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1. Introduction

1.1. MOTIVATION

The magnetism of many astrophysical objects, such as various stars or
planets, galaxies, the intergalactic medium, etc, is attributed to the mo-
tion of conducting fluid in their interiors. It has been first proposed by
Larmor (Larmor, 1919) that a flow of conducting fluid generates the mag-
netic field of the sun by maintaining the corresponding electric current
against ohmic dissipation. Such a generation of electromagnetic energy
from mechanical work using a self-excited dynamo has been known since
Siemens (Roberts and Jensen, 1993) and is the most basic mechanism of
electrical engineering. However, in industrial dynamos the path of the elec-
tric currents are constrained by a complex wiring, which even in the most
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elementary device, the homopolar dynamo (Bullard, 55), breaks mirror
symmetry. In addition, magnetic field lines are usually canalized using a
high magnetic permeability material. No such well controlled external con-
straints on the field or on the current lines exist in “natural” dynamos, and
for a long time, it has been far from obvious that the dynamo effect was the
correct explanation for solar or earth magnetism. It has been even shown
that a lot of flow and / or field configurations with enough symmetries can-
not behave as fluid dynamos [for a review on anti-dynamo theorems, see
Kaiser et al., these proceedings].

The first simple example of an homogeneous dynamo (i. e. in a medium
of constant electrical conductivity and thus no path of least resistance)
was given by Herzenberg (Herzenberg, 1958). It consists of 2 or 3 rotat-
ing solid spheres embedded in a static medium of the same conductivity
with which they are in perfect electrical contact. A slightly different ver-
sion of the Herzenberg dynamo was operated experimentally by Lowes and
Wilkinson and may be considered as the first experimental demonstration
of a homogeneous dynamo (Lowes and Wilkinson, 1993). In a simply con-
nected domain, the simplest “flow” leading to dynamo action was found
by Ponomarenko (Ponomarenko, 1972). It consists of a cylinder in solid
body rotation and translation along its axis, embedded in an infinite static
medium of the same conductivity with which it is in perfect electrical con-
tact. Each point of the cylinder thus follows an helical path. Another simple
flow has been found by G. O. Roberts (G.O. Roberts, 1972). It is a spatially
periodic flow that consists of a two-dimensional array of helical eddies. It
should be noted that the three velocity fields, @, quoted above, have a non
zero helicity (7-V x @), where (-) stands for the spatial average. Although
this is not a necessary condition for dynamo action, it has been shown by
Parker that the non zero helicity of cyclonic eddies leads to an efficient
dynamo mechanism (Parker, 1955).

Very recent experiments using a Ponomarenko type [the Riga experi-
ment (Galaitis et al., 2000a; Galaitis et al., 2000b), these proceedings] or a
Roberts type [the Karlsruhe experiment (Stieglitz et al., 2000), these pro-
ceedings] flow of liquid sodium, have provided the first laboratory models
of fluid dynamos. However, an experimental demonstration of the dynamo
effect in an unconstrained turbulent flow of liquid metal is still lacking.
This is the main objective of our experiments using von Karman swirling
flows of liquid gallium and sodium. The possibility of generating a dynamo
action in a flow whose large scale velocity field comes close to the geome-
tries considered by Dudley and James (Dudley and James, 1989) has been
suggested by Roberts and Jensen (Roberts and Jensen, 1993). This has led
to experiments where the fluid is confined in a closed tank and the flow is
produced by the motion of ‘stirrers’. One such experiment is being run by
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the Maryland group and has yielded results on MHD turbulence (Peffley
et al., 2000)[Maryland group, these proceedings]. Another is planned by
the group in Madison [the Madison experiment, these proceedings]. Our
motivations for studying the dynamo in the von Kdrman geometry are the
following ones:

