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Résumé. — Nous développons un formalisme d’entropie maximale afin de décrire les config-
arations désordonnées formées au cours de la séparation de phase d’un mélange binaire bidi-
mensionnel, Nous montrons que les corrélations provenant des contraintes géométriques locales
conduisent & une distribution quasiment gaussienne pour les rayons des bulles de la phase mi-
noritaire. L'examen statistique des propriétés géométriques et topologiques des images expéri-
mentales révéle le role majeur joué par I'écrantage a courte distance de la charge topologique,
et des fluctuations de la taille des bulles, .

Abstract. — A maximum entropy description is developed for disordered planar patterns of
droplets and applied to the analysis of such patterns formed in a two-dimensional binary mixture
during late-stage coarsening. Global correlations, arising from local “packing” constraints, are
shown to produce a virtually symmetric shape of the scaled droplet radius distribution. The ex-
amination of geometrical and topological pattern statistics reveals a prominent role of screening
at short distance, both of domain area fluctuations, as well as of topological charge.

1. Introduction

Polydisperse assemblies of droplets are observed in a variety of experimental situations, notably
including film deposition from a vapor phase [1, 2], “packing” in granular materials [3], as well
as late-stage coarsening, or “Ostwald ripening”, of minority phase domains initiated by a
rapid temperature or field quench [4]. Significant polydispersity generally precludes spatial
correlations of long range, even in systems governed by competing interactions which favor :
the ordering of domains into modulated phases [5-9]. To describe such globally disordered !
structures, one may elucidate the nature of the short-range correlations, a classic topic of '
interest in the characterization of amorphous phases [10l. In addition, one may determine
the interdependence of topological and geometrical quantities, motably the joint probability
distribution P(n,A), of local droplet coordination 7 and droplet volume or area, A: this
function is essential to the description of cellular structures {11].
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Direct imaging methods facilitate the evaluation of these quantities in two and, increasingly,
in three dimensions. This approach has been recently employed to investigate gpatial cor-
relations in planar, disordered patterns of coarsening domains, formed in a two-dimensiona]
binary mixture of amphiphilic molecules subsequent to a rapid (surface) pressure quench [12].
Motivated by these experiments, we have developed a maximum entropy analysis of disordered
droplet patterns. The theory is a generalization of the maximum entropy analysis of cellular
patterns, originated by Rivier [13]. It is predicated upon the existence of a partition of space
with the property that each droplet is contained within a (polyhedral} cell of the partition. In
addition, we introduce a constraint in the form of presetting the second moment, ug, of the
distribution of droplet coordination numbers. The theory yields predictions for the joint prob-
ability distribution P(n, A), for the droplet radius distribution, and for the spatial correlations
between areas of adjacent droplets.

Following a summary of theoretical results in Section 2, we apply the theory, in Section 3,
to account for the near-Gaussian shape of the droplet radius distribution and for short-range
screening of topological charge in coarsening droplet domain patterns in the experimental
system of interest here, namely a binary mixture of amphiphiles forming a monomolecular
Langmuir film at an air-water interface. In Section 4, we address the essential assumptions of
maximum entropy analysis in relation to the aforementioned two-dimensional binary mixture
in the process of late-stage coarsening, the latter a subject of extensive theoretical as well as
experimental interest [4, 14]. We end by discussing the role of entropy maximization in defining
structural aspects of other systems.

2. Maximum Entropy Analysis of Droplet Patterns

9 1. PRELIMINARIES. — In the following, we develop a maximum entropy (ME) description
[15) of disordered droplet patterns. This approach was introduced by Rivier and coworkers in
the context of cellular patterns such as those formed by soap froths [13]. It is based on the
assumption that pattern configurations are selected to satisfy general geometrical constraints
rather than energetic constraints, which, if present, give rise only to correlations of short
range. In particular, these energetic constraints must not restrict or bias access to any pattern
configurations.

