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In a convolution model, we observe random variables whose distribution is the convolution of some unknown density f and some known or partially known noise density g. In this paper, we focus on statistical procedures, which are adaptive with respect to the smoothness parameter τ of unknown density f , and also (in some cases) to some unknown parameter of the noise density g.

In a first part, we assume that g is known and polynomially smooth. We provide goodness-of-fit procedures for the test H 0 : f = f 0 , where the alternative H 1 is expressed with respect to L 2 -norm (i.e. has the form ψ -2 n ff 0 2 2 ≥ C). Our adaptive (w.r.t τ ) procedure behaves differently according to whether f 0 is polynomially or exponentially smooth. A payment for adaptation is noted in both cases and for computing this, we provide a non-uniform Berry-Esseen type theorem for degenerate U -statistics. In the first case we prove that the payment for adaptation is optimal (thus unavoidable).

In a second part, we study a wider framework: a semiparametric model, where g is exponentially smooth and stable, and its self-similarity index s is unknown. In order to ensure identifiability, we restrict our attention to polynomially smooth, Sobolevtype densities f . In this context, we provide a consistent estimation procedure for

Dans un second temps, nous nous placons dans le cadre plus large d'un modèle semi-paramétrique, où g est la densité d'une loi stable (régularité de type exponentiel) avec un indice d'auto-similarité s inconnu. Pour assurer l'identifiabilité du modèle, la densité f est supposée appartenir à un espace de Sobolev (régularité polynomiale). Dans ce cadre, nous proposons un estimateur consistant de s. Celui-ci est ensuite injecté dans trois procédures différentes : l'estimation de f , de la fonctionnelle f 2 et le test de l'hypothèse H 0 . Ces procédures sont adaptatives par rapport à s et à τ et atteignent les vitesses optimales du cas s et τ connus. Enfin, lorsque g est connue et de régularité exponentielle, une conséquence de notre résultat est que cette procédure de test est adaptative lorsque f 0 appartient à un espace de Sobolev.

Introduction

Convolution model

Consider the convolution model where the observed sample {Y j } 1≤j≤n comes from the independent sum of independent and identically distributed (i.i.d.) random variables X j with unknown density f and Fourier transform Φ and i.i.d. noise variables ε j with known (maybe only up to a parameter) density g and Fourier transform Φ g Y j = X j + ε j , 1 ≤ j ≤ n.

(

) 1 
The density of the observations is denoted by p and its Fourier transform Φ p . Note that we have p = f * g where * denotes the convolution product and Φ p = ΦΦ g .

The underlying unknown density f is always supposed to belong to L 1 ∩ L 2 . We shall consider probability density functions belonging to the class

F (α, r, β, L) = f : R → R + , f = 1, 1 2π |Φ (u)| 2 |u| 2β exp (2α|u| r ) du ≤ L , (2) 
for L a positive constant, α > 0, 0 ≤ r ≤ 2, β ≥ 0 and either r > 0 or β > 0. Note that the case r = 0 corresponds to Sobolev densities whereas r > 0 corresponds to infinitely many differentiable (or supersmooth) densities.

We consider noise distributions whose Fourier transform does not vanish on R: Φ g (u) = 0, ∀ u ∈ R. Typically, nonparametric estimation in convolution models gives rise to the distinction of two different behaviours for the noise distribution. We alternatively shall consider (for some constant c g > 0), polynomially smooth (or polynomial) noise

|Φ g (u)| ∼ c g |u| -σ , |u| → ∞, σ > 1;
(3) exponentially smooth (or supersmooth or exponential) stable noise

|Φ g (u)| = exp (-γ |u| s ) , |u| → ∞, γ, s > 0. (4) 
In this second case, the parameter s is called the self-similarity index of the noise density and we shall consider that it is unknown.

Convolution models have been widely studied over the past two decades. We will be interested here both in estimation of the unknown density f and in testing the hypothesis H 0 : f = f 0 , with a particular interest in adaptive procedures. Our first purpose is to provide goodness-of-fit testing procedures on f , for the test of the hypothesis H 0 : f = f 0 , which are adaptive with respect to the unknown smoothness parameter of f . The second one is to study the behaviour of different procedures (such as estimation of f , estimation of f 2 and goodness-of-fit test) in a setup where self-similarity index s is unknown.

Adaptive procedures in the convolution model

Concerning estimation, the asymptotically minimax setup in the context of pointwise or L p -norms and in the case of entirely known noise density g is the most studied one. Major results in this direction prove that the smoother the error density, the slower the optimal rates of convergence (see [START_REF] Carroll | Optimal rates of convergence for deconvolving a density[END_REF], [START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problems[END_REF], [START_REF] Butucea | Deconvolution of supersmooth densities with smooth noise[END_REF], [START_REF] Fan | Deconvolution with supersmooth distributions[END_REF] concerning polynomial noise and [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF], [START_REF] Comte | Penalized contrast estimator for adaptive density deconvolution[END_REF], [START_REF] Butucea | Sharp optimality for density deconvolution with dominating bias[END_REF] for exponential noise).

Adaptive estimation procedures were considered first by [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF] and then by [START_REF] Fan | Wavelet deconvolution[END_REF]. They constructed wavelets estimators which do not depend on smoothness parameter of the density f to be estimated. Adaptive kernel estimators were given in [START_REF] Butucea | Sharp optimality for density deconvolution with dominating bias[END_REF]. A different adaptive approach is used in [START_REF] Comte | Penalized contrast estimator for adaptive density deconvolution[END_REF] relying on penalized contrast estimators.

Nonparametric goodness-of-fit testing has extensively been studied in the context of direct observations (namely a sample distributed from the density f to be tested), but also for regression or in the Gaussian white noise model. We refer to [START_REF] Lehmann | Testing statistical hypotheses[END_REF], [START_REF] Ingster | Nonparametric goodness-of-fit testing under Gaussian models[END_REF] for an overview on the subject. The convolution model provides an interesting setup where observations may come from a signal observed through some noise.

Nonparametric goodness-of-fit tests in convolution models were studied in [START_REF] Holzmann | Density testing in a contaminated sample[END_REF] and in [START_REF] Butucea | Quadratic functional estimation in view of minimax goodness-of-fit testing from noisy data[END_REF]. The approach used in [START_REF] Butucea | Quadratic functional estimation in view of minimax goodness-of-fit testing from noisy data[END_REF] is based on a minimax point of view combined with estimation of the quadratic functional f 2 . Assuming the smoothness parameter of f to be known, the authors of [START_REF] Holzmann | Density testing in a contaminated sample[END_REF] define a version of the Bickel-Rosenblatt test statistic and study its asymptotic distribution under the null hypothesis and under fixed and local alternatives, while [START_REF] Butucea | Quadratic functional estimation in view of minimax goodness-of-fit testing from noisy data[END_REF] provides a different goodness-of-fit testing procedure attaining the minimax rate of testing in each of the three following setups: Sobolev densities and polynomial noise, supersmooth densities and polynomial noise, Sobolev densities and exponential noise. The case of supersmooth densities and exponential noise is also studied but the optimality of the procedure is not established in the case r > s.

Our first goal here is to provide adaptive versions of these last procedures with respect to the parameters (α, r, β). We restrict our attention to testing prob-lems where alternatives are expressed with respect to L 2 -norm. Namely, the alternative has the form

H 1 : ψ -2 n f -f 0 2 2 ≥ C.
In such a case, the problem relates with asymptotically minimax estimation of f 2 .

Our second goal is to deal with the case of not entirely known noise distribution. This is a crucial issue as, assuming this noise distribution to be entirely known is not realistic in many situations. However, in general, the noise density g has to be known for the model to be identifiable. Nevertheless, when the noise density is exponentially smooth and the unknown density is restricted to be less smooth than the noise, semiparametric models are identifiable and they may be considered. The case of a Gaussian noise with unknown variance γ and unknown density without Gaussian component has first been considered in [START_REF] Matias | Semiparametric deconvolution with unknown noise variance[END_REF]. She proposes an estimator of the parameter γ which is then plugged in an estimator of the unknown density. This work is generalized in [START_REF] Butucea | Minimax estimation of the noise level and of the deconvolution density in a semiparametric convolution model[END_REF] for exponentially smooth noise with unknown scale parameter γ and unknown densities belonging either to Sobolev classes, or to classes of supersmooth densities with parameter r, r < s. Minimax rates of convergence are exhibited. In this context, the unknown parameter γ acts as a real nuisance parameter as the rates of convergence for estimating the unknown density are slower compared to the case of known scale, those rates being nonetheless optimal in a minimax sense. Another attempt to remove knowledge on the noise density appears in [START_REF] Meister | On the effect of misspecifying the error density in a deconvolution problem[END_REF] where the author studies a deconvolution estimator associated to a procedure for selecting the error density between the Normal supersmooth density and the Laplace polynomially smooth density (both with fixed parameter values).

In the second part of our work, we will be interested in estimation procedures on f , adaptive both with respect to the smoothness parameter of f and to an unknown parameter of the noise density. More precisely, in the specific setup of Sobolev densities and exponential noise with symmetric stable distribution, we will consider the case of unknown self-similarity index s. In this context, we first propose an estimator of the self-similarity index s, which, plugged into kernel procedures, provides estimators of the unknown density f with the same optimal rate of convergence as in the case of entirely known noise density. Using the same techniques, we also construct an estimator of the quadratic functional f 2 (with optimal rate of convergence) and L 2 goodness-of-fit test statistic. Note that this work is very different from [START_REF] Butucea | Minimax estimation of the noise level and of the deconvolution density in a semiparametric convolution model[END_REF] as the self similarity index s plays a different role from the scale parameter γ previously studied. In particular, the range of applications of those results is entirely new.

Notation, definitions, assumptions

In the sequel, • 2 denotes the L 2 -norm, M is the complex conjugate of M and < M, N >= M(x) N (x)dx is the scalar product of complex-valued functions in L 2 (R). Moreover, probability and expectation with respect to the distribution of Y 1 , . . . , Y n induced by the unknown density f will be denoted by P f and E f . We denote more generally by τ = (α, r, β) the smoothness parameter of the unknown density f and by F (τ, L) the corresponding class. As the density f is unknown, the a priori knowledge of its smoothness parameter τ could appear unrealistic. Thus, we assume that τ belongs to a closed subset T , included in (0, +∞) × (0, 2] × (0, +∞). For a given density f 0 in the class F (τ 0 ), we want to test the hypothesis

H 0 : f = f 0 from observations Y 1 , .
. . , Y n given by [START_REF] Butucea | Asymptotic normality of the integrated square error of a density estimator in the convolution model[END_REF]. We extend the results of [START_REF] Butucea | Quadratic functional estimation in view of minimax goodness-of-fit testing from noisy data[END_REF] by giving the family of sequences Ψ n = {ψ n,τ } τ ∈T which separates (with respect to L 2 -norm) the null hypothesis from a larger alternative

H 1 (C, Ψ n ) : f ∈ ∪ τ ∈T {f ∈ F (τ, L) and ψ -2 n,τ f -f 0 2 2 ≥ C}.
We recall that the usual procedure is to construct, for any 0 < ǫ < 1, a test statistic ∆ ⋆ n (an arbitrary function, with values in {0, 1}, which is measurable with respect to Y 1 , . . . , Y n and such that we accept H 0 if ∆ ⋆ n = 0 and reject it otherwise) for which there exists some C 0 > 0 such that lim sup

n→∞ P 0 [∆ ⋆ n = 1] + sup f ∈H 1 (C,Ψn) P f [∆ ⋆ n = 0] ≤ ǫ, (5) 
holds for all C > C 0 . This part is called the upper bound of the testing rate. Then, prove the minimax optimality of this procedure, i.e. the lower bound lim inf

n→∞ inf ∆n P 0 [∆ n = 1] + sup f ∈H 1 (C,Ψn) P f [∆ n = 0] ≥ ǫ, (6) 
for some C 0 > 0 and for all 0 < C < C 0 , where the infimum is taken over all test statistics ∆ n .

