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Abstract We report a new method to measure the velocity
of a fluid in the vicinity of a wall. The method, that we call
Particle-Shadow Tracking (PST), simply consists in seed-
ing the fluid with a small number of fine tracer particles of
density close to that of the fluid. The position of each par-
ticle and of its shadow on the wall are then tracked simul-
taneously, allowing one to accurately determine the distance
separating tracers from the wall and therefore to extract the
velocity field. We present an application of the method to the
determination of the velocity profile inside a laminar density
current flowing along an inclined plane.

Keywords Velocity profile· PIV

1 Introduction

Measuring the velocity of a fluid in the vicinity of a wall is
relevant to a great number of fundamental and applied inves-
tigations such as understanding the structure and dynamics
of boundary layers (8; 2; 3). In practice, such measurements
are difficult as they require to achieve a high accuracy on
both the velocity and the distance to the wall, the proxim-
ity of which makes unfortunately difficult to reach. Optical
methods such as Particle Image Velocimetry (PIV) or laser
anemometry usually fail to meet these two criteria when op-
erating too close to a wall and are therefore inappropriate for
such measurements (1; 7).

In this paper, we present a new and simple experimental
technique developed to perform local measurement of the
velocity field of a fluid near a wall. This method, that we
call Particle-Shadow Tracking (PST), consists in seeding the
fluid with a very low number of fine tracer particles of den-
sity close to that of the fluid. Simultaneous tracking of each
particle and its shadow on the wall allows us to accurately
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Institut de Physique du Globe de Paris
4, Place Jussieu
75252 Paris cedex 05, France

determine the distance separating tracers from the wall and
therefore to extract the velocity field.

The paper is organized as follows. The technique is pre-
sented and discussed in section 2. Section 3 describes an ap-
plication of the method to the measurement of the velocity
profile of a laminar density current flowing along an incline
plane. We then make some brief suggestions about how the
technique may be further developed and conclude.

2 The PST method

For the sake of simplicity, we will illustrate the PST method
in the case of a fluid flowing above a inclined wall as sche-
med on figure 1. Thex andy axes are oriented respectively
along and transverse to the flow direction. Thez axis is nor-
mal to the wall. The fluid of densityρ and viscosityη is
seeded with a small number of fine tracer particles of diam-
eterD. Ideally the best is to use neutrally buoyant particles,
that is of densityρp = ρ. In practice, a perfect density match-
ing is difficult to achieve. But, as discussed hereafter, theuse
of tracer particles of density slightly larger than that of the
fluid can be a plus for the method.

A punctual light source enlightens the wall under a small
incidence angleα. A camera oriented perpendicularly to the
plane is used to acquire digitized images of the wall at reg-
ular time intervals. The images are then processed to extract
the lateral coordinates (xp,yp) of each particle and (xs, ys) of
the shadow it projects on the wall (see fig. 1). The third co-
ordinatezp of the particle is then deduced from the distance
d separating the particle from its shadow:

zp = tanα d ≈ α d (1)

Measurement ofxp(t), yp(t) and zp(t) at regular time
intervals therefore allows us to determine the velocity field
along the particle trajectory:

u(xp,yp,zp) =
xp(t +δ t)− xp(t)

δ t
(2)

whereδ t is the time step separating the acquisition of two
successive frames. The complete velocity profileu(x,y,z, t)
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Fig. 1 Schematic of the PST method

is extracted by repeating these measurements on a large num-
ber of particles whose trajectories cover the whole area of
interest.

In terms of accuracy, it follows from equations (1) and
(2) that:
∆ zp = αR (3)

∆u = 2
R
δ t

(4)

whereR is the spatial resolution of the image (i.e. the pixel
size).

As for all velocimetry method based on seed particles, an
important issue is to ensure that particles move at the same
velocity than the fluid. In the limit of small particle Reynolds
number, the difference between fluid and particle velocity is
given by (1):

|v−u|=
ρpD2 |v̇|

36η
(5)

wherev is the velocity of the particle,u that of the fluid and
v̇ is the typical particle acceleration. If the flow is steady
and quasi-parallel, it follows from the above equation thatv
is very close tou. For a non steady flow, the effect of slip
needs to be evaluated from the above equation in order to
estimate the accuracy of the velocity measurement.

In practice, Particle-Shadow tracking forces velocity mea-
surements to remain concentrated below a maximum dis-
tance to the wall for two reasons. First of all, both the parti-
cle and its shadow have to be present simultaneously inside
the zone imaged by the camera. It follows from equation (1)
that the largest wall-particle distance that can be detected is
of the order of:
z1 ≈ S.α (6)
whereS is the typical length of the zone imaged by the cam-
era.

The second limiting factor is illustrated on figure 1. In
practice, a light source is not punctual. As a result, the sha-
dow cone generated by a particle A extends up to a point B,
beyond which only penumbra remains. If B is located above
the wall, the shadow poorly contrasts on the wall so that it
cannot be detected. Distance AB can be estimated by:

‖AB‖ ≈
D

δα
(7)

whereD is the particle diameter.δα ≈ W/L is the source
angular diameter, whereW is the light source diameter and
L is the distance separating the light source from the mea-
surement point. From figure 1 it follows that the shadow is
not detectable anymore as soon as the distance of the particle
to the wall is larger than:

z2 ≈ D
α

δα
=

DαL
W

(8)

Although receding the light source reducesδα and increases
z2, the counterpart is a loss of luminosity degrading the sig-
nal to noise ratio during treatment. Another alternative isto
use a collimated light source instead of a punctual one. In
that latter case,z2 depends on the parallelism uncertainties
δα ′ of the collimated light:z2 ≈ Dα/δα ′ (1).