We are interested here in planar patterns formed by a polydisperse set of circular bubbles
which occupy a fraction ¢ of the available area. A ftypical example is shown in Figure 1.
Patterns are disordered in the sense that the pair correlation is essentially that of a liquid.
To perform a statistical analysis of the local pattern structure, we assign to each bubble
configuration a partition of space {here: total sample area). Such a partition is provided by
the Voronol diagram of bubble centroids [16]. If the area fraction, ¢, is sufficiently small,
and the bubble pattern is locally “relaxed” [17], one generally finds, as in Figure 1, that each

‘bubble is eimbedded entirely in the Voronoi polygon containing the bubble centroid [18]. The

application of the ME formalism to space filling cellular patterns, leading to Lewis or Aboav
law is not new. However, the generalization to non space filling patterns (here bubble patterns},
the quantitative description of them, and especially the study of correlations of bubble areas
(see Sect. 3.3) are definitely original.

In the presence of predominantly geometrical constraints we expect & maximum entropy
analysis to yield the correct description for the cellular pattern, formed by the Voronoi diagram.
Specifically, this would imply the description to conform to Lewis [11] and Aboav-Weaire [11]
laws, to be discussed in detail below, as well as to reproduce the correct form of the distribution
of Voronoi cell areas. In addition, however, we will be interested in the collective properties of
the bubbles themselves, notably the nature and range of spatial correlations and the form of
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Fig. 1. — Droplet pattern with superimposed Voronoi diagram. Snapshots of a flat-fielded domain
pattern recorded during coarsening of a two-dimensional binary mixture, composed of the phospholipid
dimyristoylphosphatidylcholine (DMPC) and dihydrocholesterol (dCh) and confined to an air-water
interface in the form of a monomolecular (Langmuir) film [12]. The image was recorded after 1249
min of coarsening, following a surface-pressure quench of an off-critical mixture, with mole fraction of
dCh of 0.2, at 19 °C. Superimposed is the corresponding Voronoi diagram of bubble centroids which
are also indicated. The horizontal dimension of the field of view is 1500 pm.

the droplet radius distribution.

Within the context of late-stage coarsening, the classic Lifshitz-Slyozov (LS) theory [19]
gives an explicit solution for this distribution in the limit of dilute bubble patterns. In this
regime, geometrical constraints will not affect the radius distribution of very distant droplets,
so that maximum entropy considerations apply solely to the Voronoi pattern. However, for
moderate area fraction (0.2 < ¢ < 0.3), geometrical {“packing”) constraints for the bubble
pattern predominate. That is, geometrical constraints which apply to the Voronoi cell areas
are transfered to the bubble areas whenever bubbles occupy a non-negligible fraction of their
associated Voronoi polygons. This will become clear below. As a consequence, we expect
important deviations from the LS theory, and it is these we account for on the basis of ME
theory.

2.2, MaxmMuM ENTROPY MODEL. — We now present the main steps of the ME calculation.
To describe the scaling regime of the droplet coarsening dynamics, we define FP,(a,z) as the
probability of finding a bubble of area z{A) in an n-sided Voronoi cell of area a{A). Here,
{A}) denotes the average droplet area which evolves in time according to a growth law of the
form (A) ~ t>*. The coarsening experiments [12] of two-dimensional droplet patterns whose

_—
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analysis we address in Section 3 yield o ~ 0.28. Measuring ¢ and z in units of (4), one hag
(@) = 1 and (z) = ¢, where ¢ represents the volume fraction of minority phase; p,, a,, =,
respectively denote the density of bubbles with n neighbors {and thus an n-sided associated
Voronoi polygon), and the averages of ¢ and x for these bubbles. We define the entropy of a
given configuration in terms of P, (e, ) in the usual form [11]

S = —/dadeﬂ(a,:ﬂ)ln (Pp(a,z)/Pola,z)) (1)

where Py(a,z) ~ (az)? captures the fact that, in dimension d, one needs at least (d+ 1) points
to define a cell. We now seek to determine the joint distribution F,(a,z) so as to maximize
S, taking into account all constraints to be satisfied in the course of pattern evolution. These
constraints read

an =1, anan =1, an.'ﬂﬂ = (2)

n>3 n>3 n>3
Y pa(n—6)=0 (3)
n>3

The three first conditions, equation (2), respectively ensure: proper normalization of proba-
bility, selection of an area-filling froth structure, and conservation of (minority phase) matter.
The second condition has the form appropriate for two-dimensional patterns. Equation (3)
states the Euler-Poincaré theorem: applied to a pattern of 3-fold vertices, it requires the aver-
age number of neighbors of a cell to be six; defining C' = n — 6 to denote the topological charge
of an n-fold coordinated bubble, we recognize equation (3) to represent the condition of global
charge neutrality, (C} = 0.