Let us first remark that as we use noisy observations (and unlike what happens with direct observations), this test cannot be reduced to testing uniformity of the distribution density of the observed sample (i.e. f 0 = 1 with support on the finite interval [0; 1]). As a consequence, additional assumptions used in [START_REF] Butucea | Quadratic functional estimation in view of minimax goodness-of-fit testing from noisy data[END_REF] on the tail behaviour of f 0 (ensuring it does not vanish arbitrarily fast) are needed to obtain the optimality result of the testing procedure in the case of Sobolev density (r = 0) observed with polynomial noise ((T) and (P)), respectively with exponential noise ((T) and (E)). We recall these assumptions here for reader's convenience.

Assumption (T)

∃c 0 > 0, ∀x ∈ R, f 0 (x) ≥ c 0 1 + |x| 2 .
Moreover, we also need to control the derivatives of known Fourier transform Φ g when establishing optimality results.

Assumption (P) (Polynomial noise) If the noise satisfies (3), then assume that Φ g is three times continuously differentiable and there exist

A 1 , A 2 such that |(Φ g ) ′ (u)| ≤ A 1 |u| σ+1 and |(Φ g ) ′′ (u)| ≤ A 2 |u| σ+2 , |u| → ∞.
Assumption (E) (Exponential noise) If the noise satisfies (4), then assume that Φ g is continuously differentiable and there exists some constants C > 0 and

A 3 ∈ R such that |(Φ g ) ′ (u)| ≤ C|u| A 3 exp(-γ|u| s ), |u| → ∞.
Remark 1 Similar results may be obtained when we assume the existence of some p ≥ 1 such that f 0 (x) is bounded from below by c 0 (1 + |x| p ) -2 for large enough x. In such a case, the Fourier transform Φ g of the noise density is assumed to be p times continuously differentiable, with derivatives up to order p satisfying the same kind of bounds as in Assumption (P), when the noise is polynomial, respectively in Assumption (E), when the noise is exponential.

Roadmap

Section 2 deals with the case of (known) polynomial noise. We provide a goodness-of-fit testing procedure for the test H 0 : f = f 0 , in two different cases: the density f 0 to be tested is either ordinary smooth (r 0 = 0) or supersmooth (r 0 > 0). The procedures are adaptive with respect to the smoothness parameter (α, r, β) of f . The proof of the upper bounds for the testing rate relies mainly on a Berry-Esseen inequality for degenerate U-statistics of order 2, postponed to Section 4. In some cases, a loss for adaptation is noted with respect to known testing rates for fixed known parameters. When the loss is of order log log n to some power, we prove that this payment is unavoidable.

In Section 3, we consider exponential noise of symmetric stable law with unknown self-similarity index s. In order to ensure identifiability, we restrict our attention to Sobolev classes of densities f . The first step (Section 3.1) is to provide a consistent estimation procedure for the self-similarity index. Then (Section 3.2) using a plug-in, we introduce a new kernel estimator of f where both the bandwidth and the kernel are data dependent. We also introduce an estimator of the quadratic functional f 2 with sample dependent bandwidth and kernel. We prove that these two procedures attain the same rates of convergence as in the case of entirely known noise distribution, and are thus asymptotically optimal in the minimax sense. We also present a goodness-offit test on f in this setup. We prove that the testing rate is the same as in the case of entirely known noise distribution and thus asymptotically optimal in the minimax sense. Proofs are postponed to Section 5.

Polynomially smooth noise

In this section, we shall assume that the noise density g is polynomial (3). The unknown density f belongs to the class F (α, r, β, L). We are interested in adaptive, with respect to the parameter τ = (α, r, β), goodness-of-fit testing procedures. We assume that this unknown parameter belongs to the following set Let us introduce some notation. We consider a preliminary kernel J, with Fourier transform Φ J , defined by

T = {τ = (α, r, β); τ ∈ [α; +∞) × [r; r] × [β; β]}, where α > 0, 0 ≤ r ≤ r ≤ 2, 0 ≤ β ≤ β
∀x ∈ R, J(x) = sin(x) πx , ∀u ∈ R, Φ J (u) = 1 |u|≤1 ,
where 1 A is the indicator function of the set A. For any bandwidth h = h n → 0 as n tends to infinity, we define the rescaled kernel J h by

∀x ∈ R, J h (x) = h -1 J(x/h) and ∀u ∈ R, Φ J h (u) = Φ J (hu) = 1 |u|≤1/h .
Now, the deconvolution kernel K h with bandwidth h is defined via its Fourier transform Φ K h as

Φ K h (u) = (Φ g (u)) -1 Φ J (uh) = (Φ g (u)) -1 Φ J h (u), ∀u ∈ R. (7) 
In Section 3.2, we will consider a modification of this kernel to take into account the case of not entirely known noise density g.

Next, the quadratic functional (ff 0 ) 2 is estimated by the statistic T n,h

T n,h = 2 n(n -1) 1≤k<j≤n < K h (• -Y k ) -f 0 , K h (• -Y j ) -f 0 > . (8) 
Note that T n,h may not be positive, but its expected value is.

In order to construct a testing procedure which is adaptive with respect to the parameter τ we introduce a sequence of finite regular grids over the set T of unknown parameters: T N = {τ i ; 1 ≤ i ≤ N}. For each grid point τ i we choose a testing threshold t 2 n,i and a bandwidth h i n giving a test statistic T n,h i n .

The test rejects the null hypothesis as soon as at least one of the single tests based on the parameter τ i is rejected.

∆ ⋆ n =      1 if sup 1≤i≤N |T n,h i n |t -2 n,i > C ⋆ 0 otherwise, (9) 
for some constant C ⋆ > 0 and finite sequences of bandwidths {h i n } 1≤i≤N and thresholds {t 2 n,i } 1≤i≤N .

We note that our asymptotic results work for large enough constant C ⋆ . In practice we may choose it by Monte-Carlo simulation under the null hypothesis, for known f 0 , such that we control the first-type error of the test and bound it from above, e.g. by ǫ/2.

Typically, the structure of the grid accounts for two different phenomena. A first part of the points is dedicated to the adaptation with respect to β in case r = r = 0, whereas the rest of the points is used to adapt the procedure with respect to r (whatever the value of β).

In the two next theorems, we fix σ > 1. We note that the testing rates are essentially different according to the two different cases where f 0 belongs to a Sobolev class (r 0 = 0, α 0 ≥ α and we assume β 0 = β) and where f 0 is a supersmooth function (α 0 ∈ [α, α], r 0 > 0 and β 0 ∈ [β, β] and then we focus on r 0 = r and α 0 = α). Note that in the first case, the alternative contains functions f which are smoother (r > 0) than the null hypothesis f 0 .

When f 0 belongs to Sobolev class F (α 0 , 0, β, L), the grid is defined as follows.

Let N and choose

T N = {τ i ; 1 ≤ i ≤ N + 1} such that              ∀1 ≤ i ≤ N, τ i = (0; 0; β i ) and β 1 = β < β 2 < . . . < β N = β, ∀1 ≤ i ≤ N -1, β i+1 -β i = ( β -β)/(N -1),
and τ N +1 = (α; r; 0)

In this case, the first N points are dedicated to the adaptation with respect to β when r = r = 0, whereas the last point τ N +1 is used to adapt the procedure with respect to r (whatever the value of β).

Theorem 1 Assume f 0 ∈ F (α 0 , 0, β, L). The test statistic ∆ ⋆ n given by (9) with parameters

N = ⌈log n⌉; ∀1 ≤ i ≤ N :          h i n = n √ log log n -2/(4β i +4σ+1) t 2 n,i = n √ log log n -4β i /(4β i +4σ+1) , h N +1 n = n -2/(4 β+4σ+1) ; t 2 n,N +1 = n -4 β/(4 β+4σ+1) ,
and any large enough positive constant C ⋆ , satisfies (5) for any ǫ ∈ (0, 1), with testing rate Ψ n = {ψ n,τ } τ ∈T given by

ψ n,τ = n √ log log n -2β/(4β+4σ+1) 1 r=0 +n -2 β/(4 β+4σ+1) 1 r>0 , ∀ τ = (α, r, β) ∈ T .
Moreover, if f 0 ∈ F (α 0 , 0, β, cL) for some 0 < c < 1 and if Assumptions (T) and (P) hold, then this testing rate is adaptive minimax over the family of classes

{F (τ, L), τ ∈ [α, ∞) × {0} × [β, β]} (i.e. (6) holds).
We note that our testing procedure attains the polynomial rate n -2 β/(4 β+4σ+1) over the union of all classes containing functions smoother than f 0 . Note moreover that this rate is known to be a minimax testing rate over the class F (0, 0, β, L) by results in [START_REF] Butucea | Quadratic functional estimation in view of minimax goodness-of-fit testing from noisy data[END_REF]. Therefore we prove that the loss of some power of log log n with respect to the minimax rate is unavoidable. A loss appears when the alternative contains classes of functions less smooth than f 0 .

The proof that our adaptive procedure attains the minimax rate relies on the Berry-Esseen inequality presented in Section 4.

When f 0 belongs to class F (α, r, β 0 , L) of infinitely many differentiable functions, the grid is defined as follows. Let N 1 , N 2 and choose

T N = {τ i ; 1 ≤ i ≤ N = N 1 + N 2 } such that                    ∀1 ≤ i ≤ N 1 , τ i = (0; 0; β i ) and β 1 = β < β 2 < . . . < β N 1 = β, ∀1 ≤ i ≤ N 1 -1, β i+1 -β i = ( β -β)/(N 1 -1),
and

∀1 ≤ i ≤ N 2 , τ N 1 +i = (α; r i ; β 0 ) and r 1 = r < r 2 < . . . < r N 2 = r, ∀1 ≤ i ≤ N 2 -1, r i+1 -r i = (r -r)/(N 2 -1).
In this case, the first N 1 points are used for adaptation with respect to β in case r = r = 0, whereas the last N 2 points are used to adapt the procedure with respect to r (whatever the value of β).

Theorem 2 Assume f 0 ∈ F (α, r, β 0 , L) for some β 0 ∈ [β, β].
The test statistic ∆ ⋆ n given by (9) with C ⋆ large enough and

N 1 = ⌈log n⌉; ∀1 ≤ i ≤ N 1 :          h i n = n √ log log n -2/(4β i +4σ+1) t 2 n,i = n √ log log n -4β i /(4β i +4σ+1) , N 2 = ⌈log log n/(r-r)⌉; ∀1 ≤ i ≤ N 2 :      h N 1 +i n = log n 2c -1/r i , c < α exp -1 r t 2 n,N 1 +i = (log n) (4σ+1)/(2r i ) n √ log log log n , satisfies (5) 
, with testing rate Ψ n = {ψ n,τ } τ ∈T given by

ψ n,τ = n √ log log n -2β/(4β+4σ+1) 1 r=0 + (log n) (4σ+1)/(4r) √ n (log log log n) 1/4 1 r∈[r,r] .
We note that if Assumptions (T) and (P) hold for f 0 in F (α, r, β 0 , L), the same optimality proof as in Theorem 1 gives us that the loss of the log log n to some power factor is optimal over alternatives in α∈

[α,α],β∈[β, β] F (α, 0, β, L).
A loss of a (log log log n) 1/4 factor appears over alternatives of supersmooth densities (less smooth than f 0 ) with respect to the minimax rate in [START_REF] Butucea | Quadratic functional estimation in view of minimax goodness-of-fit testing from noisy data[END_REF]. We do not prove that this loss is optimal.

