
HAL Id: hal-00123884
https://hal.science/hal-00123884v1

Preprint submitted on 11 Jan 2007 (v1), last revised 15 Jan 2007 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Trustworthy interface compliancy: data model
adaptation

Samuel Colin, Arnaud Lanoix, Jeanine Souquières

To cite this version:
Samuel Colin, Arnaud Lanoix, Jeanine Souquières. Trustworthy interface compliancy: data model
adaptation. 2007. �hal-00123884v1�

https://hal.science/hal-00123884v1
https://hal.archives-ouvertes.fr

Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Trustworthy interface compliancy: data model

adaptation

Samuel Colin Arnaud Lanoix Jeanine Souquières

LORIA – Université Nancy 2
Campus Scientifique, BP 239

F-54506 Vandœuvre lès Nancy cedex
{Samuel.Colin,Arnaud.Lanoix,Jeanine.Souquieres}@loria.fr

Abstract

In component-based software development approaches, components are considered as black boxes, commu-
nicating through required and provided interfaces which describe their visible behaviors. Each component
interface is equipped with a suitable data model defining all the types occurring in the signature of interface
operations. The provided interfaces are checked to be compatible with the corresponding required interfaces,
by the way of adapters. We propose a method to develop and verify these adapters when the interface data
models are different, using the formal method B. The use of B assembling and refinement mechanisms eases
the verification of the interoperability between interfaces and the correctness of the component assembly.

Keywords: Component-based approach, correctness, interoperability, formal method, adapter.

1 Introduction

Component orientation is a new paradigm for the development of software-based

systems. The basic idea is to assemble the software by combination of pre-fabricated

parts called software components, instead of developing it from scratch. This proce-

dure is similar to the construction methods applied in other engineering disciplines,

such as electrical or mechanical engineering.

Software components are put together by connecting their interfaces. A pro-

vided interface of one component can be connected with a required interface of

another component if it offers the services needed to implement the required inter-

face. Hence, an appropriate description of the interfaces of a software component

is crucial. In earlier papers [4,6,11], we have investigated how to formally specify

interfaces of software components and how to demonstrate their interoperability,

using the formal method B. Each component interface is equipped with a suitable

data model defining all the types occurring in the signature of interface operations.

In this paper, we study how to connect components by the way of adapters when

their interface data models are different. We propose a method in three steps to built

a trustworthy adapter following a refinement process: we start with the required

c©2007 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
mailto:Samuel.Colin@loria.fr

Colin, Lanoix and Souquières

interface and refine it until we can include the provided one. Each step expresses

a level of interoperability, is supported by the prover and help us to establish the

correctness of the adaptation.

The rest of the paper is organized as follow: in Section 2, we describe how

we support component-based development using the formal method B. We then

describe our method to connect components in case of mismatching interface data

models in Section 3. The method is illustrated by the case study of an embedded

system presented in Section 4. The paper finishes with the discussion of related

work in section 5 and concluding remarks in section 6.

2 Using B for component-based development

We briefly describe the formal method B and explain how we use it in the context

of component-based software. We formally express provided and required interfaces

using B models in order to verify their compatibility.

2.1 The formal method B

B is a formal software development method based on set theory, which supports an

incremental development process using refinement [1]. Starting out from a textual

description, a development begins with the definition of an abstract model, which

can be refined step by step until an implementation is reached. The refinement of

models is a key feature for incrementally developing more and more detailed models,

preserving correctness in each step.

The method B has been successfully applied in the development of several com-

plex real-life applications, such as the METEOR project [2]. It is one of the few

formal methods which has robust and commercially available support tools for the

entire development life-cycle, from specification down to code generation [3]. It

provides structuring primitives that allow one to compose models in various ways.

Proofs of invariance and refinement are part of each development. The proof obliga-

tions are generated automatically by support tools such as AtelierB [16] or B4free [5].

Checking proof obligations with B support tools is an efficient and practical way to

detect errors introduced during development.

2.2 Specifying component architectures

We define component-based systems using UML 2.0 composite structure diagrams

[13]. They express the overall architecture of the system in terms of components and

their required and provided interfaces. UML 2.0 Class diagrams serve to express

interface data models with their different attributes and methods.

Component interfaces are then specified as B models, which increases confi-

dence in the developed systems: the correctness of the specifications, as well as the

correctness of the refinement process can be checked with support tools. In an inte-

grated development process, the B models can be obtained by applying systematic

derivation rules from UML to B [10,9].