A key point of the method is to determine the shadow as-
sociated to a given particle. This can become difficult when
the number of particles visible on a frame is too large. A
simple way to address this problem is to use tracer particles
of density slightly larger than that of the fluid so that they
slowly settle. When a settling particle reaches the wall, it
coincides with its shadow allowing us to identify it without
any ambiguity. The particle and its shadow are then tracked
by playing the movie backwards. This however introduces a
third maximum distance to the wall as the particle must re-
main in the field of the camera until it reaches the wall. The
time necessary for the particle to settle from a heighth is:

t =
h
Vs

(9)

where the settling velocityVs = (ρp −ρ).g.D2/18η is esti-
mated from the Stokes velocity (Lamb 1945). The horizontal
distance covered by the tracers during this time is of order:

φ =
hU
Vs

(10)

whereU is the typical flow velocity. The particle must re-
main in the field of the camera until its settling, which im-
posesφ < S and determines a third boundary for the profile
height of the order of:

z3 ≈
SVs

U
(11)
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Fig. 2 Setup for the density current experiment

From the above discussion, it follows that the maximum
wall-distancezmax which can be explored by PST is given by
the minimum betweenz1, z2 and possiblyz3. For z > zmax,
PST fails and the velocity profile has to be measured using
classical techniques such as PIV.

3 Application

We first developed the PST method in order to measure the
velocity profile of a dense current running out on a slope
(5; 6). We were particularly interested in the profile in the
immediate vicinity of the wall as our goal was to measure
the shear stress applied on the latter by the current. We will
therefore illustrate PST for this particular application.The
corresponding experimental setup is sketched on figure 2. It
consists of a 100cm×50cm incline, immersed in a 200cm×
50cm×50cm flume filled with fresh water. The flow is gen-
erated by injecting a brine of densityρb larger than that of
fresh water at a constant flow rateQ from the top of the
ramp. The resulting gravity current is laminar, steady and
varies slowly along thex axis (5; 6).

Our camera definition is 700×570 pixels, the width of
the imaged zone isS = 7cm and the spatial resolution of
the camera isR = 100µm/pixel. The acquisition rate is 25
framess−1 corresponding toδ t = 40ms. The experimental
plane is enlightened with a projector under an incidence an-
gleα = 20◦. The angular diameter of the lamp isδα ≈ 0.4◦.
The tracers are fine plastic particles (Rilsan) with a char-
acteristic size of 30µm. Their densityρp = 1080Kg.m−3 is
slightly larger than that of the brine. As a result, they slowly
settle so that one particle allows us to explore a wide range
of z. Note that, as our flow is steady and varies slowly along
thex axis, tracking only one particle is enough to establish
the velocity profileu(z).

Equations (6), (8) and (11) lead to:z1 ≈ 10mm, z2 ≈
1.5mm andz3 ≈5mm. In this experimental configuration, the
maximum wall-distancezmax which can be explored by PST
is set by the size of the light source which forbids to measure
velocity above zmax = z2 ≈ 1.5mm. Figure 3 shows typical
velocity measurements obtained by applying PST to 5 dif-
ferent particles located in the same area. All data collapse
on the same velocity profileu(z). The flow that we consider
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Fig. 3 Near-wall velocity profile of the density current, measured0.3m
downslope of the entrance with PST. Each symbol correspond to a dif-
ferent particle.ρ = 1025Kg.m−3,Q = 0.95mL.s−1, θ = 16◦.
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Fig. 4 Complete velocity profile. PST data from figure 3 (dots) are
completed using classical side-view particle tracking (crosses).

in this section is laminar and stationary. By performing sev-
eral repeated measurements and performing slide averages
of the data, we were able to establish the velocity profile
with an accuracy of 0.3mm.s−1 and a vertical resolution of
30µm (that is inferior to the pixel size) up to a maximum
distancezmax ≈ 1.5mm.

Abovez≈1.5mm, the velocity profile was measured with
a more classical particle tracking technique using side-views
of the flow acquired by a camera placed on the side of the
tank. The lower and upper part of the resulting velocity pro-
file are perfectly consistent and overlap in the vicinity of
z ≈ 1.5mm, as visible on figure 4. To our knowledge, this is
the first measurement of a complete velocity profile obtained
for laminar density current experiments.
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4 Conclusion

We have described a new method to measure near-wall ve-
locity profiles. This so-called Particle-Shadow Tracking me-
thod (PST) consists in seeding the fluid with a very low num-
ber of fine tracer particles. Tracking simultaneously both the
particles and their shadow permits to measure the velocity
profile in the direction transverse to the wall. As illustrated
through an example, this new method is cheap, simple and
accurate. Measurements are however restricted in a layer at
the wall of thickness which mainly depends on light con-
ditions, flow velocity and particles size and density. Deter-
mination of the velocity profile out of this layer have to be
performed using more classical techniques such as PIV. PST
should be therefore considered as a complementary method
particularly adapted to the investigation of boundary layers.

Using two light sources with two different incidence an-
gles, a small one and a large one, might improve PST method
by extending the thickness of the measurement layer. In fact,
each particle would therefore project two different shadows
on the wall. When possible, the particle-wall distance would
be calculated from the most distant shadow. When the latter
is not in the field of view, particle-wall distance would be
calculated from the nearest shadow. It would thus be possi-
ble to increase the thickness of the measurement layer with-
out degrading the vertical resolution.

Our motivation to develop the PST method was indeed
to measure the velocity profile inside a laminar density cur-
rent. Therefore we did not apply the method to a turbulent
flow. In principles, PST (that is simultaneous tracking of the
position of a particle and its shadow) should work in a turbu-
lent flow. Of course, in practice, applying the PST technique
to a turbulent flow would be more difficult: a higher frame
rate is needed and the size and density of the particles need
to be adapted to prevent slip effects.
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