3 Exponentially smooth noise in a semiparametric context

In this section, we assume the noise density g to be exponentially smooth and stable (4), for some unknown s ∈ [s; s] and fixed (known) bounds 0 < s < s ≤ 2. More precisely, we suppose that the noise has symmetric stable law having Fourier transform

Assumption (S) Φ g (u) = exp(-|u| s ) where s ∈ [s; s].
The results of Section 3.1 are valid under the more general assumption (4) with known scale parameter γ, which enables us to select the smoothness parameter among the wider class of not necessarily symmetric stable densities with known scale parameter. Nevertheless, the exact form of Fourier transform Φ g is needed for deconvolution purposes (see Section 3.2).

For the model to be identifiable, we must assume that f is not too smooth, i.e. its Fourier transform does not decay asymptotically faster than a known polynomial of order β ′ .

Assumption (A) There exists some known A > 0, such that |Φ(u)| ≥ A|u| -β ′ for large enough |u|.

The notation q β ′ is used for the function u → A|u| -β ′ . Under assumptions (S) and (A) the model is identifiable. Indeed, considering the Fourier transforms, we get for all real number u

log |Φ p (u)| = log |Φ(u)| -|u| s .
Now assume that we have the equality between two Fourier transform for the observations Φ

p 1 = Φ p 2 , where Φ p 1 (u) = Φ 1 (u)e -|u| s 1 and Φ p 2 (u) = Φ 2 (u)e -|u| s 2 .
Without loss of generality, we may assume s 1 ≤ s 2 . Then we get

|u| -s 1 log |Φ 1 (u)| -1 = |u| -s 1 log |Φ 2 (u)| -|u| s 2 -s 1
and taking the limit when |u| tends to infinity implies (with assumption (A)) that s 1 = s 2 and then Φ 1 = Φ 2 which proves the identifiability of the model.

In this context, P f,s and E f,s respectively denote probability and expectation with respect to the model under parameters (f, s).

Estimation of the self-similarity index s

We first present a selection procedure ŝn which asymptotically recovers the true value of the smoothness parameter s, with fast rate of convergence. We use a discrete grid {s 1 , . . . , s N }, with a number N of points growing to infinity.

The asymptotic behavior of the Fourier transform Φ p of the observations is used to select the smoothness index s. More precisely, we have for any large enough |u|

A|u| -β ′ exp(-|u| s ) ≤ |Φ p (u)| ≤ exp(-|u| s ),
namely, the function |Φ p | asymptotically belongs to the pipe [q β ′ (u)e -|u| s ; e -|u| s ].

Let us now consider a discrete grid 0 < s = s 1 < s 2 < . . . < s N = s ≤ 2 and denote Φ [k] (u) = e -|u| s k . These families of functions {Φ [k] } 1≤k≤N and {q β ′ Φ [k] } 1≤k≤N form an asymptotically decreasing family as there exists some positive real number u 1 such that for all real u with |u| ≥ u 1 , we have Φ [1] (u) ≥ q β ′ (u)Φ [1] (u) ≥ Φ [2] (u

) ≥ • • • ≥ Φ [N ] (u) ≥ q β ′ (u)Φ [N ] (u). ( 10 
)
If the size of the grid is sufficiently small, the modulus of the Fourier transform Φ p will asymptotically belong to one of the pipes [q β ′ Φ [k] ; Φ [k] ]. Our estimation procedure uses the empirical estimator

Φp n (u) = 1 n n j=1 exp(-iuY j ), ∀u ∈ R,
of the Fourier transform Φ p at some point u n which tends to infinity with n. The procedure selects the smoothness parameter among {s 1 , . . . , s N } by choosing the pipe [

q β ′ (u n )Φ [k] (u n ); Φ [k] (u n )] closest to the function | Φp n (u n )|. More precisely ŝn =                    s k if 1 2 q β ′ Φ [k] + Φ [k+1] (u n ) ≤ | Φp n (u n )| < 1 2 q β ′ Φ [k-1] + Φ [k] (u n ) and 2 ≤ k ≤ N -1, s 1 if | Φp n (u n )| ≥ 1 2 q β ′ Φ [1] + Φ [2] (u n ), s N if | Φp n (u n )| < 1 2 q β ′ Φ [N -1] + Φ [N ] (u n ), (11) 
where {u n } n≥0 is a sequence of positive real numbers growing to infinity and to be chosen later. See Figure 1 for an illustration of this procedure. This estimation procedure is well-defined for large enough n as for any 2 ≤ k ≤ N -1, we have {q

q β ′ Φ [k-1] Φ [k] q β ′ Φ [k] Φ [k+1]              s k
β ′ Φ [k] + Φ [k+1] }(u n ) ≤ {q β ′ Φ [k-1] + Φ [k] }(u n )
This procedure is proved to be consistent, with an exponential rate of convergence, in the following proposition.

Proposition 1 Under assumptions (S) and (A), consider the estimation procedure given by [START_REF] Fan | Wavelet deconvolution[END_REF] where

u n = log n 2 - 2β ′ + as 2s log log n 1/s
, for some fixed a > 1 and the equidistant grid s = s 1 < s 2 < . . . < s N = s is chosen as

|s k+1 -s k | = d n = s(log n) -1 (log log n) -1 ; N -1 = (s -s)/d n .
Then, ŝn is strongly consistent, i.e.

lim n→∞ ŝn = s ; P f,salmost surely.

Moreover, for each number of observations n, denote by s n (s) the unique point s k on the grid such that s k ≤ s < s k+1 . We have

P f,s (ŝ n = s n (s)) ≤ exp - A 2 4 (log n) a (1 + o(1)) ,
where A is defined in Assumption (A) and a > 1 depends on the choice of u n .

Remark 2

The result remains valid for any sequence d n satisfying

d n u s n log u n ≤ 1 and log(1/d n ) = o((log n) a ).

Adaptive estimation and tests

For the rest of this section, we shall assume that the unknown density f belongs to some Sobolev class F (0, 0, β, L) where β > 0 is the smoothness parameter and L is a positive constant. We assume that the unknown parameter β belongs to some known interval [β, β].

We now plug the preliminary estimator of s in the usual estimation and testing procedures.

Let us introduce the kernel deconvolution estimator Kn built on the preliminary estimation of s and defined by its Fourier transform Φ Kn ,

Φ Kn (u) = exp    |u| ĥn ŝn    1 |u|≤1 , (12) 
where ĥn = log n 2 -

β -ŝn + 1/2 ŝn log log n -1/ŝn . ( 13 
)
Note that both the bandwidth sequence ĥn and the kernel Kn are random and depend on observations Y 1 , . . . , Y n . Now, the estimator of f is given by fn

(x) = 1 n ĥn n j=1 Kn Y j -x ĥn . ( 14 
)
This estimation procedure is consistent and adaptively achieves the minimax rate of convergence when considering unknown densities f in the union of Sobolev balls F (0, 0, β, L) with β ∈ [β, β] ⊂ (1/2; +∞) and unknown smoothness parameter s ∈ [s; s].

Note that when a function belongs to F (0, 0, β, L) and assumption (A) is fulfilled, we necessarily have

β ′ > β + 1/2.
Corollary 1 Under assumptions (S) and (A), for any β > β > 1/2, the estimation procedure given by ( 14) which uses estimator ŝn defined by [START_REF] Fan | Wavelet deconvolution[END_REF] with parameter values: u n given by Proposition 1 with a > s/s,

d n = min (log n) -( β-1/2)/s , s(log n log log n) -1 ,
satisfies, for any real number x,

lim sup n→∞ sup s∈[s;s] sup β∈[β, β] sup f ∈F (0,0,β,L) (log n) (2β-1)/s E f,s | fn (x) -f (x)| 2 < ∞.
Moreover, this rate of convergence is asymptotically adaptive optimal.

Remark 3 This result is obtained by using that, with high probability, the estimator ŝn is equal to the point s k on the grid such that s k ≤ s < s k+1 (see Proposition 1). Then, using the deconvolution kernel built on s k is as good as using the true value s, as soon as the difference |s k -s| is sufficiently small (which is ensured by the size of the grid). Note that the fact that we underestimate s by using s k ≤ s is rather important as deconvolution with overestimated s would lead to unbounded risk.

Note that the optimality of this procedure is a direct consequence of a result by [START_REF] Efromovich | Density estimation for the case of supersmooth measurement error[END_REF] where he considers the convolution model for circular data with β and s fixed and known. Therefore we may say that there is no loss due to adaptation neither with respect to s or β.

Using the same kernel estimator [START_REF] Gayraud | Adaptive minimax testing in the discrete regression scheme[END_REF] and the same random bandwidth (13), we define

Tn = 2 n(n -1) 1≤k<j≤n < 1 ĥn Kn • -Y k ĥn , 1 ĥn Kn • -Y j ĥn > . (15) 
Corollary 2 Under assumptions (S) and (A), for any β > β > 0, the estimation procedure given by (15) which uses estimator ŝn defined by [START_REF] Fan | Wavelet deconvolution[END_REF] with parameter values: u n given by Proposition 1 with a > s/s,

d n = min (log n) -2 β/s , s(log n log log n) -1 , satisfies, lim sup n→∞ sup s∈[s;s] sup β∈[β, β] sup f ∈F (0,0,β,L) (log n) 2β/s E f,s Tn -f 2 2 1/2 < ∞.
Moreover, under additional Assumption (E), this rate of convergence is asymptotically adaptive optimal.

The rate of convergence of this procedure is the same as in the case of known self-similarity index s and known smoothness parameter β. It is thus asymptotically adaptive optimal according to results obtained by [START_REF] Butucea | Quadratic functional estimation in view of minimax goodness-of-fit testing from noisy data[END_REF].

Let us now define, for any f 0 ∈ F (0, 0, β, L),

T 0 n = 2 n(n -1) 1≤k<j≤n < 1 ĥn Kn • -Y k ĥn -f 0 , 1 ĥn Kn • -Y j ĥn -f 0 > . ( 16 
)
This statistic is used for goodness-of-fit testing of the hypothesis

H 0 : f = f 0 versus H 1 (C, Ψ n ) : f ∈ ∪ β∈[β, β] {f ∈ F (0, 0, β, L) and ψ -2 n,β f -f 0 2 2 ≥ C}.
The test is constructed as usual

∆ ⋆ n =      1 if | T 0 n | t-2 n > C ⋆ 0 otherwise, ( 17 
)
for some constant C ⋆ > 0 and a random threshold t2

n to be specified.

Corollary 3 Under assumptions (S) and (A), for any 0 < β < β, any L > 0 and for any f 0 ∈ F (0, 0, β, L), consider the testing procedure given by [START_REF] Korolyuk | Theory of U-statistics. Mathematics and its Applications[END_REF] which uses the test statistic [START_REF] Ingster | Nonparametric goodness-of-fit testing under Gaussian models[END_REF] with estimator ŝn defined by [START_REF] Fan | Wavelet deconvolution[END_REF] with parameter values: u n given by Proposition 1 with a > 1,

d n = min (log n) -β/s , s(log n log log n) -1 ,
with random threshold and (slightly modified) random bandwidth

t2 n = log n 2 -2 β/ŝn ; ĥn = log n 2 - 2 β ŝn log log n -1/ŝn
and any large enough positive constant C ⋆ . This testing procedure satisfies (5) for any ǫ ∈ (0, 1) with testing rate

Ψ n = {ψ n,β } β∈[β, β] given by ψ n,β = log n 2 -β/s
.