2

Colin, Lanoix and Souquières

2.3 Proving interoperability of component interfaces

The components must be connected in an appropriate way. To guarantee inter-

operability of components, we must consider each connection of a provided and a

required interface contained in a software architecture and try to show that the

interfaces are compatible. Using the method B, we prove that the B model of the

provided interface is a correct B refinement of the required one. This means that

the provided interface constitutes an implementation of the required interface, and

we conclude that the two components can be connected as intended [4].

Often, to construct a working component architecture, adapters have to be de-

fined, connecting the required interfaces to the provided ones. An adapter is a piece

of glue code that realizes the required interface using the provided interface. At the

signature level, it expresses the mapping between required and provided variables.

In [11], we have studied an adapter specification and its verification by giving a

B refinement of the adaptation that refines the B model of the required interface

including the B model of the provided (previously incompatible) interface.

2.4 An example of architecture

We illustrate our method with the case study of an embedded system where different

sensors send alarm events. These alarms can be canceled by a control console and

are memorized by a centralized database. The software architecture of this system

is shown Figure 1 using the syntax of composite structure diagrams. It uses three

COTS components:

Figure 1. Component architecture

• The component Database provides database functionalities described by its pro-

vided interface Database O as presented Figure 2 by UML diagrams and its asso-

ciated B model (with only its signature). The B model of this interface with its

data model and one of the operations is given Figure 4 (listing 1): (i) the types

used in the interface, (ii) variables as far as necessary to express the effects of the

operations, (iii) an invariant on these variables and (iv) an operation specification.

• The component SensorDriver software part of each sensor requires an interface

Sensor U to signal warning and error alarms to the system. These alarms need to

be saved in the database. This component is used twice.

• The component ConsoleDriver, in charge to drive an alarm control console, re-

quires an interface Console U in order to query and cancel the alarms saved in

the database.

3

Colin, Lanoix and Souquières

(a) Database (b) Database O

Figure 2. Component Database and its associated interface Database O

The interface Alarms U, described Figures 3 and 4 (listing 2), expresses the global

requirement of the alarms shared between the sensors and the console. Listing 3 of

Figure 4 presents the types used in Alarms U.

Figure 3. Interface Alarms U

MODEL Database 0
SETS

Indices = {Uid, Value, Attribute}
VARIABLES

table
INVARIANT

table ∈ Indices → (N1 7→ N) ∧
dom(table(Uid)) = dom(table(Value)) ∧
dom(table(Uid)) = dom(table(Attribute)) ∧
table (Uid) ∈ (N1 7 N)

OPERATIONS

add row(uid, value , attr)=
PRE

uid ∈ N ∧
value ∈ N ∧
attr ∈ N ∧
∀ ii .((ii ∈ dom(table(Uid))) ⇒

(uid 6= table (Uid)(ii)))
THEN

ANY indice
WHERE indice ∈ N1 − dom(table(Uid))
THEN

table := table ⊳−
{ Uid 7→

(table (Uid) ⊳− { indice 7→ uid}),
Value 7→
(table (Value) ⊳− { indice 7→ value}),

Attribute 7→
(table (Attribute) ⊳− { indice 7→ attr})}

END

END;

Listing 1. B model of Database O

MODEL Alarms U
SEES Types
VARIABLES

alarms, active alarms
INVARIANT

alarms ⊆ AlarmIds ∧
active alarms ⊆ alarms

OPERATIONS

aid ←− new alarm(type) =
PRE

type ∈ AlarmTypes
THEN

ANY uid
WHERE uid ∈ AlarmIds − alarms
THEN

aid := uid ‖
alarms := alarms ∪ {uid} ‖
active alarms := active alarms ∪ {uid}

END

END

END

Listing 2. B model of the interface Alarms U

MODEL Types
SETS

DeviceIds ;
AlarmIds;
AlarmTypes;
AlarmStatus = {Inactive, Active}

END

Listing 3. Types

Figure 4. The component interfaces expressed with B

To assemble these three COTS, three adapters have been introduced:

4

Colin, Lanoix and Souquières

• The adapter Alarms DB to map the provided interface Database O that shares

the global resources, to the interface Alarms U (see Figures 1 and 5).

Figure 5. Adapter Alarms DB

• Two adapters Console Alarms and Sensor Alarms provide the required interface of

each driver component using the interface Alarms U.