1) Effect of turbulence on the dynamo onset

In the absence of strong geometrical constraints, any flow of liquid metal
is fully turbulent before possibly displaying dynamo action. Indeed, the
magnetic Prandtl number, Pm = ugov, where g is the magnetic perme-
ability of vacuum, o is the electric conductivity of the fluid and v is its
kinematic viscosity, is smaller than 107° for all electrically conducting lig-
uids. Since the dynamo action requires a large enough magnetic Reynolds
number, Rm = pgo LV, where V is the fluid characteristic velocity and L
is the flow characteristic large scale, one expects to observe the dynamo
effect when the flow kinetic Reynolds number, Re = VL /v, is larger than
108. The role of turbulent fluctuations at such large Reynolds numbers may
be twofold: on one hand, they decrease the effective electrical conductiv-
ity and thus inhibits dynamo action by increasing Joule dissipation. On
the other hand, they may generate a large scale magnetic field through
the “alpha effect” or higher order similar effects (Krause and Radler, 1955;
Moffatt, 1978). Experiments are the only way to study the role of turbulent
fluctuations because direct numerical simulations cannot be performed at
such high Reynolds number.

2) Saturation of the magnetic field

The saturation mechanisms of the growth of the magnetic field above the
dynamo onset should strongly depend on the geometrical constraints ap-
plied to the flow. Indeed, an unconstrained flow is more easily perturbed
under the action of the Lorentz force and this is likely to affect the post-
bifurcation regime. A problem of fundamental interest is to determine the
mean magnetic energy and the mean Joule dissipation related to their ki-
netic counterparts in the supercritical saturated regime. Again, this can
be studied only experimentally because direct simulations of the dynami-
cal dynamo problem with realistic values of the magnetic Prandtl number
cannot be performed.

3) Dynamical and statistical properties of the generated magnetic field

Magnetic fields of astrophysical objects may be found to be almost time-
periodic, like in the sun, or nearly stationary i. e. very slowly varying, like for
the earth magnetic field between two successive reversals. It is tempting to
connect this temporal behavior with the nature of the dynamo bifurcation
which can be either a stationary bifurcation or a Hopf bifurcation in the
simplest generic cases. It should be noted that both a stationary bifurcation
(Karlsruhe experiment), and a Hopf bifurcation (Riga experiment) have
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been observed so far. With these simple geometry flows, it is possible to
guess the nature of the bifurcation using symmetry considerations. This is
less obvious in the case of a fully developed turbulent flow and it would be
interesting to try to understand how is determined the dynamical regime
above the dynamo onset. Another interesting question with flows involving
relative turbulent fluctuations as large as 50%, is to determine whether the
dynamo is generated mostly from the mean flow or predominantly from
the turbulent fluctuations. Finally, the study of the statistical properties of
magnetohydrodynamic turbulence without an externally applied field, and
the observation of the dynamics of the large scale magnetic field (reversals)
are of fundamental interest and may also improve our understanding of
solar or terrestrial magnetism.

1.2. WHY THE VON KARMAN FLOW GEOMETRY ?

The choice of an optimum configuration to perform a turbulent dynamo
experiment is not an easy task. As said above, if the flow is not con-
fined by internal boundaries, it is strongly turbulent when the dynamo
action may occur. In the case of confined flows, turbulent fluctuations
are of course also generated at large Reynolds numbers, but they are re-
stricted to small scales. The large eddies that generate the magnetic field
in the Karlsruhe (Stieglitz et al., 2000) or Riga (Galaitis et al., 2000a;
Galaitis et al., 2000b) experiments are quenched by the internal bound-
aries and thus forced to act coherently in time. This is not the case for
unconfined flows in which the large scale flow may have undergone several
bifurcations before the dynamo onset. Thus, both the geometry of the large
eddies as well as their time dependence are difficult to predict. Since direct
numerical simulations are not possible at kinetic Reynolds numbers of order
108, the efficiency of a given set-up with respect to dynamo action cannot
be even roughly evaluated before having characterised the flow using water
experiments. However, there are general arguments that have motivated
our choice of von Karman type flows. We will first shortly describe these
flows and then discuss the motivations which have led us to use them in a
dynamo experiment.