Moreover, if f 0 ∈ F (0, 0, β, cL) for some 0 < c < 1 and if Assumptions (T) and (E) hold, then this testing rate is asymptotically adaptive optimal over the family of classes {F (0, 0, β, L), β ∈ [β; β]} and for any s ∈ [s; s] (i.e. (6) holds).

Adaptive optimality (namely ( 6)) of this testing procedure directly follows from [START_REF] Butucea | Quadratic functional estimation in view of minimax goodness-of-fit testing from noisy data[END_REF] as there is no loss due to adaptation to β nor to s. Note also that the case of known s and adaptation only with respect to β is included in our results and is entirely new.

4 Auxiliary result: Berry-Esseen inequality for degenerate U-statistics of order 2

This section is dedicated to the statement of a non-uniform Berry-Esseen type theorem for degenerate U-statistics. It draws its inspiration from [START_REF] Hall | Central limit theorem for integrated square error of multivariate nonparametric density estimators[END_REF] which provides a central limit theorem for degenerate U-statistics. Given a sample Y 1 , . . . , Y n of i.i.d. random variables, we shall consider U-statistics of the form

U n = 1≤i<j≤n H(Y i , Y j ),
where H is a symmetric function. We may assume, without loss of generality, that E{H(Y 1 , Y 2 )} = 0 and thus U n is centered. We shall focus on degenerate U-statistics, namely

E{H(Y 1 , Y 2 )|Y 1 } = 0 , almost surely.
Limit theorems for degenerate U-statistics when H is fixed (independent of the sample size n) are well-known and can be found in any monograph on the subject (see for instance [START_REF] Korolyuk | Theory of U-statistics. Mathematics and its Applications[END_REF]). In that case, the limit distribution is a linear combination of independent and centered χ 2 (1) (chi-square with one degree of freedom) distributions. However, as noticed in [START_REF] Hall | Central limit theorem for integrated square error of multivariate nonparametric density estimators[END_REF], a normal distribution may result in some cases where H depends on n. In such a context, [START_REF] Hall | Central limit theorem for integrated square error of multivariate nonparametric density estimators[END_REF] provides a central limit theorem. But this result is not enough for our purpose (namely, optimality in Theorem 1). Indeed, we need to control the convergence to zero of the difference between the cumulative distribution function (cdf) of our U-statistic, and the cdf of the Gaussian distribution. Such a result may be derived using classical Martingale methods.

In the rest of this section, n is fixed. Denote by F i the σ-field generated by the random variables {Y 1 , . . . , Y i }. Define

v 2 n = E(U 2 n ) ; Z i = 1 v n i-1 j=1 H(Y i , Y j ), 2 ≤ i ≤ n
and note that as the U-statistic is degenerate, we have E(Z i |Y 1 , . . . , Y i-1 ) = 0. Thus,

S k = k i=2 Z i , 2 ≤ k ≤ n,
is a centered Martingale (with respect to the filtration {F k } k≥2 ) and

S n = v -1 n U n .
We use a non-uniform Berry-Esseen type theorem for Martingales provided by [START_REF] Hall | Martingale limit theory and its application[END_REF], Theorem 3.9. Denote by φ the cdf of the standard Normal distribution and introduce the conditional variance of the increments Z j 's,

V 2 n = n i=2 E(Z 2 i |F i-1 ) = 1 v 2 n n i=2 E        i-1 j=1 H(Y i , Y j )   2 F i-1     
.

Theorem 3 Fix 0 < δ ≤ 1 and define

L n = n i=2 E|Z i | 2+2δ + E|V 2 n -1| 1+δ .
There exists a positive constant C (depending only on δ) such that for any 0 < ǫ < 1/2 and any real x

|P(U n ≤ x) -φ(x/v n )| ≤ 16ǫ 1/2 exp - x 2 4v 2 n + C ǫ 1+δ L n .

Proofs

We use C to denote an absolute constant which values may change along the lines.

Proof of Theorem 1 (Upper bound). Let us give the sketch of proof concerning the upper-bound of the test. The statistic T n,h i will be abbreviated by T n,i . We first need to control the first-type error of the test.

P 0 (∆ ⋆ n = 1) = P 0 (∃i ∈ {1, . . . , N + 1} such that |T n,i | > C ⋆ t 2 n,i ) ≤ N +1 i=1 P 0 (|T n,i -E 0 (T n,i )| > C ⋆ t 2 n,i -E 0 (T n,i )).
The proof relies on the two following lemmas.

Lemma 1 For any large enough C ⋆ > 0, we have

N i=1 P 0 (|T n,i -E 0 (T n,i )| > C ⋆ t 2 n,i -E 0 (T n,i )) = o(1).
Lemma 2 For large enough C ⋆ , there is some ǫ ∈ (0, 1), such that

P 0 (|T n,N +1 -E 0 (T n,N +1 )| > C ⋆ t 2 n,N +1 -E 0 (T n,N +1 )) ≤ ǫ.
Lemma 1 relies on the Berry-Esseen type theorem (Theorem 3) presented in Section 4. Its proof is postponed to the very end of the present proof. Proof of Lemma 2 is easy and omitted. Note for the referee: omitted proofs appear in the appendix.

Thus, the first type error term is as small as we need, as soon as we choose a large enough constant C ⋆ > 0 in [START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problems[END_REF]. We now focus on the second-type error of the test. We write

sup τ ∈T sup f ∈F (τ,L) P f (∆ ⋆ n = 0) ≤ 1 r>0 sup r∈[r;r],α≥α,β∈[β, β] sup f ∈F (τ,L) f -f 0 2 2 ≥Cψ 2 n,τ P f (|T n,N +1 | ≤ C ⋆ t 2 n,N +1 ) + 1 r=r=0 sup α≥α,β∈[β; β] sup f ∈F (α,0,β,L) f -f 0 2 2 ≥Cψ 2 n,(α,0,β) P f (∀1 ≤ i ≤ N, |T n,i | ≤ C ⋆ t 2 n,i ).
Note that when the function f in the alternative is supersmooth (r > 0), we only need the last test (with index N + 1), whereas when it is ordinary smooth (r = r = 0), we use the family of tests with indexes i ≤ N. In this second case, we use in fact only the test based on parameter β f defined as the smallest point on the grid larger than β (see the proof of Lemma 3 below).

Lemma 3 We have

sup α≥α sup β∈[β; β] sup f ∈F (α,0,β,L) f -f 0 2 2 ≥Cψ 2 n,(α,0,β) P f (∀1 ≤ i ≤ N, |T n,i | ≤ C ⋆ t 2 n,i ) = o(1).
Lemma 4 Fix r > 0, for any α ≥ α, r ∈ [r; r], β ∈ [β; β]. For any ǫ ∈ (0; 1), there exists some large enough C 0 such that for any C > C 0 and any f ∈ F (α, r, β, L) such that ff 0 2 2 ≥ Cψ n,(α,r,β) , we have

P f (|T n,N +1 | ≤ C ⋆ t 2 n,N +1 ) ≤ ǫ.
The proof of Lemma 3 (resp. 4) is postponed (resp. omitted) to the very end of the present proof. Thus, the second type error of the test converges to zero. This ends the proof of ( 5).

We now present the proofs of the lemmas.

Proof of Lemma 1. Let us set ρ n = (log log n) -1/2 and fix 1 ≤ i ≤ N. We use the obvious notation p 0 = f 0 * g. As we have

E 0 (T n,i ) = K h i * p 0 -f 0 2 2 = J h i * f 0 -f 0 2 2 , and < K h (• -Y 1 ) -J h * f 0 , J h * f 0 -f 0 >= 0 we easily get T n,i -E 0 (T n,i ) = 2 n(n -1) 1≤k<j≤n < K h i (•-Y k )-J h i * f 0 , K h i (•-Y j )-J h i * f 0 > .

Let us set

H(Y j , Y k ) = 2{n(n -1)} -1 < K h i (• -Y k ) -J h i * f 0 , K h i (• -Y j ) -J h i * f 0 >
and note that H is a symmetric function with

E 0 {H(Y 1 , Y 2 )} = 0 and E 0 {H(Y 1 , Y 2 )|Y 1 } = 0. As a consequence, T n,i -E 0 (T n,i
) is a degenerate Ustatistic. Using Theorem 3 (and the notation of Section 4) to control its cdf, we get that for any 0 < δ ≤ 1, for any 0 < ε < 1/2 and any x

|P 0 (T n,i -E 0 (T n,i ) > x) -(1 -φ(x/v n ))| ≤ 16ε 1/2 exp - x 2 4v 2 n + C ε 1+δ n i=2 E 0 |Z i | 2+2δ + E 0 |V 2 n -1| 1+δ ,
where v 2 n = Var 0 (T n,i ) and

Z i = 1 v n i-1 j=1 H(Y i , Y j ) and V 2 n = n i=2 E 0 (Z 2 i |F i-1 )
as in Section 4. Choose δ = 1 and consider ε as a constant (optimization in ε is not necessary in our context), thus

|P 0 (T n,i -E 0 (T n,i ) > x) -(1 -φ(x/v n ))| ≤ C exp - x 2 4v 2 n + C n i=2 E 0 |Z i | 4 + E 0 |V 2 n -1| 2 . ( 18 
)
We want to apply this inequality at the point x = C ⋆ t 2 n,i -E 0 (T n,i ). First, note that

E 0 (T n,i ) = J h i * f 0 -f 0 2 2 = 1 2π |u|>1/(h i ) |Φ 0 (u)| 2 du ≤ L(h i ) 2 β ≤ Lt 2 n,i , leading to x ≥ (C ⋆ -L)t 2 n,i = (C ⋆ -L)(nρ n ) -4β i /(4β i +4σ+1
) and we choose C ⋆ > L. Now, the variance term v 2 n satisfies (see [START_REF] Butucea | Quadratic functional estimation in view of minimax goodness-of-fit testing from noisy data[END_REF])

v 2 n = E 0 (T n,i -E 0 (T n,i )) 2 = C n 2 (h i ) 4σ+1 (1 + o(1)).
Using the choice of the bandwidth h i , we obtain a bound of the first term in (18)

C exp - x 2 4v 2 n ≤ C exp - (C ⋆ ) 2 C ′ ρ -2 n = C(log n) -b ,
where b = (C ⋆ ) 2 /(C ′ ) can be chosen as large as we need. Let us deal with the other terms appearing in [START_REF] Lehmann | Testing statistical hypotheses[END_REF]. For large enough n,

| < K h i (• -Y k ) -J h i * f 0 , K h i (• -Y j ) -J h i * f 0 > | ≤ 2 π |u|≤1/h i |Φ g (u)| -2 du ≤ C (h i ) 2σ+1
and thus, for any p ≥ 2,

E 0 {|H(Y 1 , Y 2 )| 2p } ≤ Cn -4p (h i ) -2p(2σ+1) .