In the rest of this paper, we focus on the development and the correctness of

the adapter Alarms DB which must provide Alarms U using Database O. In terms of

B models, we have to prove that Alarms DB is a refinement of Alarms U including

Database O [11] as shown Figure 5.

3 Trustworthy method to adapt interface data models

Let I U be an interface required by a component A and I O another interface provided

by a component B. Our goal is to adapt the data model of I U using the data model of

I O. In other words, the adapter that we are developing, must express the variables,

their data types and the operations of I U in terms of the variables, data types and

operations of I O.

I U and I O are defined by B models. We will refer to their variables V U and

V O, and to their operations OP U and OP O respectively. We notice D U (resp.

D O) the data types of the variables V U (resp. V O) as presented Figure 6.

Figure 6. Process of the adapter development

The adapter must be trustworthy and its proof becomes complex when data

models of I U and I O are different. To ease this proof, we develop the adapter by

incremental refinements guided by the transformation of variables of I U into the

variables of I O.

3.1 Process description

The adaptation process is guided by the interface I O and consists of three refine-

ment steps. Each step is proved by using the B refinement mechanism.

5

Colin, Lanoix and Souquières

(1) Variables adaptation

This step provides a matching between the variables of I U and I O:
• each variable of V U is transformed into a new variable of V U’, “correspond-

ing to” a variable of V O, using the data types D U ;
• the body of each operation OP U is transformed with respect to these new

variables into OP U’.

(2) Data types adaptation

This step provides a matching between the data types of I U and I O:
• each variable of V U’ expressed on D U is transformed into a new variable of

V U” expressed using the data types D O. To do that, relations between D U

and D O have to be defined ;
• the body of each operation OP U’ is transformed with respect to these new

variables V U” into OP U”.

(3) Provided interface inclusion

This step, which have been prepared by the two previous ones, consists in:
• associating each variable of V U” to V O variables,
• expressing each operation of OP U” in terms of the call the relevant opera-

tions of OP O.

3.2 B as a guideline for the adaptation steps

When the required and the provided interfaces are defined on the same data types,

the adaptation becomes a problem of transforming variables and calling the right

operations. Similarly, when the interfaces are similar modulo their data types, the

problem is reduced to find whether D U are subtypes of D O, and then indeed calling

the operations with the transformed variables. In that case, the role of the adapter

is simply the role of a variable wrapper.

With the use of B, the adaptation process and therefore the adapter itself, is

validated by the proof of the different refinement steps. A direct consequence is

that the adaptation process is less guided by the developer’s intuition and more by

mathematical and logical laws. That means that each step of the process might

require several refinement steps in practice in order to provably guarantee that

the transformation is correct. As a matter of fact, the B refinement mechanism

encourages this practice.

Furthermore, in some transformation steps, functions are introduced as con-

stants, which will need to made explicit in the implementation step. Hence our

method is no silver bullet: great care has to be taken when these functions appear.

The developer of the adapter will have to ensure that the translation functions exist.

Their existence can be more easily stated if the refinement steps are limited to sim-

ple, intuitive and progressive transformations. For instance, instead of transforming

enumerated values of a set directly to the set of natural numbers, it is wiser to first

translate it to a set of numbers modulo the number of enumerated values and then

translate it to the full set of natural numbers. The proof of the refinements become

easier.

6

Colin, Lanoix and Souquières

4 Case study

We now show the application of the previous developement process to develop and

prove an adapter that provides the interface data model of Alarms U using the

interface data model of Database O. Each time we will refer to a listing in this

section, we implicitly refer to figure 7. The specification of the operations (not

shown in this figure) is of course modified according to the transformations realized

at each step 1 .

4.1 Variables adaptation

The first step consists in adapting alarms and active alarms of the interface data

model of Alarms U to the interface data model of Database O. In this step, we do not

introduce new data types. In the database, each entry in the table is characterized

by an identifier Uid which has a corresponding Value and an Attribute. Guided by

these three variables, we choose to associate the alarm identifiers (alarms ids) with

the Uid field, the type of an alarm (AlarmTypes) with the Value field and its activity

status (AlarmStatus) with the Attribute field.

This matching between an alarm identifier and its attributes can be easily ex-

pressed by B functions. Hence we come up with a function for expressing the type

of an alarm, and a second one for the status of an alarm as illustrated listing 4.