Flows that are generated between two co-axial rotating discs (see figure
1 and 4) have been called “von Kdrman swirling flows” (Zandenbergen and
Dijkstra, 1987). Mean velocity profiles in cases where the flow is confined
inside cylindrical walls have been measured since the late fifties (Picha,
1957; Picha and Eckert, 1958; Welsh, 1958; Simand et al., 2000; Burguete
et al., 2000). In the case of co-rotating discs, one observes that the flow
can be split into two parts: (i) a central core, nearly in solid body rotation
at an average angular speed, the radius of which is fixed by the distance
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between the discs; (ii) an external flow driven outward near the discs by
the centrifugal forces, and consequently, inward in the mid-plane. At high
Reynolds numbers the whole flow is turbulent.

Kérméan swirling flows generated with counter-rotating discs strongly
differ from the co-rotating case: a time average of the velocity field (see fig-
ure 1) shows the existence of differential rotation and meridian recirculation
loops. No coherent stationary average flow can be observed, although slowly
drifting coherent structures have been detected in the median region (Davi-
aud et al., 2000). In the central region, a well defined average motion is not
observed and large and random turbulent velocity fluctuations occur (Picha
and Eckert, 1958; Pinton and Labbé, 1994; Mordant et al., 1997). Visual-
isation using water seeded with air bubbles, shows intermittent formation
of filaments of bubbles that are ascribed to vorticity concentrated on tube-
like structures (Douady et al., 1991; Fauve et al., 1993; Cadot et al., 1995;
Dernoncourt et al., 1998).

The first motivation to try a dynamo experiment using von Karman
flows relied on their efficiency to amplify and concentrate vorticity. Pressure
measurements showed that localized vortex involves velocity increments on
their core size of the order of the integral velocity (Fauve et al., 1993) and
it has been further shown that the typical core size is of the order of the
flow Taylor microscale (Dernoncourt et al., 1998). Although we know that
the Elsasser analogy between vorticity and magnetic field cannot be used
without caution, a flow which is an efficient amplifier of vorticity is likely
to be a good candidate for a dynamo experiment.

A second argument is the existence of local helicity in the vicinity of the
rotating discs that generate strong swirling flows of identical helicity (re-
spectively opposite) in the contra-rotating case (respectively co-rotating).
Although not necessary, the existence of helicity or the weaker condition
of the absence of mirror symmetry, are known to be in favor of dynamo
action.

Finally the amount of turbulent fluctuations with respect to the mean
flow can be easily modified in the von Karman geometry. Turbulent fluc-
tuations are much larger in the counter-rotating case and it is also easy to
get a time dependent large scale mean flow by rotating the two discs at dif-
ferent angular velocities (Simand et al., 2000). These aspects are obviously
interesting in order to study the effect of turbulent fluctuations on the dy-
namo onset. Indeed, the mean flow has been measured and the threshold
of dynamo action resulting from the mean flow alone has been computed
using a kinematic code (Burguete et al., 2000) [section 2, below].

There are of course other well-known turbulent flows in closed geome-
tries that may be considered. Thermal convection is certainly of interest in
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astrophysical or geophysical contexts but it is probably a very inefficient
way to get a dynamo on the laboratory scale. Flows generated by inertial
forces may fall in the same category (Malkus, 1968). If one is interested by
scale separation between the velocity field and the magnetic field, Couette-
Taylor low may be tried as a possible way to achieve such a configuration
without internal boundaries (Laure et al., 2000).