This leads to

n i=2 E 0 |Z i | 4 ≤ 1 v 4 n n i=2   i-1 j=1 E 0 (H(Y i , Y j ) 4 ) + 3 1≤j =k≤i-1 E 0 (H(Y i , Y j ) 2 H(Y i , Y k ) 2 )   ≤ 1 v 4 n n i=2 (i -1)E 0 (H(Y 1 , Y 2 ) 4 ) + 3(i -1)(i -2)E 0 (H(Y 1 , Y 2 ) 2 H(Y 1 , Y 3 ) 2 ) ≤ O(1) v 4 n n 2 E 0 (H(Y 1 , Y 2 ) 4 ) + O(1) v 4 n n 3 E 0 (H(Y 1 , Y 2 ) 2 H(Y 1 , Y 3 ) 2 ) ≤ O(1) n 3 n 8 (h i ) 4(2σ+1) n 4 (h i ) 2(4σ+1) = O(1) n(h i ) 2 .
Moreover, following the lines of the proof of Theorem 1 in [START_REF] Hall | Central limit theorem for integrated square error of multivariate nonparametric density estimators[END_REF] we get

E 0 |V 2 n -1| 2 ≤ 1 v 4 n E 0 (G 2 (Y 1 , Y 2 )) + 1 n E 0 (H 4 (Y 1 , Y 2 )) ,
where G(x, y) = E 0 (H(Y 1 , x)H(Y 1 , y)). In [START_REF] Butucea | Asymptotic normality of the integrated square error of a density estimator in the convolution model[END_REF] this last term was bounded from above for this model by Ch i so

E 0 |V 2 n -1| 2 ≤ Ch i .
Returning to [START_REF] Lehmann | Testing statistical hypotheses[END_REF] we finally get for

x = C ⋆ t 2 n,i -E 0 (T n,i ), |P 0 (T n,i -E 0 (T n,i ) > x) -{1 -φ(x/v n )}| ≤ C (log n) -b + h i ≤ C(log n) -b .
Finally we obtain, for b large when C ⋆ is large

N i=1 P 0 (|T n,i -E 0 (T n,i )| > C ⋆ t 2 n,i -E 0 (T n,i )) ≤ N(1 -φ(x/v n ) + C(log n) -b ) ≤ CN v n x -1 exp(-x 2 /(2v 2 n )) + (log n) -b ≤ CNρ n (log n) -b ≤ C (log log n) -1/2 log n b-1 .
Proof of Lemma 3. When r = r = 0, let us fix some constant C > C 0 (C 0 will be chosen later) and a density f belonging to F (α, 0, β, L) for some unknown α > α and β ∈ [β; β] which satisfies ff 0 2 2 ≥ Cψ 2 n,(α,0,β) (choose β as the largest one). In this proof, we abbreviate ψ n,(α,0,β) to ψ n,β since in this case, the rate only depends on β. We define β f as the smallest point on the finite grid {β = β 1 < β 2 < . . . < β N = β} such that β ≤ β f

β f ∈ {β = β 0 < β 1 < . . . < β N = β}, f ∈ F (α, 0, β, L), f -f 0 2 2 ≥ Cψ 2 n,β , β ≤ β f and ∀β i < β f , we have β > β i . (19)
We shall abbreviate to h f , t 2 n,f and T n,f the bandwidth, the threshold (both defined in Theorem 1) and the statistic (8) corresponding to parameter β f . We write

P f (∀i ∈ {1, . . . , N}, |T n,i | ≤ C ⋆ t 2 n,i ) ≤ P f (|T n,f -E f (T n,f )| ≥ -C ⋆ t 2 n,f + E f (T n,f )) ≤ P f (|T n,f -E f (T n,f )| ≥ f -f 0 2 2 -C ⋆ t 2 n,f + B f (T n,f )), ( 20 
)
where

B f (T n,f ) = E f (T n,f ) -f -f 0 2 2 = J h * f 2 2 -f 2 2 + 2 f -J h * f, f 0 is in fact a bias term. It satisfies |B f (T n,f )| ≤ |u|≥1/h f |Φ(u)| 2 du + 2( |u|≥1/h f |Φ(u)| 2 du |u|≥1/h f |Φ 0 (u)| 2 du) 1/2 ≤ Le -2α (h 2β f + 2h β+β f ) ≤ 3e -2α Lh 2β f ,
as f belongs to F (α, 0, β, L) ⊆ F (α, 0, β, L).

Let us study the variance term

E f (T n,f -E f (T n,f )) 2 .
According to [START_REF] Butucea | Quadratic functional estimation in view of minimax goodness-of-fit testing from noisy data[END_REF], this term is upper-bounded by w2 n,f given by

E f (T n,f -E f (T n,f )) 2 ≤ C n 2 h 4σ+1 f + 4Ω 2 g (f -f 0 ) n 1 β≥σ = w 2 n,f ,
and Ω g (ff 0 ) is a constant depending on f and g (but not n) and satisfying

|Ω 2 g (f -f 0 )| ≤ C f -f 0 2-2σ/β 2
(see proof of Theorem 6 in [START_REF] Butucea | Quadratic functional estimation in view of minimax goodness-of-fit testing from noisy data[END_REF]).

Using Markov's inequality, this leads to the following upper bound of ( 20)

w 2 n,f ( f -f 0 2 2 -C ⋆ t 2 n,f -3e -2α Lh 2β f ) 2 .
We will proceed differently when β < σ and when β ≥ σ. Let us first consider the term concerning β < σ. The point is to use that

f satisfies f -f 0 2 2 ≥ Cψ 2 n,β . Note that we have β f ≥ β, constants C > C ⋆ and ψ 2 n,β t -2 n,f = (nρ n ) 4(β f -β)(4σ+1)/{(4β f +4σ+1)(4β+4σ+1)} , ensuring that the term Cψ 2 n,β -C ⋆ t 2 n,f is always positive. Moreover, as 0 ≥ β -β f ≥ -( β -β)/ log n, we have ψ 2 n,β h -2β f = exp 16β(β -β f ) (4β f + 4σ + 1)(4β + 4σ + 1) log(nρ n ) ≥ exp - 16 β( β -β) (4β + 4σ + 1) 2 (1 + o(1)) =: C 1 (1 + o(1)).
Thus, we choose C 0 = C ⋆ + 3e -2α L/C 1 such that for any C > C 0 , we have ff 0 with a > 0. Thus, we get

sup α>α sup β∈[β; β] sup f ∈F (α,0,β,L) f -f 0 2 2 ≥Cψ 2 n,β P f (∀i ∈ {1, . . . , N}, |T n,i | ≤ C ⋆ t 2 n,i ) ≤ max    sup β<σ sup f C n 2 h 4σ+1 f ψ 4 n,β ; sup β≥σ sup f C f -f 0 2-2σ/β 2 n( f -f 0 2 2 -C ⋆ t 2 n,f -3e -2α Lh 2β f ) 2    .
Finally, this leads to the bound max sup

β<σ sup f C n 2 h 4σ+1 f ψ 4 n,β ; sup β≥σ C n f -f 0 2+2σ/β 2 (a/C) 2 ≤ max    sup β<σ sup f C n 2 h 4σ+1 f ψ 4 n,β ; sup β≥σ C nψ 2+2σ/β n,β    ≤ ρ n ,
which converges to zero as n tends to infinity.

Proof of Theorem 1 (Lower bound).

As we already noted after the theorem statement, our test procedure attains the minimax rate associated to the class F (α 0 , 0, β, L) where f 0 belongs, whenever the alternative f belongs to classes of functions smoother than f 0 . Therefore, the lower bound we need to prove concerns the optimality of the loss of order (log log n) 1/2 due to alternatives less smooth than f 0 .

More precisely, we prove [START_REF] Carroll | Optimal rates of convergence for deconvolving a density[END_REF], where the alternative

H 1 (C, Ψ n ) is now restricted to ∪ β∈[β, β] {f ∈ F (0, 0, β, L) and ψ -2 n,β f -f 0 2
2 ≥ C} and ψ n,β denotes the rate ψ n,τ when τ = (0, 0, β, L).

The general approach for proving such a lower bound ( 6) is to exhibit a finite number of regularities {β k } 1≤k≤K and corresponding probability distributions {π k } 1≤k≤K on the alternatives H 1 (C, ψ n,β k ) (more exactly, on parametric subsets of these alternatives) such that the distance between the distributions induced by f 0 (the density being tested) and the mean distribution of the alternatives is small.

We use a finite grid B

= {β 1 < β 2 < . . . < β K } ⊂ [β, β] such that ∀β ∈ [β, β], ∃k : |β k -β| ≤ 1 log n .
To each point β in this grid, we associate a bandwidth

h β = (nρ n ) -2 4β+4σ+1 , ρ n = (log log n) -1/2 , and M β = h -1 β .
We use the same deconvolution kernel as in [START_REF] Butucea | Quadratic functional estimation in view of minimax goodness-of-fit testing from noisy data[END_REF], constructed as follows. Let G be defined as in Lemma 2 in [START_REF] Butucea | Quadratic functional estimation in view of minimax goodness-of-fit testing from noisy data[END_REF]. The function G is an infinitely differentiable function, compactly supported on [-1, 0] and such that G = 0. Then, the deconvolution kernel H β is defined via its Fourier transform Φ H β by

Φ H β (u) = Φ G (h β u)(Φ g (u)) -1 .
Note that the factor ρ n in the bandwidth's expression corresponds to the loss for adaptation.

We also consider for each β, a probability distribution π β (also denoted π k when β = β k ) defined on {-1, +1} M β which is in fact the product of Rademacher distributions on {-1, +1} and a parametric subset of H 1 (C, ψ n,β ) containing the following functions

f θ,β (x) = f 0 (x)+ M β j=1 θ j h β+σ+1 β H β (x -x j,β ) ,      θ j i.i.d. with P(θ j = ±1) = 1/2, x j,β = jh β ∈ [0, 1].
Convolution of these functions with g induces another parametric set of functions

p θ,β (y) = p 0 (y) + M β j=1 θ j h β+σ+1 β G β (y -x j,β )
where

G β (y) = h -1 β G (y/h β ) = H β * g(y).
As established in [START_REF] Butucea | Quadratic functional estimation in view of minimax goodness-of-fit testing from noisy data[END_REF] (Lemmas 2 and 4), for any β, any θ ∈ {-1, +1} M β and small enough h β (i.e. large enough n) the function f θ,β is a probability density and belongs to the Sobolev class F (0, 0, β, L) and p θ,β is also a probability density. Moreover we have

1 K β∈ B π β f θ,β -f 0 2 2 ≥ Cψ 2 n,β -→ n→+∞ 1,
which means that for each β, the random parametric family {f θ,β } θ belongs almost surely (with respect to the measure π β ) to the alternative set H 1 (C, ψ n,β ). The subset of functions which are not in the alternative H 1 (C, Ψ n ) is asymptotically negligible. We then have,

γ n inf ∆n P 0 (∆ n = 1) + sup f ∈H 1 (C,Ψn) P f (∆ n = 0) ≥ inf ∆n    P 0 (∆ n = 1) + 1 K K k=1 sup f ∈H 1 (C,ψ n,β k ) P f (∆ n = 0)    ≥ inf ∆n P 0 (∆ n = 1) + 1 K K k=1 θ P f θ,β k (∆ n = 0)π k (dθ) -π k ( f θ,β k -f 0 2 2 < Cψ 2 n,β k ) ≥ inf ∆n P 0 (∆ n = 1) + 1 K K k=1 θ P f θ,β k (∆ n = 0)π k (dθ) + o(1).
Let us denote by

π = 1 K K k=1 π k and P π = 1 K K k=1 P k = 1 K K k=1 θ P f θ,β k π k (dθ).
Those notations lead to

γ n ≥ inf ∆n {P 0 (∆ n = 1) + P π (∆ n = 0)} ≥ inf ∆n 1 - ∆n=0 dP 0 + ∆n=0 dP π ≥ 1 -sup A A (dP 0 -dP π ) ≥ 1 - 1 2 P π -P 0 1 , (21) 
where we used Scheffé's Lemma.