To describe a relaxed bubble pattern, we apply the additional constraint to preset the second
moment of the distribution pn:

Y paln—6)* = s (4)

n>3

Following Lauritsen et ol. [20], who have recently studied relaxed Voronoi patterns, with
polygon energy F,, = (n - 6)?, in a thermal bath, we recognize this constraint to describe
conservation of energy. Since the constraint (4) will be linearly coupled to the entropy (1)
via a Lagrange multiplier, entropy maximization is equivalent to minimization of an effective
free energy F' = po — T'5. Presetting uo thus corresponds to setting an effective temperature,
T', which controls the relative importance of entropy and local energetic constraints. In the
coarsening experiments of interest here, u; generally falls in the range 0.65 < po < 0.85.

A final constraint is required to take into account the fact that each Voronoi cell contains
exactly one bubble: accordingly, we limit the area of a bubble so as not to exceed that of its
associated Voronoi cell. For a bubble with n neighbors, this condition reads z < ane; a, <1
is a geometrical factor which, for circular bubbles, has the form (2w /n)~! sin(2m/n), assuming
the “average” n-sided Voronoi cell to be a regular polygon. Our results do not depend in any
essential way on the precise form of a, ~ 1; however, it should be noted that the condition
cry, < 1 contributes to an increase in the effective area fraction, c¢. In the following, we will take
iy, = (27 /n)~!sin(27/n), or more simply a,, = 1, with the understanding that the effective
¢ in (2) slightly exceeds the nominal experimental value. We shall see below that repulsive
interactions between droplets increase even more the effective area fraction to an estimated
0.35 < cer < 0.5 for an experimental ¢ = 0.25.

s
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Introducing a Lagrange multiplier for each constraint and taking the functional derivative
of 5, one finds

Pnla,z) = 6(a a—m)(m)2 ex —()\(“) PR 6) + A 2
n\l, = n 7 p n b+ AT+ 1(72.— )+ 2(?’6—6) (5)

where 8 is the step function, and the different Lagrange multipliers (Z, X', A%, A1, Ag), to
be determined according to the above constraints, are functions of a,, £, ¢ and po. As first
proposed by Rivier and coworkers [13], we now maximize the entropy as a function of the a,,’s
and z,,’s only, since uy and ¢ are preset so as to match experiment. This is achieved by relaxing
the constraints on P,(a,z): accordingly, the a,’s and z,’s are chosen such that the pertinent
conditions in equations (2)-(4) are no longer mutually independent. This gives

Gn,

1+ Xa(n = 6) + 7 ((n—6) = ) (©)

¢ (14 el —6) +vz (n—6)" — ) ) ™

T

In a physical structure for which cells experience strong energetic constraints (e.g. in the form
of surface tension for soap bubbles), the quadratic term in the expression for a, is expected
to dominate. This would lead to the “radius law”, r, ~ ai/ ? ~ n — ng, which is actually
observed in such systems [11]. In the experiments on coarsening droplet patterns, v, and v,
are expected to be small and their contribution is negligible in the range 4 <n < 8 for which
the distribution p, is non-zero. As a result, equations (6} and (7) reduce to the so-called Lewis
law, an = 1+ A(n — 6) and z, = ¢(1 + Az(n — 6)), known to hold in a variety of cellular
patterns [11].

The Lewis law analysis of coarsening droplet patterns, illustrated in Figure 2, yields typical
values of A, =~ 0.15 and X, = 0.23. We find it useful to think of the parameter A, as a suscepti-
bility which determines the magnitude of the geometrical response, i.e. a change in the average
bubble area, to variations of a topological quantity, i.e. a change in coordination number. As
geometrical {packing) constraints are relaxed at lower area fraction, the susceptibility is ex-
pected to decrease. The absence of geometrical constraints in the dilute limit would imply a
vanishing susceptibility: in that limit, the droplet radius distribution would be independent of
coordination number, in accordance with LS theory. In contrast, Voronoi polygons are always
subject to the geometrical constraint to form a space-filling structure. The precise values of
Aa,e are immaterial for our subsequent results, and for convenience, we retain the values found
here for the remainder of the article.