The proof of this refinement consists of 18 formulas, whose 4 have beeen proved

interactively.

4.2 Data types adaptation

The second step might possibly be the harder one: great care must be taken when

casting the variables from one type to another one. This is because typecasting

is a frequent source of bugs, as limit conditions are often overlooked. The proof

process exhibits these conditions and oblige to check their validity. In our process,

the typecasting functions are introduced as constants. It means that the validity

of the adaptation relies on the existence of these functions, hence it is wiser to

choose typecasting functions with well-understood mathematical properties. We

broke down the “data types adaptation” step into three refinements, characterized

as follows:

• Typecasting the non-functional variables (alarms ids)

• Typecasting the domain (in the mathematical sense) of each functional variable

(alarms type and alarms status)

• Typecasting the codomain of each functional variable (the already transformed

alarms type and alarms status).

4.2.1 Typecasting the non-functional variables

The alarms ids variable will be represented in the end by the Uid field of the database.

We thus introduce a constant id cast in order to typecast from AlarmIds to the

natural numbers, i.e. the type of the Uid field. We therefore represent the alarms ids

1 Complete B models are published in []

7

Colin, Lanoix and Souquières

REFINEMENT Alarms DB ref1
REFINES Alarms U
SEES Types
VARIABLES

alarms ids , alarms status , alarms type
INVARIANT

alarms ids = alarms ∧
alarms status ∈ alarms ids → AlarmStatus ∧
alarms type ∈ alarms ids → AlarmTypes ∧
alarms status = active alarms×{Active} ∪
(alarms ids − active alarms)×{Inactive}

END

Listing 4. First step of the refinement

REFINEMENT Alarms DB ref2
REFINES Alarms DB ref1
SEES Types
CONSTANTS

id cast
PROPERTIES

id cast ∈ AlarmIds → N

VARIABLES

nat ids , alarms status , alarms type
INVARIANT

nat ids = id cast [alarms ids]
END

Listing 5. Second step (2.1) of the refinement

REFINEMENT Alarms DB ref3
REFINES Alarms DB ref2
SEES Types
VARIABLES

nat ids , nat status , nat type
INVARIANT

nat status ∈ nat ids → AlarmStatus ∧
nat type ∈ nat ids → AlarmTypes ∧
nat status−1 = (alarms status−1; id cast)

END

Listing 6. Second step (2.2) of the refinement

REFINEMENT Alarms DB ref4
REFINES Alarms DB ref3
SEES Types
CONSTANTS

type cast , status cast
PROPERTIES

type cast ∈ AlarmTypes → 1..card(AlarmTypes) ∧
status cast ∈ AlarmStatus → 1..card(AlarmStatus)

CONCRETE VARIABLES

uid gen
VARIABLES

ids nn , status nn , type nn
INVARIANT

uid gen ∈ N ∧
ids nn = nat ids ∧
status nn ∈ nat ids → 1.. card(AlarmStatus) ∧
type nn ∈ nat ids → 1.. card(AlarmTypes) ∧
uid gen > max(nat ids) ∧
status nn = (nat status ; status cast) ∧
type nn = (nat type; type cast)

END

Listing 7. Second step (2.3) of the refinement

REFINEMENT Alarms DB ref5
REFINES Alarms DB ref4
SEES Types
INCLUDES Database O
INVARIANT

table (Uid)[dom(table(Uid))] = ids nn ∧
(table (Uid)−1;table(Attribute)) = status nn ∧
(table (Uid)−1;table(Value)) = type nn

END

Listing 8. Third step of the refinement

Figure 7. Adapting Alarms U to Database O in five refinements

by the variable nat ids and add this relationship between both variables in the gluing

invariant. The other variables are unchanged, and the result is shown in listing 5.

The proof of this refinement consists of 8 formulas, whose 2 have had been proved

interactively.

4.2.2 Typecasting the domain of each functional variable

The alarms status and alarms type depend on alarms ids. As alarms ids has been

transformed into nat ids, we must transform alarms status and alarms type so that

they depend rather on nat ids. We thus replace them with their equivalent nat status

and nat type. The result is presented in listing 6. The proof of this refinement

consists of 14 formulas, whose 5 have been proved interactively.