The finite grid B is split into subsets B = ∪ l Bl with Bl ∩ Bk = ∅ when l = k and such that

∀l, ∀β 1 = β 2 ∈ Bl , c log log n log n ≤ |β 1 -β 2 |.
The number of subsets Bl is denoted by K 1 = O(log log n) and the cardinality | Bl | of each subset Bl is of the order O(log n/ log log n), uniformly with respect to l.

The lower bound ( 6) is then obtained from [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF] in the following way

γ n ≥ 1 - 1 2K 1 K 1 l=1 1 | Bl | β∈ Bl P β -P 0 1
, where P β = θ P f θ,β π β (dθ) .

Here we do not want to apply the triangular inequality to the whole set of indexes B. Indeed, this would lead to a lower bound equal to 0. Yet, if we do not apply some sort of triangular inequality, we cannot deal with the sum because of too much dependency. This is why we introduced the subsets Bl with the property that two points in the same subset Bl are far enough away from each other. This technique was already used in [START_REF] Gayraud | Adaptive minimax testing in the discrete regression scheme[END_REF] for the discrete regression model.

Let us denote by ℓ β the likelihood ratio

ℓ β = dP β dP 0 = dP f θ,β dP 0 π β (dθ).
We thus have

γ n ≥ 1- 1 2K 1 K 1 l=1   1 | Bl | β∈ Bl ℓ β -1   dP 0 = 1- 1 2K 1 K 1 l=1 1 | Bl | β∈ Bl ℓ β -1 L 1 (P 0 )
. Now we use the usual inequality between L 1 and L 2 -distances to get that

γ n ≥ 1- 1 2K 1 K 1 l=1 1 | Bl | β∈ Bl ℓ β -1 L 2 (P 0 ) = 1- 1 2K 1 K 1 l=1      E 0   1 | Bl | β∈ Bl ℓ β -1   2      1/2 .
Let us focus on the expected value appearing in the lower bound. We have

E 0   1 | Bl | β∈ Bl ℓ β -1   2 = 1 | Bl | 2 β∈ Bl Q β + 1 | Bl | 2 β,ν∈ Bl β =ν Q β,ν ,
where there are two quantities to evaluate

Q β = E 0 (ℓ β -1) 2 and Q β,ν = E 0 (ℓ β ℓ ν -1) .
The first term Q β is treated as in [START_REF] Butucea | Quadratic functional estimation in view of minimax goodness-of-fit testing from noisy data[END_REF]. It corresponds to the computation of a χ 2 -distance between the two models induced by P β and P 0 (see term ∆ 2 in [START_REF] Butucea | Quadratic functional estimation in view of minimax goodness-of-fit testing from noisy data[END_REF]). Indeed we have

Q β ≤ CM β n 2 h 4β+4σ+2 β ≤ C 1 ρ 2 n .
This upper bound goes to infinity very slowly. The number of β's in each Bl compensates this behaviour

1 | Bl | 2 β∈ Bl Q β ≤ 1 | Bl |ρ 2 n = O (log log n) 2 log n = o(1).
The second term is a new one (with respect to non-adaptive case). As G is compactly supported and the points β and ν are far away from each other, we can prove that this term is asymptotically negligible. Recall the expression of the likelihood ratio for a fixed β

ℓ β = dP f θ,β dP 0 π β (dθ) = n r=1   1 + M β j=1 θ j,β h β+σ+1 β G β (Y r -x j,β ) p 0 (Y r )   π β (dθ) .
Thus,

ℓ β ℓ ν = dP f θ,β dP 0 π β (dθ) dP f θ,ν dP 0 π ν (dθ) = n r=1   1 + M β j=1 θ j,β h β+σ+1 β G β (Y r -x j,β ) p 0 (Y r )   × 1 + Mν i=1 θ i,ν h ν+σ+1 ν G ν (Y r -x i,ν ) p 0 (Y r ) π β (dθ .,β ) π ν (dθ .,ν ) .
The random variables Y r are i.i.d. and

E 0 G β (Y r -x j,β ) p 0 (Y r ) = 0. Thus we have E 0 (ℓ β ℓ ν ) =   1 + M β j=1 Mν i=1,i⊂j θ j,β θ i,ν h β+σ+1 β h ν+σ+1 ν E 0 G β (Y 1 -x j,β ) G ν (Y 1 -x i,ν ) p 2 0 (Y 1 ) n π β (dθ .,β ) π ν (dθ .,ν ) .
where the second sum concerns only some indexes i, denoted by i ⊂ j. This notation stands for the set of indexes i such that [(i-1)h β ; ih β ]∩[(j-1)h ν ; jh ν ] = ∅. From now on, we fix β > ν. Denote by G ′ (resp. p ′ 0 ) the first derivative of G (resp. p 0 ). (The density p 0 is continuously differentiable as it is the convolution product f 0 * g where the noise density g is at least continuously differentiable).

Lemma 5 For any β > ν and any (i, j) ∈ {1, . . . , M ν } × {1, . . . , M β }, we have

E 0 G β (Y 1 -x j,β ) G ν (Y 1 -x i,ν ) p 2 0 (Y 1 ) = h ν h 2 β R i,j , where R ij satisfies |R i,j | ≤ (inf [0,1] p 0 ) -1 G ∞ G ′ ∞ (1 + o(1))
and o( 1) is uniform with respect to (i, j).

The proof of this lemma is omitted. Applying Lemma 5, we get

Q β,ν +1 =   1 + M β j=1 Mν i=1,i⊂j θ j,β θ i,ν h β+σ+1 β h ν+σ+1 ν h ν (h β ) 2 R i,j   n π β (dθ .,β ) π ν (dθ .,ν ) .
Lemma 6 Let U be a real valued random variable such that ∀k ∈ N, E U 2k+1 = 0. We have, for any integer n ≥ 1,

E (1 + U) n ≤ 1 + ⌊ n 2 ⌋ k=1 n 2k (2k)! E U 2k ,
where ⌊x⌋ is the largest integer which is smaller than x.

The proof is obvious and therefore omitted. Apply Lemma 6 to get the inequality

Q β,ν ≤ ⌊ n 2 ⌋ k=1 n 2k (2k)! (h β+σ-1 β h ν+σ+2 ν ) 2k E π   M β j=1 Mν i=1,i⊂j θ j,β θ i,ν R i,j   2k .
But the θ's are i.i.d. Rademacher variables and the R i,j 's are deterministic, thus

E π   M β j=1 Mν i=1,i⊂j θ j,β θ i,ν R i,j   2k = 1≤j 1 ,...,j k ≤M β 1≤i 1 ,...,i k ≤Mν ∀l,i l ⊂j l k l=1 R 2 i l ,j l .
Using the bound on the R i,j given by Lemma 5,

E π   M β j=1 Mν i=1,i⊂j θ j,β θ i,ν R i,j   2k ≤ (inf [0,1] p 0 ) -1 G ∞ G ′ ∞ (1 + o(1)) 2k h k ν .
Indeed, each index j l may take at most M β = h -1 β different values but the constraint i l ⊂ j l implies that each index i l is limited to at most h β /h ν different values. Thus we get

Q β,ν ≤ C ⌊ n 2 ⌋ k=1 n 2k (2k)! Ch β+σ+1 β h ν+σ+1 ν h ν h 2 β 2k h -k ν ≤ C ⌊ n 2 ⌋ k=1   n 2 h 2β+2σ+1/2 β h 2ν+2σ+1/2 ν h 5/2 ν h 5/2 β   k ≤ C ⌊ n 2 ⌋ k=1   h 5/2 ν ρ 2 n h 5/2 β   k ≤ C 1 ρ 2 n h 5/2 ν h 5/2 β .
As β > ν both belong to some set Bl , we have βν ≥ c(log log n)/(log n) and according to the choice of the bandwidths,

h 5/2 ν h 5/2 β = (nρ n ) - 20(β-ν) (4β+4σ+1)(4ν+4σ+1) ≤ exp - 20 c log log n (4 β + 4σ + 1) 2 (1+o(1)) ≤ (log n) -w ,
where the constant w (depending on the constant c used in the construction of the sets Bl ) can be tailored to our need. Therefore

1 | Bl | 2 β,ν∈| Bl | β =ν Q β,ν ≤ C ρ 2 n (log n) w
which goes to 0 as n goes to +∞. We finally obtain the upper bound

E 0      1 | Bl | β∈| Bl | ℓ β -1   2    ≤ O 1 | Bl |ρ 2 n + O 1 ρ 2 n (log n) w = o(1),
which leads to

γ n ≥ 1 - 1 2 1 K 1 K 1 l=1 O 1 | Bl |ρ 2 n + O 1 ρ 2 n (log n) c 1/2 = 1 + o(1).
Proof of Proposition 1. We fix ǫ > 0. Now,

P f,s (|ŝ n -s| ≥ ǫ) ≤ P f,s (ŝ n = s n (s)) + P f,s (|s -s n (s)| ≥ ǫ).
As |ss n (s)| ≤ d n which converges to zero, we get that for large enough n, the term P f,s (|ss n (s)| ≥ ǫ) is equal to zero. Let us now consider the term P f,s (ŝ n = s n (s)) = P f,s (ŝ n > s n (s)) + P f,s (ŝ n < s n (s)). Now, s n (s) is equal to some s k (using the labeling among the points of the grid). We have

P f,s (ŝ n < s k ) = k-1 j=1 P f,s (ŝ n = s j ) ≤ k-1 j=1 P f,s | Φp n (u n )| ≥ 1 2 q β ′ Φ [j] + Φ [j+1] (u n ) ≤ k-1 j=1 P f,s | Φp n (u n ) -Φ p (u n )| ≥ 1 2 q β ′ Φ [j] + Φ [j+1] (u n ) -|Φ p (u n )| . As |Φ p (u n )| ≥ q β ′ (u n )Φ g (u n
) for large enough n, we get

P f,s (ŝ n < s k ) ≤ k-1 j=1 P f,s | Φp n (u n ) -Φ p (u n )| ≥ 1 2 q β ′ Φ [j] + Φ [j+1] (u n )(1 + o(1)) ≤ k-1 j=1 exp - n 4 A 2 u -2β ′ n exp(-2u s j n ) + exp(-2u s j+1 n ) ≤ N exp - n 4 exp(-2u s n ) .
Now consider the case ŝn > s k .