Having obtained the a,’s and x,’s, one determines P, (a, %) and p, after integrating over a
and z. In particular, one essentially has A% o 1/a, and M= o 1)z, Our distribution py, is
almost independent of A, and ), but is of course sensitive to the value of yy which we take to
be that found experimentally. Both distributions p,, are then very similar, with p{6) =~ 0.45,
p(2) =~ p(5) =~ 0.25 and p(4) = p(8) < p(6).

3. Results for Coarsening Droplet Patterns

3.1. CORRELATION BETWEEN DROPLET AND VORONOI POLYGON AREAS . — We are now
in position to examine more closely the relation between @ and x for a given bubble. Let Z(a)
represent the average area of bubbles found in Voronoi cells of area a. For very small area
fraction, « and @ are essentially uncorrelated, and thus Z(e) = ¢, independent of a. While
Lewis’s law is expected to remain valid in this regime for the Voronoi pattern, the absence
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Lewis law Aboav-Weaire law
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Fig. 2. — Geometrical and topological statistics. Plots (with linear fits) corresponding to Lewis law for
droplet pattern (solid circle) and corresponding Voronoi diagram (diamond) (left) and Aboav-Weaire
" law (right), as discussed in the text. Here, 2, = {A,)/(4) and an = {Avp). . /{Avy), respectively

. represent the average area of an n-fold coordinated droplet, normalized by the mean droplet area, {A},
‘ and the average area of an n-sided Voronoi cell, normalized by the mean cell area, {Av,); n and m
respectively denote: the droplet coordination number and the average coordination number of droplets
in the NN shell of an n-fold droplet.

(. of geometrical constraints for bubble areas implies A, = 0. For coarsening droplet patterns,
; the distribution of areas is now described by LS theory; however, as a theory applicable to
an isolated bubble, LS theory has nothing to say about the structure of the Voronoi pattern
which continues to be described by ME theory. For larger volume fraction, typical of that |
Z | of the experiments of interest here, one finds Z(a) ~ o, for @ < 1; then, given a finite area i
faction, T(a) saturates at a value larger than c. ‘

The plot of Z(a) vs. o in Figure 3, constructed for the experimental pattern in Figure 1,

i reveals a strong correlation between bubble and cell areas. While statistics are very poor for l

| small and large a (in accordance with the form of the respective distributions, see below), the

‘ correlation is roughly linear. The non-zero intercept of the linear fit, Z(a)/c = 1.5a — 0.5,

‘ reflects an excluded volume effect: rather than the nominal area fraction T it is the quantity |

| Te = T +0.5¢ which exhibits a linear dependence on a with vanishing intercept. Consequently, |
the effective area fraction in fact substantially exceeds, by roughly 50%, the nominal value. '

We attribute this excluded volume effect to repulsive interactions between adjacent bubbles ‘

IH (21, 22). The dependence of the individual (non-averaged) z(a) on a is better described by

z(a)/c = 2.5a — 1.5. Averaging this relation over n-sided bubbles, and comparing with the

Lewis law, we find that the condition T(a = 1)/c = 1 should hold, in accordance with what !

is observed (see Fig. 3), and that X\, = 1.5A,, in agreement with the experimental values ‘

Ap 2 0.15 and A, = 0.23. ; : !
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Fig. 3. — Correlation between droplet and Voronoi polygon:areas. Left: Scatter plot of areas of

droplets, A, vs. areas of the corresponding Voronoi cell, Ay, each normalized by the respective mean
areas, {A) and {Ay,}. Right: Data of plot in left-hand panel, filtered by forming averages of successive
sets of five points; also shown is the result of a linear fit, with values of 1.5 and —0.5 for slope and
intercept, respectively.

3.2. DROPLET RADIUS DISTRIBUTION . - From P,(a,%), one computes the distribution
p(z) of bubble areas by integrating over ¢ and summing over n. This function is found to be
virtually independent of A,, A; and p, for a reasonable range of these quantities (0 < A, , < 0.4
and 0 < py < 1). While the weights of partial distributions p,.(z) depend on the p,'s and
thus on ps, the total distribution, p(z), remains surprisingly unaffected. Assuming bubbles to
adopt the shape of perfects disks, so that z = 7r?, we can compute the radius distribution.
The resulting funetion, p(z) = 3 [ daP,(a,x), essentially represents, for large z, a Poisson
distribution of droplet area. Under the assumption of circular droplets of radius r ~ /z, this
implies a Gaussian tail for the radius distribution.