4.2.3 Typecasting the codomain of each functional variable

At this step, the codomains of nat status and nat type do not appear in the data

types of Database O. We need to typecast these codomains, namely AlarmStatus and

AlarmTypes, to the corresponding data types fields of the database, i.e. Attribute

8

Colin, Lanoix and Souquières

and Value respectively. These fields contain natural numbers, hence the typecasting

functions will map AlarmStatus and AlarmTypes to natural numbers. These functions

are introduced as constants and named status cast and type cast.

We thus introduce the variables status nn and type nn which correspond to the

nat status and nat type respectively. As the codomains of status nn and type nn are

the natural numbers, the codomains of nat status and nat type have been trans-

formed by the typecasting functions mentioned above. For consistent notations, we

rename nat ids into ids nn.

We finally introduce a new variable uid gen for producing a new unique index

each time a new alarm will be added in the database. All these transformations are

shown listing 7. The proof of this refinement consists of 20 formulas, whose 6 have

been proved interactively.

4.3 Provided interface inclusion

In the last step, we establish the relationship between status nn and type nn and the

fields of the data base as illustrated listing 8. We also do the calls to the operations

of the data base with the transformed data model. The proof of this refinement

consists of 19 formulas, whose 5 havebeen proved interactively.

The proof of this last step is most difficult to perform because it relies on the

proofs made along the refinement and the proofs of the Database O abstract model.

Our approach brought a benefit here: while the formulas are bigger in size because

of the size of the terms, they have a shape similar with the proof obligations of the

provided interface. Hence the proofs can be done by following roughly the proof

steps for the provided interface.

If we take into account all the B models involved in this case study (i.e. the in-

terfaces of figure 4 and the refinements of figure 7), there were 108 formulas involved

in the proof process, among which 30 formulas had to be proved interactively.

5 Related work

One of the first approaches of module reuse trought interface adaptation is the

approach of Purtilo and Atlee [14]: they use a dedicated language (called Nimble)

for relating a required interface to a provided interface, where the adaptation is

made by the developer. Our approach is similar up to the formalism used for

representing the interfaces: instead of a dedicated language, we use UML and the B

method. Our approach thus has the benefit of relying on standards. Furthermore

we overcome the limited semantics of their approach because we use a formal tool

for expressing and verifying our interface adaptation.

Dynamic component adaptation [12,7] goes further than our approach by propos-

ing methods for adapting at run-time components by finding suitable adapter

components based on the interfaces of the components to adapt. Unfortunately

these methods have strong requirements (knowing inheritance relationships, run-

time mapping of interface relationships,. . .) and rely primarily on types and/or

object-oriented peculiarities, hence they are limited to subtype-like adaptations.

This is not possible with our approach because trustworthiness would require also

9

Colin, Lanoix and Souquières

proving these strong requirements at run-time. Our method allows nevertheless a

broader range of possible adaptations (not limited to subtypes of a provided inter-

face).

The refinement steps of our approach for building an adapter can also be viewed

as steps for building morphisms between interfaces. Such methods, for instance

the methods presented by Smith [15], are based on signature algebras and theory

category. Our approach is rather practical because we chose the B method for

expressing the interfaces. The B method is indeed easier for software engineers to

understand because it is based on set theory. Our results nonetheless resemble much

with interface morphisms, thus these methods could provide means for automating

our approach better.

6 Conclusion

The component-based paradigm has received considerable attention in the software

development field in industry and academia like in other engineering domains. In

this approach, components are considered as black-boxes described by their visible

behavior and their required and provided interfaces. To construct a working system

out of existing components, adapters are introduced. An adapter is a piece of glue

code that realizes the required interface using the provided interfaces. It expresses

the mapping between required and provided variables and how required operations

are implemented in terms of the provided ones. We have presented a method in three

steps to adapt complex data models, each step expressing a level of interoperability

and establishing the correctness of the adaptation.

Using the formal method B and its refinement and assembling mechanisms to

model the component interfaces and the adapters, we pay special attention to the

question of guaranteeing the interoperability between the different components. The

B prover guarantees that the adapter is a correct implementation of the required

functionalities in terms of the existing components. With this approach, the verifi-

cation of the interoperability between the connected components is achieved at the

signature, the semantic and the protocol levels.

We are currently working on a method for adding dependability features to

component-based software systems. The method is applicable if the dependability

features add new behavior to the system, but do not change its basic functionality

[8]. The idea is to start with a software architecture whose central component is

an application component that implements the behavior of the system in the nor-

mal case. The application component is connected to other components, possibly

through adapters. It is then possible to enhance the system by adding dependability

features in such a way that the central application component remains untouched.