P f,s (ŝ n > s k ) ≤ N j=k+1 P f,s | Φp n (u n )| ≤ 1 2 {q β ′ Φ [j-1] + Φ [j] }(u n ) ≤ N j=k+1 P f,s | Φp n (u n ) -Φ p (u n )| ≥ q β ′ (u n )Φ g (u n ) - 1 2 {q β ′ Φ [j-1] + Φ [j] }(u n ) ≤ NP f,s | Φp n (u n ) -Φ p (u n )| ≥ q β ′ (u n ){Φ g (u n ) - 1 2 Φ [k] (u n )} + o(q β ′ (u n )Φ g (u n )) as |Φ p (u n )| ≥ q β ′ (u n )Φ g (u n
) for large enough n and j -1 ≥ k . According to the choice of the grid, we have |s -

s k | ≤ d n and d n log u n → 0, which implies Φ g (u n ) - 1 2 Φ k (u n ) = exp(-u s n ) 1 - 1 2 exp[u s k n (u s-s k n -1)] = exp(-u s n ) 1 - 1 2 exp[u s k n (s -s k ) log u n (1 + o(1))] ≥ exp(-u s n ) 1 - 1 2 exp(u s k -s n (1 + o(1))) ≥ 1 2 exp(-u s n )(1 + o(1)),
where the first inequality comes from d n log u n ≤ u -s n . This gives

P f,s (ŝ n > s k ) ≤ NP f,s | Φp n (u n ) -Φ p (u n )| ≥ 1 2 q β ′ (u n )Φ g (u n )(1 + o(1)) ≤ N exp - A 2 2 nu -2β ′ n exp(-2u s n )(1 + o(1)) .
In conclusion, as soon as we have d n log u n ≤ u -s n , and log N = o((log n) α ) (which is ensured by our choice of d n ) we get, for any ǫ > 0 and large enough n,

P f,s (|ŝ n -s| ≥ ǫ) ≤ N exp - A 2 2 nu -2β ′ n exp(-2u s n )(1 + o(1)) ≤ exp - A 2 2 (log n) α (1 + o(1)) .
The last term gives a convergent series and then according to Borel Cantelli's lemma, P f,s (|ŝ n -s| ≥ ǫ i.o ) = 0 leading to the almost sure convergence of ŝn .

Proof of Corollary 1. Note that the new choice of d n still satisfies the requirements for Proposition 1 to be valid. We introduce respectively, h n , the non-random version of the bandwidth ĥn and K n the non-random version of the kernel Kn both constructed with self-similarity index s n (s). The Fourier transform Φ Kn of K n thus satisfies

Φ Kn (u) = exp((|u|/h n ) sn(s) )1 |u|≤1
where

h n = (2 -1 log n -( β -s n (s) + 1/2) log log n/s n (s)) -1/sn(s) .
We also introduce the corresponding (classical) estimator

f n (x) = (nh n ) -1 n i=1 K n (h -1 n (x -Y i )).
Note that obviously, s n (s), K n and h n are unknown to the statistician. These objects are used only as tools to assess the convergence of the procedure. Now, remark that we have

E f,s [| fn (x)-f (x)| 2 ] = E f,s [|f n (x)-f (x)| 2 1 ŝn=sn(s) ]+E f,s [| fn (x)-f (x)| 2 1 ŝn =sn(s) ] = T 1 + T 2 ,
say. Let us focus on the first term

T 1 ≤ E f,s [|f n (x) -f (x)| 2 ] = {E f,s [f n (x)] -f (x)} 2 + Var s {f n (x)},
introducing the bias and the variance of the estimator f n (x). The important thing to note is that the kernel estimator f n uses parameter s n (s) which is not equal to the true one s. Thus T 1 is not the classical risk for kernel estimator with known index s. Using Parseval's equality 

{E f,s [f n (x)]-f (x)} 2 = 1 4π e -iux Φ(u) 1 |u|≤1/hn exp(-|u| s + |u| sn(s) ) -1 du 2 ≤ 1 4π |u|≤1/hn |Φ(u)| exp(-|u| s + |u| sn(s) ) -1 du + |u|>1/hn |Φ(u)|du
{E f,s [f n (x)] -f (x)} 2 ≤ 1 4π |u|≤1/hn |Φ(u)||u| s (s n (s) -s) log |u|du (1 + o(1)) + O(h β-1/2 n ) 2 ≤ O(d 2 n )1 β>s+1/2 + O(d 2 n h 2β-2s-1 n log 2 (1/h n ))1 β≤s+1/2 + O(h 2β-1 n ).
It can be easily seen that

d 2 n h -2s n log 2 (1/h n ) ≤ O(1)(log n) 2s/sn(s) (log log n) 2 log 2 n(log log n) 2 = O(1)(log n) 2(s-sn(s))/sn(s) ≤ O(1)(log n) 2dn/s ≤ O(1) exp{2s/(s log n)} = O(1), leading to {E f,s [f n (x)] -f (x)} 2 ≤ O(d 2 n )1 β>s+1/2 + O(h 2β-1 n ).
Moreover, when β > s + 1/2, we use

d 2 n ≤ (log n) -(2 β-1)/s = O(h (2β-1)

n

). With this choice of d n , we thus ensure that in any case

{E f,s [f n (x)] -f (x)} 2 ≤ O(h 2β-1 n ).
The variance of f n (x) is bounded by

Var f,s {f n (x)} = 1 4π 2 n E f,s |u|≤1/hn e -iux e |u| sn(s) (e iuY -Φ p (u))du 2 ≤ 1 π 2 n |u|≤1/ hn e |u| sn(s) du 2 = O h 2(sn(s)-1) n exp(2/h sn(s) n ) n .
We finally get the bound

T 1 ≤ O(h 2β-1 n ) + O h 2(sn(s)-1) n exp(2/h sn(s) n ) n .
Now, we prove that the second term T 2 is negligible in front of the main term T 1 , by using Proposition 1 and uniform bounds on | fn (x)| and |f (x)|. First,

| fn (x)| ≤ e |t| s 1 |t|≤1/ ĥn dt = O( ĥs-1 n exp{1/ ĥs n }) ≤ O(1)(log n) (1-s)/s exp{(log n) s/s } |f (x)| ≤ |Φ(t)|dt = O( (1 + |t| 2β ) -1 dt) = O(1),
and then

T 2 = O((log n) 2(1-s)/s exp{2(log n) s/s })P f,s (ŝ n = s n (s)) = O (log n) 2(1-s)/s exp 2(log n) s/s - A 2 4 (log n) α (1 + o(1)) .
As soon as we choose α > s/s, this second term T 2 will be negligible in front of T 1 . In conclusion,

E f,s [| fn (x) -f (x)| 2 ] = O(h 2β-1 n ) + O h 2(sn(s)-1) n exp(2/h sn(s) n ) n = O((log n) -(2β-1)/sn(s) ) = O((log n) -(2β-1)/s ).

A Technical Proofs

Proof of Lemma 2. Using a Markov inequality and the usual controls on bias and variance, we get

P 0 (|T n,N +1 -E 0 (T n,N +1 )| > C ⋆ t 2 n,N +1 -E 0 (T n,N +1 )) ≤ Cn -2 (h N +1 ) -(4σ+1) (C ⋆ t 2 n,N +1 -C(h N +1 ) 2 β ) 2 = O( 1 C ⋆ -C ),
and by choosing C ⋆ large enough, this term is smaller than some ǫ > 0.

Proof of Lemma 4. Let us write

P f (|T n,N +1 | ≤ C ⋆ t 2 n,N +1 ) ≤ P f (|T n,N +1 -E f T n,N +1 | ≥ f -f 0 2 2 -C ⋆ t 2 n,N +1 -B f (T n,N +1 ))
where

|B f (T n,N +1 )| = |E f (T n,N +1 ) -f -f 0 2 2 | ≤ |u|≥1/h N+1 |Φ(u)| 2 du + 2 |u|≥1/h N+1 |Φ(u)| 2 du |u|≥1/h N+1 |Φ 0 (u)| 2 du 1/2 ≤ L(h N +1 ) 2β exp{-2α/(h N +1 ) r } + 2L(h N +1 ) β+ β exp{-α/(h N +1 ) r } (1 + o(1)) ≤ 2L(h N +1 ) β+ β exp{-α/(h N +1 ) r }(1 + o(1)).
In the same way as in the proof of Lemma 3, we have

E f (T n,N +1 -E f (T n,N +1 )) 2 ≤ C n 2 (h N +1 ) 4σ+1 + 4Ω 2 g (f -f 0 ) n 1 β≥σ = w 2 n,f ,
and Ω g (ff 0 ) is a constant depending on f and g (but not n) and satisfying

|Ω 2 g (f -f 0 )| ≤ C f -f 0 2-2σ/ β 2
. The rest of the proof follows the same lines as Lemma 3. Indeed, Markov's Inequality leads the following bound on the second type error term

w 2 n,f ( f -f 0 2 2 -C ⋆ t 2 n,N +1 -2L(h N +1 ) 2β exp{-α/(h N +1 ) r }(1 + o(1))) 2 ≤ max   Cn -2 (h N +1 ) -4σ-1 (C 0 -C ⋆ ) 2 ψ 4 n,r ; C n f -f 0 2+2σ/ β 2 (C 0 -C ⋆ ) 2  
The first term in the right hand side is a constant which can be as small as we need, by choosing a large enough constant C 0 . The second term converges to zero.

Proof of Lemma 5. As β > ν, the bandwidths satisfy h ν h -1 β = o(1). Then, as G is compactly supported on [-1, 0], we have

E 0 G β (Y 1 -x j,β ) G ν (Y 1 -x i,ν ) p 2 0 (Y 1 ) = R G β (y -x j,β ) G ν (y -x i,ν ) p 0 (y) dy = [-1, 0] G β (h ν u + x i,ν -x j,β ) G (u) p 0 (h ν u + x i,ν ) du.
Apply the Taylor Formula to get

G β (h ν u + x i,ν -x j,β ) = G β (x i,ν -x j,β ) + h ν h 2 β uG ′ h ν ũ1 + x i,ν -x j,β h β and 1 p 0 (h ν u + x i,ν ) = 1 p 0 (x i,ν ) - p ′ 0 (h ν ũ2 + x i,ν ) p 0 (h ν ũ2 + x i,ν ) 2 h ν u,
where 0 ≤ ũ1 ≤ u and 0 ≤ ũ2 ≤ u. As G = 0, we obtain

[-1,0] G β (h ν u + x i,ν -x j,β ) G (u) p 0 (h ν u + x i,ν ) du = 1 p 0 (x i,ν ) h ν h 2 β [-1,0] uG ′ h ν ũ1 + x i,ν -x j,β h β G(u)du -h ν G β (x i,ν -x j,β ) [-1,0] p ′ 0 (h ν ũ2 + x i,ν ) p 0 (h ν ũ2 + x i,ν ) 2 uG (u) du - h 2 ν h 2 β [-1,0] p ′ 0 (h ν ũ2 + x i,ν ) p 0 (h ν ũ2 + x i,ν ) 2 u 2 G ′ h ν ũ1 + x i,ν -x j,β h β G (u) du.
This leads to

E 0 G β (Y 1 -x j,β ) G ν (Y 1 -x i,ν ) p 2 0 (Y 1 ) = h ν h 2 β R i,j
where

R i,j = 1 p 0 (x i,ν ) [-1,0] uG ′ h ν ũ1 + x i,ν -x j,β h β G(u)du -h β G x i,ν -x j,β h β [-1,0] p ′ 0 (h ν ũ2 + x i,ν ) p 0 (h ν ũ2 + x i,ν ) 2 uG (u) du -h ν [-1,0] p ′ 0 (h ν ũ2 + x i,ν ) p 0 (h ν ũ2 + x i,ν ) 2 u 2 G ′ h ν ũ1 + x i,ν -x j,β h β G (u) du. satisfies |R ij | ≤ (inf [0,1] p 0 ) -1 G ∞ G ′ ∞ + G ∞ p ′ 0 ∞ ( inf [-1,1] p 0 ) -2 (h β G ∞ + h ν G ′ ∞ ),
which ends the proof of Lemma 5.

Proof of Theorem 2.

Assume now that f 0 ∈ F (α, r, β 0 , L), for some β 0 ∈ [β, β]. The proof follows the same lines as the proof of Theorem 1.