In Figure 4a, we display the resulting expressions for p,(r) and p(r). A comparison of the
ME distribution, p(r), the experimental distributions and the LS form for p(r), shown in Figure
4b, makes it apparent that both the ME and experimental distributions closely approximate
a Gaussian shape, centered at v ~ 7. The experimental distribution is found to be slightly
narrower than that given by ME theory, with respective standard deviations of & = 0.235 for
the averaged data in Figure 4 and ¢ = 0.29 for the best Gaussian fit to the ME distribution. We
have occasionally recorded, at early times in off-critical quenches, droplet radius distributions
which match the ME shape virtually exactly. In contrast, the LS form is highly asymmetric.

3.3, SPATIAL CORRELATIONS: SCREENING OF TOPOLOGICAL CHARGE . — We now turn to
the issue of spatial correlations in cell and bubble patterns. Correlations in the topological
charge of NN cells in a disordered pattern are described by the Aboav-Weaire (AW) law [11].
Many disparate physical systems, including cellular patterns, ceramics, soap froths, metallic
grains [11], and even Feynman graphs of the ¢® field theory [23], are known to satisfy this law
[11}; in contrast, a truely random Voronoi lattice is known {20] to violate it. The AW law has
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Droplet Radius Distribution - Maximum Entropy
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Fig. 4. — Normalized, scaled domain radius distribution. (a): Droplet radius distribution, p(r), from
maximum entropy analysis, with us = 0.75; also shown are the partial distributions, p,{r), n = 4,5, 6.
(b): Average of three data sets for the normalized, scaled droplet radius distribution function, recorded
at successive times of 17 min, 1249 min and 2946 min subsequent to an isothermal surface pressure
quench [12]. The solid line represents a GGaussian fit, with parameters 1.02 for the mean, 0.24 for
the standard deviation and 1.69 for the peak amplitude; the dashed line represent the (best Gaussian
fit of the) maximum entropy distribution (with us = 0.75), as discussed in the text; the dotted line
represents (the 2d version of) the Lifshitz-Slyozov distribution [34].
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been recently justified from an assumption natural in the framework of ME theory [24].

Defining C = n — 6 to denote the topological charge of an n-sided cell, and Cnn to represent
the average charge of its n NN cells, this law states that ¢ +nCayn = (1—a)C + 119 [25]. Here,
C +nCyy is recognized as the net {topological) charge of a “N(earest)N(eighbor)-cluster” of
droplets. In view of equation (3), (C) = 0, this parametrizafion ensures validity of the exact
relation {C'+ nCnn) = pp [26). This sum rule expresses the fact that topological constraints
preclude complete charge compensation at the NN level whenever p15 > 0. Given that condition,
the optimal way to screen topological charge at short range is to minimize the deviations in
the net (topological) charge of a NN-cluster from the average. In view of the foregoing, this
is achieved by setting the coefficient 1 — ¢ = 0, a condition which in fact ensures a vanishing
variance ((nCyy + C — p2)?y = (1 - a)?us.

For most physical systerms conforming to the AW law, values of @ 2 1 have been reported; the
coarsening of droplets of interest here gencrates patterns which satisfy the AW law throughout
the scaling regime, in the narrow range of available n, 4 < n < 8, with a typical value of
a ~ 1L1. In contrast, for the unphysical Feynman graph pattern, no energetic constraints
apply, and one finds pg = 10.5 and a &~ —1 [23]. We conclude that the observation of a value
of @ = 1 constitutes a strong indication for the importance of charge screening during pattern
evolution. Given the linear correlation between droplet areas and topological charge, provided
by the Lewis law, the screening of charge implies the suppression of large fluctuations in droplet
area about the mean, (A, ), and the corresponding patterns are, in that sense, “relaxed”.