Adding dependability features necessitates to evolve the overall system architec-

ture by replacing or newly introducing hardware or software components. The

adapters contained in the initial software architecture have to be modified, whereas

the other software components need not to be changed. Thus, the dependability of

a component-based system can be enhanced in an incremental way.

10

Colin, Lanoix and Souquières

References

[1] Abrial, J.-R., “The B Book,” Cambridge University Press, 1996.

[2] Behm, P., P. Benoit and J. Meynadier, METEOR: A Successful Application of B in a Large Project,
in: Integrated Formal Methods, IFM99, LNCS 1708 (1999), pp. 369–387.

[3] Bert, D., S. Boulmé, M.-L. Potet, A. Requet and L. Voisin, Adaptable Translator of B Specifications
to Embedded C Programs, in: Integrated Formal Method, IFM’03, LNCS 2805 (2003), pp. 94–113.

[4] Chouali, S., M. Heisel and J. Souquières, Proving Component Interoperability with B Refinement,
Electronic Notes in Theoretical Computer Science 160 (2006), pp. 157–172.

[5] Clearsy, B4free, Available at http://www.b4free.com (2004).

[6] Hatebur, D., M. Heisel and J. Souquières, A Method for Component-Based Software and System
Development, in: I. C. Society, editor, Proceedings of the 32tnd Euromicro Conference on Software
Engineering And Advanced Applications, 2006.

[7] Kniesel, G., Type-safe delegation for run-time component adaptation, Lecture Notes in Computer
Science 1628 (1999), pp. 351–366.

[8] Lanoix, A., D. Hatebur, M. Heisel and J. Souquières, Enhancing Dependability of Component-based
Systems, Technical report, LORIA (2006).

[9] Ledang, H. and J. Souquières, Modeling class operations in B: application to UML behavioral diagrams,
in: ASE’2001 : 16th IEEE International Conference on Automated Software Engineering (2001).

[10] Meyer, E. and J. Souquières, A systematic approach to transform OMT diagrams to a B specification,
in: Proceedings of the Formal Method Conference, LNCS 1708 (1999), pp. 875–895.

[11] Mouakher, I., A. Lanoix and J. Souquières, Component Adaptation: Specification and Verification, in:
Proc. of the 11th Int. Workshop on Component Oriented Programming (WCOP 2006), 2006, pp. 23–30.

[12] Mtzel, K. and P. Schnorf, Dynamic component adaptation (1997).

[13] Object Management Group (OMG), “UML Superstructure Specification,” (2005), version 2.0.

[14] Purtilo, J. M. and J. M. Atlee, Module reuse by interface adaptation, Software - Practice and Experience
21 (1991), pp. 539–556.

[15] Smith, D. R., Constructing specification morphisms, Journal of Symbolic Computation 15 (1993),
pp. 571–606.

[16] Steria – Technologies de l’information, “Obligations de preuve: Manuel de référence, version 3.0,” (1998).

11

Colin, Lanoix and Souquières

A Source code of B models and refinements

MODEL Database 0
SETS

Indices = {Uid, Value, Attribute}
VARIABLES

table
INVARIANT

table ∈ Indices → (N1 7→ N) ∧
dom(table(Uid)) = dom(table(Value)) ∧
dom(table(Uid)) = dom(table(Attribute)) ∧
table (Uid) ∈ (N1 7 N)

INITIALISATION

table := { Uid 7→ ∅, Value 7→ ∅, Attribute 7→ ∅ }
OPERATIONS

add row(uid, value , attr)=
PRE

uid ∈ N ∧
value ∈ N ∧
attr ∈ N ∧
∀ ii .((ii ∈ dom(table(Uid))) ⇒

(uid 6= table (Uid)(ii)))
THEN

ANY indice
WHERE indice ∈ N1 − dom(table(Uid))
THEN

table := table ⊳−
{ Uid 7→

(table (Uid) ⊳− { indice 7→ uid}),
Value 7→
(table (Value) ⊳− { indice 7→ value}),

Attribute 7→
(table (Attribute) ⊳− { indice 7→ attr})}

END

END;

remove row uid(uid) =
PRE

uid ∈ ran(table (Uid))
THEN

ANY indice
WHERE indice ∈ dom(table(Uid)) ∧ table(Uid)(indice) = uid
THEN

table := table ⊳− { Uid 7→ ((dom(table(Uid)) − {indice}) ⊳ table (Uid)),
Value 7→ ((dom(table(Value)) − {indice}) ⊳ table (Value)),
Attribute 7→ ((dom(table(Attribute)) − {indice}) ⊳ table (Attribute)) }