For the first-type error we write

P 0 (∆ * n = 1) = N 1 i=1 P 0 (|T n,i -E 0 (T n,i )| > C ⋆ t 2 n,i -E 0 (T n,i )) + N 2 i-N 1 =1 P 0 (|T n,i -E 0 (T n,i )| > C ⋆ t 2 n,i -E 0 (T n,i )).
For the first N 1 terms we apply Lemma 1 with E 0 (T n,i ) = o(1)L(h i ) 2β 0 exp(-2α/h r i ) which is smaller than t 2 n,i for all i = 1, . . . , N 1 and the same result follows. For the last N 2 terms we also use the Berry-Esseen inequality as in the proof of Lemma 1 for

x = C ⋆ t 2 n,i -E 0 (T n,i ) ≥ C ⋆ t 2 n,i (1 -o(1)) as E 0 (T n,i ) = o(1)h 2β 0 i exp(-2α/h r i ) = o(1/n). We get x/v n = O(1)(log log log n) 1/2 N 2 i-N 1 =1 P 0 (|T n,i -E 0 (T n,i )| > C ⋆ t 2 n,i -E 0 (T n,i )) ≤ N 2 v n C ⋆ t 2 n,i exp - (C ⋆ ) 2 t 4 n,i 4v 2 n ≤ C 1 (log log log n) -1/2 (log log n) b-1 = o(1),
for some b > 1 for C ⋆ large enough. Indeed, all other calculations are similar as they are related mostly to the distribution of the noise which didn't change.

As for the second-type error, 

P f (∀N 1 + 1 ≤ i ≤ N 1 + N 2 , |T n,i | ≤ C ⋆ t 2 n,i ).
For the first term in the previous sum we actually apply precisely Lemma 3.

For the second term we mimic the proof of Lemma 3 and choose some f in F (α, r, β, L) such that f -f 0 2 2 ≥ Cψ 2 n,r , where we denote ψ n,r = ψ n,τ 1 r>0 . We define r f as the smallest point on the grid {r 1 , . . . , r N 2 } such that r ≤ r f . We denote by h f , t 2 n,f and T n,f the bandwidth, the threshold and the test statistic associated to parameters α and r f (they do not depend on β). Then

P f (∀N 1 + 1 ≤ i ≤ N 1 + N 2 , |T n,i | ≤ C ⋆ t 2 n,i ) ≤ P f (|T n,f -E f (T n,f )| ≥ f -f 0 2 2 -C ⋆ t 2 n,f -B f (T n,f )), (A.1)
where, as in Theorem 1

|B f (T n,f )| = | J h * f -f 2 2 + 2 f -J h * f, f 0 | ≤ Lh 2β f exp(-2α/h r f ) + 2Lh β+β 0 f exp(-α/h r f -α/h r f ) (1 + o(1)) ≤ L(h 2β f + h β+β 0 f ) exp(-2α/h r f )(1 + o(1)) ≤ L(h β+β∧β 0 f ) exp(-2α/h r f )(1 + o(1)).
Using Markov's inequality, we get the following upper bound for (A.1)

Var f (T n,f ) ( f -f 0 2 2 -C ⋆ t 2 n,f -B f (T n,f )) 2 .
(A.

2)

The variance is bounded from above by

E f (T n,f -E f (T n,f )) 2 ≤ C n 2 h 4σ+1 f + 4Ω 2 g (f -f 0 ) n , (A.3)
and similarly to [START_REF] Butucea | Quadratic functional estimation in view of minimax goodness-of-fit testing from noisy data[END_REF] we show that Ω 2 g (f

-f 0 ) ≤ f -f 0 2 2 (log f -f 0 - 2 
2 ) 2σ/r . We have

t 2
n,f ψ -2 n,r = (log n) (4σ+1)(1/r f -1/r)/2 ≤ 1, and thus ff 0 as we chose the constant c < α exp(-1/r). Finally, we have B f (T n,f )ψ -2 n,r = o(1). Let us come back to (A.2). We distinguish two cases whether the first or the second term in (A.3) is dominant. If the first term in the variance dominates, we have the following bound for (A.2)

n -2 h -(4σ+1) f (C -C ⋆ ) 2 ψ 4 n,τ ≤ C log log log n → 0.
On the other hand, if the second term in (A.3) is the larger one, the bound (A.2) writes

n -1 f -f 0 2 2 (log f -f 0 - 2 
2 ) 2σ/r ff 0 4 2 (1 -C ⋆ /C + o(1)) 2 ≤ Cn -1 ψ -2 n,r (log ψ -2 n,r ) 2σ/r = C(log n) -1/(2r) (log log log n) -1/2 = o(1).

This finishes the proof.

Proof of Corollary 2. We keep on with the same notation as in Subsection 3.2 and denote by I the functional f 2 . In the same way as in the proof of Corollary 1, we write ).

E f,s [| Tn -I| 2 ] ≤ E f,s [|T n -I| 2 ] + E f,
Finally, we get Choosing C ⋆ large enough achieves the control of the first error term. We now turn to the second error term. Under hypothesis H 1 (C, Ψ n ), there exists some β such that f belongs to F (0, 0, β, L) and ff 0 As already seen, the first term in the right hand side of this inequality converges to zero, so we only deal with the second one. We define B f,s (T

P f 0 ,s (|T 0 n |t -2 n > C ⋆ ) ≤ 1 (C ⋆ ) 2
0 n ) = E f,s T 0 n -f -f 0 2 2 . Thus P f,s (|T 0 n |t -2 n ≤ C ⋆ ) ≤ P f,s (|T 0 n -E f,s T 0 n | ≥ f -f 0 2 2 -C ⋆ t 2 n + B f,s (T 0 n )) ≤ Var f,s (T 0 n ) ( f -f 0 2 2 -C ⋆ t 2 n + B f,s (T 0 n )) 2 . (A.5)
We compute this bias term B f,s (T 0 n ). 

  and either r > 0 and α ∈ [α, α] or both r = r = 0 and β > 0.
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Figure 1 .

 1 Figure 1. Estimation procedure for s. When | Φp n (u n )| lies in the grey region, we choose ŝn = s k .

2 .

 2 The second term in the right hand side is the classical bias and equals O(h β-1/2 n ).As soon as dn h -s n log(1/h n ) convergesto zero, we can use the following development in the first term, uniformly for |u| ≤ 1/h n , exp(-|u| s + |u| sn(s) ) -1 = exp{|u| s (s n (s)s) log |u|(1 + o(1))} -1 = |u| s (s n (s)s) log |u|(1 + o(1)), which leads to

P

  f (∀1 ≤ i ≤ N 1 , |T n,i | ≤ C ⋆ t 2 n,i ) + 1 r>0 sup r∈[r;r],α∈[α,α],β∈[β, β] sup f ∈F (τ,L) f -f 0 2 2 ≥Cψ 2 n,τ

2 2 -.

 2 C ⋆ t 2 n,f ≥ (C -C ⋆ )ψ 2 n,r . Moreover, B f (T n,f )ψ -2 n,r ≤ C(log log log n) -1/2 (log n) -(β+β∧β 0 )/r f -(4σ+1)/(2r)The construction of the grid ensures that -1/(log log n) ≤ r -r f ≤ 0 and thus exp o(1))c = O(1),

  s [| Tn -I| 2 1 {ŝn =sn(s)} ]. (A.4)Let us first focus on the first term appearing in the right hand side of (A.4). We split it into the square of a bias term plus a variance term. The bias is bounded by|E f,s T n -I| ≤ 1 2π |u|>1/hn |Φ(u)| 2 du + |u|≤1/hn | exp(2|u| sn(s) -2|u| s ) -1||Φ(u)| 2 du ≤ O(h -2β n ) + |u|≤1/hn 2|u| s |s n (s) -s| log |u||Φ(u)| 2 du ≤ O(h -2β n ) + O(d n )1 {s≤2β} + O(h 2β-s n log(1/h n )d n )1 {s>2β} .Like in the proof of Corollary 1, we have d n h -s n log(1/h n ) = o(1) and thus using that d n ≤ (log n) -2 β/s = O((log n) -2β/s ), we finally get |E f,s T n -I| ≤ O((log n) -2β/s ).

E f 0 2 n

 02 ,s T 0 n = 1 2π |u|≤1/hn |Φ 0 (u)| 2 | exp(|u| sn(s) -|u| s ) -1| 2 du + 1 2π |u|>1/hn |Φ 0 (u)| 2 du ≤ d 2π |u|≤1/hn |Φ 0 (u)|2 |u| 2s log 2 |u|du (1 + o(1)) + O(h valid as soon as h -s n d n log(1/h n ) converges to zero. Like in the proof of Theorem 4 in [3], we can show that Var f 0 ,s (T 0 n )

2 2 ≥

 2 Cψ n,β . We writeP f,s (∆ ⋆ n = 0) = P f,s (| T 0 n | t-2 n ≤ C ⋆ ) ≤ P f,s (ŝ n = s n (s)) + P f,s (|T 0 n |t -2 n ≤ C ⋆ ).

  |u| sn(s) -|u| s )Φ(u)1 |u|≤1/hn -Φ 0 (u)| 2 du -1 2π |Φ(u) -Φ 0 (u)| 2 du ≤ 1 2π |u|≤1/hn |[exp(|u| sn(s) -|u| s ) -1]Φ(u)| 2 du + |u| 2s log 2 |u||Φ(u)| 2 du + O(h 2β n ) ≤ O(d 2 n )1 β>s + O(h 2β n ) = O(h 2β n ).

-C ⋆ t 2 n,f -3e -2α Lh 2β f ≥ (C -C * -3e -2α L/C 1 )ψ 2 n,β = aψ 2 n,β ,

Concerning the variance term, we easily get

where C 1 and C 2 are positive constants (we refer to [START_REF] Butucea | Quadratic functional estimation in view of minimax goodness-of-fit testing from noisy data[END_REF], Theorem 4 for more details). Using the form of the bandwidth h n , we have

.

Let us now focus on the second term appearing in the right hand side of (A.4).

Denoting by h 0 = (log n/2) -1/s , we have

Moreover,

This leads to

and this term is negligible in front of the first term appearing in the right hand side of (A.4) as soon as a > s/s. This leads to the result.

Proof of Corollary 3. We use the same notation as in Subsection 3.2. Moreover, T 0 n is the test statistic constructed with the deterministic kernel K n and the deterministic bandwidth h n ; and t 2 n is the threshold defined with the parameter value s n (s) for the self-similarity index. The first type error of the test is controlled by

The first term on the right hand side of this inequality converges to zero according to Proposition 1. Let us focus on the second term. We have

It is easily seen that

In fact, there exists some constant C 1 > 0 depending only on L and on the noise distribution such that B f,s (T

.

Returning to (A.5), we get

Computation of the variance follows the same lines as under hypothesis H 0 . We obtain

The choice of the bandwidth ensures that the second type error term converges to zero.

Proof of Theorem 3. This proof follows the lines of Theorem 3.9 in [START_REF] Hall | Martingale limit theory and its application[END_REF].

Combining the Skorokhod representation Theorem and Lemma 3.3 in [START_REF] Hall | Martingale limit theory and its application[END_REF], there exists a nonnegative random variable T n such that for any 0 < ǫ < 1/2 and any real x,

Moreover, for any δ > 0,

where T n -V 2 n is a sum of Martingale differences. In the same way as in [START_REF] Hall | Martingale limit theory and its application[END_REF], we obtain (as δ ≤ 1)

which concludes the proof.