The condition of minimal variance suggests a heuristic bound on |1 — a|: to ensure that the
AW law expresses short-range screening, we propose that the variance should not exceed the
square of the mean. Fquating these two quantities, we obtain the condition 11 -a| < /i.
Notice that this argument does not determine the sign of 1 — a. Weaire and Rivier [11] have
attempted to account for the fact that ¢ > 1 on the basis of considering the energetics of
inhomogeneities introduced by angular distortions of relaxed cells in polygonal patterns. We
prefer to argue on the basis of the connection between droplet area and charge. Specifically,
we argue that for ug > 0, it is energetically tavorable and hence imperative to ensure efficient
screening of large, ie., larger than average, bubbles. For these, according to the Lewis law,
€' > 0, and partial cancellation of ps, by the correction term (1 ~ )C in the AW law requires
1—a £ 0. Another way to see this is to consider the spatial (not the topological) average of
C+nCxn: {C+nCnyg = 2on Pntn(C + nCn) = ua(1 + Aa{1 —a)). This spatial average of
“cluster charge” is clearly smaller if @ > 1 rather than g <1,

We now employ the Aboayv-Weaire law to examine local spatial correlations in our disordered
patterns. Specifically, we focus on the relation between the area a of a Voronoi cell (or the
area z of an embedded bubble) and the average area o' {or 2') of the NN cells (or bubbles).
Measuring z and z’ in units of ¢, thereby setting both averages to unity, we invoke the Lewis
law in the form # = 14 A, (n — 6) to eliminate n from the Aboay-Weaire law. We readily find

¥ 1 el —z)+ A
Tz (H 6—!—(3:—1)/)\2) ®

An alternative to this topological argument is a geometrical argument, based on the premise
that (statistical) area fluctuations (about the average) are completely screened at the NN level:
this is ensured by the condition na' + # = (n + 1). Once again eliminating 7 in this expression
by employing Lewis’s law, we obtain

' 1 : (1-2z)
- (1+6_-—+ (:r:—l)/A) ©)
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Area and Topological Charge Correlations

<Aznn /A

0.0 1.0 2.0
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Fig. 5. — Correlations between NN domains. Spatial correlations in the area values assumed by
adjacent domains, for the pattern in Figure 1. The solid line represents the model discussed in the
text, with parameters ps = 0.75, A = 0.25 and & = 1.1; the dashed line corresponds to the limit of
setting puz = 0 and & = 1, as discussed in the text. Inset: topological charge correlation function.
g(s) = {C(r + 8)C(r))s/(C(r)C{r)}s, with C = n —6 and distance s measured in units of the average
NN centroid distance, s = v/ (Avp)}, where (Av,) represents the average Voronoi cell area.

Note that expressions (8) and (9) are identical for @ = 1 and Apz = 0. From this point of
view, the observation of values of @ ~ 1 in physical systems may be taken as an indication
that geometric constraints, ensuring short-range screening of area fluctuations, are relevant
during pattern evolution. That is, both a topological and a geometrical argument provide a
connection between the suppression of large scale inhomogeneities and a value of a ~ 1.

In the coarsening experiments, ¢ =~ 1.1 and Auz = 0.15, implying that both expressions

should be quite close. In Figure 5, we display them along with the experimental points, and

find satisfactory agreement. The anti-correlation is apparent, implying that screening of charge
and of area fluctuations is in fact relevant here. In fact, it is quite remarkable to find this anti-
correlation for bubble areas and not just for the Voronoi cell areas, as would be more intuitive.
We note in passing that one can compute the leading correction to LS theory in the small
volume fraction limit [14]. The calculation amounts to solving an electrostatics problem with
charges of the same sign as the associated bubble growth rate. Thus, charge screening in this
problem implies that a growing bubble (which is likely to be large, with n > 6) prefers to be
surrounded by shrinking bubbles (likely to be small, with n < 6). This is in accord with the
nature of the correlations we find here.