END

END;

update attribute (uid , new attr) =
PRE

uid ∈ ran(table (Uid))
∧ new attr ∈ N

THEN

ANY indice
WHERE indice ∈ dom(table(Uid)) ∧ table(Uid)(indice) = uid
THEN

table := table ⊳− { Attribute 7→ (table(Attribute) ⊳− { indice 7→ new attr}) }
END

END

END

Figure A.1. B model of Database O

12

Colin, Lanoix and Souquières

MODEL Alarms U
SEES Types
VARIABLES

alarms, active alarms
INVARIANT

alarms ⊆ AlarmIds ∧
active alarms ⊆ alarms

INITIALISATION

alarms := ∅

‖ active alarms := ∅

OPERATIONS

nb ←− number of active alarms =
BEGIN

nb := card(active alarms)
END;

active ←− get active alarms =
BEGIN

active := active alarms
END;

reset alarm (aid) =
PRE aid ∈ active alarms
THEN

active alarms := active alarms − { aid }
END;

aid ←− new alarm(type) =
PRE

type ∈ AlarmTypes
THEN

ANY uid
WHERE uid ∈ AlarmIds − alarms
THEN

aid := uid ‖
alarms := alarms ∪ {uid} ‖
active alarms := active alarms ∪ {uid}

END

END

END

Figure A.2. B model of Alarms U

13

Colin, Lanoix and Souquières

REFINEMENT Alarms DB ref1
REFINES Alarms U
SEES Types
VARIABLES

alarms ids , alarms status , alarms type
INVARIANT

alarms ids = alarms ∧
alarms status ∈ alarms ids → AlarmStatus ∧
alarms type ∈ alarms ids → AlarmTypes ∧
alarms status = active alarms×{Active} ∪
(alarms ids − active alarms)×{Inactive}

ASSERTIONS

({Active}∗active alarms ∪ { Inactive }∗(alarms−active alarms))[{Active}] = active alarms
INITIALISATION

alarms ids := ∅

‖ alarms status := ∅×AlarmStatus
‖ alarms type := ∅×AlarmTypes
OPERATIONS

nb ←− number of active alarms =
BEGIN

nb := card(alarms status−1[{Active}])
END;

active ←− get active alarms =
BEGIN

active := alarms status−1[{Active}]
END;

reset alarm (aid) =
BEGIN

alarms status := alarms status ⊳− { aid 7→ Inactive }
END;

aid ←− new alarm(type) =
ANY uid
WHERE uid ∈ AlarmIds − alarms ids
THEN

aid := uid
‖ alarms ids := alarms ids ∪ {uid}
‖ alarms type := alarms type ⊳− { uid 7→ type }
‖ alarms status := alarms status ⊳− { uid 7→ Active }
END

END

Figure A.3. Alarms DB ref1: first step of the refinement

14

Colin, Lanoix and Souquières

REFINEMENT Alarms DB ref2
REFINES Alarms DB ref1
SEES Types
CONSTANTS

id cast
PROPERTIES

id cast ∈ AlarmIds → N

VARIABLES

nat ids , alarms status , alarms type
INVARIANT

nat ids = id cast [alarms ids]
ASSERTIONS

∀aid .((aid ∈ alarms ids) ⇒ (id cast (aid) ∈ id cast [dom(alarms type)]))
INITIALISATION

nat ids := ∅

‖ alarms status := ∅×AlarmStatus
‖ alarms type := ∅×AlarmTypes
OPERATIONS

aid ←− new alarm(type) =
ANY uid nat
WHERE

uid nat ∈ N

∧ uid nat /∈ nat ids
THEN

aid := id cast−1(uid nat)
‖ nat ids := nat ids ∪ {uid nat}
‖ alarms type := alarms type ⊳− { id cast −1(uid nat) 7→ type }
‖ alarms status := alarms status ⊳− { id cast −1(uid nat) 7→ Active }
END

END

Figure A.4. Alarms DB ref2: second step of the refinement

15

Colin, Lanoix and Souquières

REFINEMENT Alarms DB ref3
REFINES Alarms DB ref2
SEES Types
VARIABLES

nat ids , nat status , nat type
INVARIANT

nat status ∈ nat ids → AlarmStatus ∧
nat type ∈ nat ids → AlarmTypes ∧
nat status−1 = (alarms status−1; id cast)

