

[RSP03] R. H. Reussner, H. W. Schmidt, and I. H. Poernomo. Reasoning
on software architectures with contractually specified components. In
A. Cechich, M. Piattini, and A. Vallecillo, editors, Component-Based
Software Quality: Methods and Techniques. 2003.

[SR02] H. W. Schmidt and R. H. Reussner. Generating adapters fo concurrent
component protocol synchronisation. In I. Crnkovic, S. Larsson, and
J. Stafford, editors, Proceeding of the 5th IFIP International conference
on Formal Methods for Open Object-based Distributed Systems, 2002.

[ste98] Steria – Technologies de l’information. Obligations de preuve: Manuel de
référence, version 3.0, 1998.

[Sun06] Sun Microsystems. JSR 220: Enterprise JavaBeans, 2006. Version 3.0,
Final Realase.

[Szy99] C. Szyperski. Component Software. ACM Press, Addison-Wesley, 1999.

[W3C] W3C. Web Services. http://www.w3.org/2002/ws.

[YS97] D. D M. Yellin and R. E. Strom. Protocol specifications and component
adaptors. ACM Transactions on Programming Languages and Systems,
19(2):292–333, 1997.

[ZW97] A. M. Zaremski and J. M. Wing. Specification matching of software
components. ACM Transaction on Software Engeniering Methodolology,
6(4):333–369, 1997.

	Introduction
	Case Study: a Simple Access Control System
	Component Trustworthy Assembly
	A Simple Case of Component Trustworthy Assembly
	Compatibility between Ident_Re and ID_Pr
	Adaptation between ID_Re and Ident_Pr

	A General Case of Component Trustworthy Assembly
	Existing COTS components
	The component Identification2

	Related Works
	Conclusion and Perspectives