Ne1 MAXIMUM ENTROPY AND DROPLETS PATTERNS 107

In the inset of Figure 5 we illustrate the actual charge screening by plotting the experimental
charge correlation function g(s) = (C(r + s)C(r)}s/{C(r)C(r)}s, with s in units of the average
NN centroid distances. The normalization is chosen so that g(0) = 1 [27]. The NN anti-
correlation is clearly seen: one has g(1) ~ —0.1 and g rapidly decays to zero at larger distances.
The magnitude of g(1) may be understood as follows: using the AW law and neglecting area
fluctuations [27], one finds g(1) ~ (6a + u3)(1 - 6(1/n))/{C?) ~ —0.14 with the experimental
parameters. A second, small minimum appears at s = 2.5. While this is expected, given that
screening at the NN level is, in accordance with the Weaire suym rule, impossible, the small
amplitude of the second minimum does indicate virtually complete charge compensation at the
NN level. That is, topological charges are essentially “associated” into neutral clusters whose
gize is that of the NN shell.

4. Discussion

r

In the foregoing sections we have extended the maximum entropy description of cellular pat-
terns to droplet patterns, and we have applied this treatment to the analysis of disordered
droplet patterns formed during late-stage coarsening in a iwo-dimensional binary mixture.
We have shown that the ME theory accounts well for the virtually Gaussian shape of the
scaled droplet radius distribution, as well as for the anti-correlation between areas of adjacent
droplets. The latter has been shown to be intimately connected to the screening of topological
charge at short distances. :

The essential assumption underlying the ME analysis is the predominance of entropic con-
straints during pattern evolution. That is, for given effective temperature, fixed by prescribing
a value for pg, momentary pattern configurations are selected so as to maximize entropy.
Consequently, this formalism does not describe the ordering transition expected to terminate
coarsening in a variety of systems with competing short-range attractive and long-range repul-
sive interactions [5-7], which form (periodically) modulated patterns in equilibrium [9). The
coarsening experiments described here were performed on Langmuir films which exhibit dipolar
interactions of long range and are thus thought to belong to this category [21, 28]. While an
ordering transition to a hexagonal lattice of bubbles is thus expected at some late stage, the
available evidence suggests that the pertinent cross-over time to equilibrium behavior has not
been attained in experiments to date [12, 29]. The present analysis provides strong evidence
for a prominent role of entropy maximization in the selection of configurations of coarsening
droplet patterns.

The patterns of interest here evolve via configurations which maximize entropy by adopt-
ing a local packing arrangement minimizing deviations from a neutral topological state C =
{n — 6) = 0. The locally optimal domain packing is stabilized against domain coalescence via
repulsive interactions between domains. We propose that it is this stabilization of locally equi-
librated pattern configurations during domain coarsening which represents the most notable
manifestation of electrostatic interactions in the present system. It appears natural to assume
that there are no specific requirements as to the precise distance dependence of the interaction,
50 long as domain fusion is suppressed. This suggests that, under such conditions, irrespective
of spatial dimension, the resulting global correlations favor pattern configurations selected via
maximization of entropy.

It is interesting to note that in the very different context of describing quasicrystals, ME
considerations have also been invoked. Given two kinds of elementary tiles {at the proper rela-
tive composition), the tiling with maximal configurational entropy is in fact a quasicrystal (for
instance a Penrose tiling if the tiles are properly chosen) [30]. This state may thus be viewed as
the maximally homogenous mixture of the two tiles, ensuring that a local exchange (“flip-flop”)
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of two different vertices is possible everywhere within the pattern. In contrast, in the limit of
segregation of the two tiles into patches composed of just one type of tile, i.e. into twinned
microcrystals, such tile exchange would be possible only along the crystal boundaries. “We see
that these microcrystals correspond to a large fluctuation away from the homogeneously mixed
state of maximal entropy, and we may thus say that, in the quasicrystal, composition fluctu-
ations are optimally screened [31]. This is in complete analogy to the screening of topological
charge and of area fluctuations in the droplet patterns.

Finally, it is an open question whether a von Neumann law applies to the coarsening dynamics
of the droplet patterns studied here. This law which is exact for an ideal 2D soap froth [11, 32]
states that the growth rate of an n-sided bubble is dA,/dt oc (n — 6); that is, the rate is
independent of time and of bubble shape. In the present problem, using the fact that {A) ~ 313,
and following Rivier’s ME treatment for soap bubbles [33], we are lead to conjecture that
dA,/dt o« (n — 6)t~1/3. The experimental verification of this refation for individual bubbles,
or, more simply, for the average, {4}, of n-fold coordinated bubbles, remains an interesting
challenge. Numerical simulations could also address this point [34].
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