INITIALISATION

nat ids := ∅

‖ nat status := ∅

‖ nat type := ∅

OPERATIONS

nb ←− number of active alarms =
BEGIN

nb := card(nat status−1[{Active}])
END;

active ←− get active alarms =
BEGIN

active := id cast−1[nat status−1[{Active}]]
END;

reset alarm (aid) =
BEGIN

nat status := nat status ⊳− { id cast (aid) 7→ Inactive }
END;

aid ←− new alarm(type) =
ANY uid nat
WHERE

uid nat ∈ N

∧ uid nat /∈ nat ids
THEN

aid := id cast−1(uid nat)
‖ nat ids := nat ids ∪ {uid nat}
‖ nat type := nat type ⊳− { uid nat 7→ type }
‖ nat status := nat status ⊳− { uid nat 7→ Active }
END

END

Figure A.5. Alarms DB ref3: third step of the refinement

16

Colin, Lanoix and Souquières

REFINEMENT Alarms DB ref4
REFINES Alarms DB ref3
SEES Types
CONSTANTS

type cast , status cast
PROPERTIES

type cast ∈ AlarmTypes → 1..card(AlarmTypes) ∧
status cast ∈ AlarmStatus → 1..card(AlarmStatus)

CONCRETE VARIABLES

uid gen
VARIABLES

ids nn , status nn , type nn
INVARIANT

uid gen ∈ N ∧
ids nn = nat ids ∧
status nn ∈ nat ids → 1.. card(AlarmStatus) ∧
type nn ∈ nat ids → 1.. card(AlarmTypes) ∧
uid gen > max(nat ids) ∧
status nn = (nat status ; status cast) ∧
type nn = (nat type; type cast)

ASSERTIONS

status cast −1[status cast[{Active }]] = {Active}
INITIALISATION

uid gen := 0
‖ ids nn := ∅

‖ status nn := ∅

‖ type nn := ∅

OPERATIONS

nb ←− number of active alarms =
BEGIN

nb := card(status nn−1[status cast[{Active }]])
END;

active ←− get active alarms =
BEGIN

active := id cast−1[status nn−1[status cast[{Active}]]]
END;

reset alarm (aid) =
BEGIN

status nn := status nn ⊳− { id cast (aid) 7→ status cast(Inactive) }
END;

aid ←− new alarm(type) =
BEGIN

aid := id cast−1(uid gen)
‖ ids nn := ids nn ∪ {uid gen}
‖ type nn := type nn ⊳− { uid gen 7→ type cast(type) }
‖ status nn := status nn ⊳− { uid gen 7→ status cast(Active) }
‖ uid gen := uid gen + 1
END

END

Figure A.6. Alarms DB ref4: fourst step of the refinement

17

Colin, Lanoix and Souquières

REFINEMENT Alarms DB ref5
REFINES Alarms DB ref4
SEES Types
INCLUDES Database O
INVARIANT

table (Uid)[dom(table(Uid))] = ids nn ∧
(table (Uid)−1;table(Attribute)) = status nn ∧
(table (Uid)−1;table(Value)) = type nn

INITIALISATION

uid gen := 0
OPERATIONS

nb ←− number of active alarms =
BEGIN

nb := card(table (Uid) [table (Attribute)−1[status cast[{Active }]]])
END;

active ←− get active alarms =
BEGIN

active := id cast−1[table(Uid)[(table (Attribute))−1[status cast[{Active }]]]]
END;

reset alarm (aid) =
BEGIN

update attribute (id cast (aid), status cast (Inactive))
END;

aid ←− new alarm(type) =
BEGIN

aid := id cast−1(uid gen)
‖ uid gen := uid gen + 1
‖ add row(uid gen, type cast (type), status cast (Active))
END

END

Figure A.7. Alarms DB ref5: last step of the refinement

18

	Introduction
	Using B for component-based development
	The formal method B
	Specifying component architectures
	Proving interoperability of component interfaces
	An example of architecture

	Trustworthy method to adapt interface data models
	Process description
	B as a guideline for the adaptation steps

	Case study
	Variables adaptation
	Data types adaptation
	Provided interface inclusion

	Related work
	Conclusion
	References
	Source code of B models and refinements