2. Optimization

Self-excitation is expected if the magnetic Reynolds number Rm exceeds
a critical value Rm®. In order for this to be achieved experimentally, one
must optimize the flow configuration to have the lowest possible threshold
and maximize the range of accessible Rm in the set-up. The latter is fixed
by the amount of mechanical power P input into the flow: due to the low
magnetic Prandtl number Pm of all liquid metals, even moderate Rm flows
are strongly turbulent. As a result, given the characteristic length scale
L of the flow, P scales as P ~ pL?U?, so that Rm™* ~ puo(PL/p)'/3,
and is thus weakly influenced by size or power. Much stronger variations
result from the flow geometry. Given the choice of the von Kérman flow
class, one optimizes the entrainment device (poloidal vs. toroidal velocities)
and boundary conditions (insulating or conducting outer shell). The main
characteristics of the velocity field are measured for various discs drives and
configurations in a water experiment and then introduced in a kinematic
dynamo computer simulation. The water setup is a half-scale model, in a
cylindrical (R = 10 c¢m) vessel — at 50°C, the viscosity of water is closed
to that of sodium at 120°C. Both global (power consumption) and local
velocity measurements are made. Power is measured via torque and global
temperature increase measurements. For large kinetic Reynolds numbers,
the results exhibit a variation of the power as P ~ 3, with Q the rotation
frequency, in agreement with scaling predictions. The mean velocity field
is obtained via Laser Doppler Anemometry and pulsed Doppler Ultrasonic
Velocimetry — typical results are shown in figure 1. The local rms velocity
fluctuations (relative to the mean) give a typical turbulence rate of 50 %.

A kinematic dynamo code is developed in a periodic cylindrical domain,
with a pseudospectral scheme in the azimuthal and axial directions and
finite differences in the radial direction (Léorat, 1999). The conductivity
of fluid ¢ inside the cylinder is supposed to be uniform and the external
medium is insulating. The influence of a layer of conducting fluid at rest
surrounding the experiment was examined. The magnetic field equation,

— - _ 1 _
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Figure 1. Mean velocity field in water experiment: (a) toroidal and (b) poloidal compo-
nent of the velocity in the meridional plane. The abscissa corresponds to the normalized
radius r/R, and the ordinate to the axial direction ([0, 2] = [bottom, top]).

where U is the time averaged velocity field measured in the water prototype.
It is integrated in terms of the magnetic field components:

B(r,¢,z,t) = Z B™™ (r,t) expli(m¢ + nnz)] (2)

n,m

The energy evolution of mode (m,n),
1
E™™(t) = _/ dV|B™"™(r,t)]? o et (3)
v

is recorded and self-excitation is achieved if R(p) > 0. The results reveal
an extreme sensitivity to the position of the zero of the poloidal velocity,
the maximum of the toroidal velocity and the poloidal to toroidal ratio
(P/T) (Burguete et al., 2000). In particular, the growth rate is maximum
for P/T ~ 0.7 (cf. figure 2(a)).

Rm? is also quite sensitive to the boundary condition: as shown in fig-
ure 2(b), a layer of sodium at rest of width 20% R surrounding the experi-
ment is highly favorable. Below threshold, the study of the system response
to an externally applied field exhibits a divergence of the relaxation time
and of the saturation energy.

The first configuration was chosen according to the results of the op-
timization process: impellers that yield a poloidal to toroidal ratio ~ 0.7,
an efficiency (Ugow/Udisc ~ 0.9) and copper walls (ocy ~ 40Na). Under
these conditions the expected threshold is Rm® ~ 70, for a maximum of
Rm™2* ~ 55 with 150kW of mechanical power input. It should be empha-
sized that this corresponds to the dynamo action of the mean flow as if
it were acting alone. No quantitative estimate of the role of the turbulent
fluctuations is performed with this analysis.
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Figure 2. (a) Energy

growth rate as a function of the poloidal to toroidal ratio P/T for various magnetic
Reynolds numbers: (+) : Rm = 55; (x) : Rm = 65, (*x) : Rm = 75, (0) : Rm = 85.
(b) Energy growth rate as a function of the magnetic Reynolds number for various
boundary condition. % indicates the proportion of sodium at rest surrounding the flow:

(+): 0%, (x):10%, (*):20%.

3. Experimental set-up and hydrodynamic measurements

Sodium loop : it is shown in figure 3. It is meant to be a versatile facility
that can handle various flow configurations with a maximum sodium flow
volume of about 300 liters. It is equiped with 2 electrical AC motors of
75kW each and a corresponding cooler is soon to be installed.

® (@)

@

B o @

®

Figure 3.  Sodium loop. (1) experimental platform, (2) sodium tank (270 liters), (3,4)
motors and flow vessel, (5) sodium purifying unit, (6) control unit, (7) argon circuit
command.

Flow : The gallium set-up has been described in details in earlier work (Odier
et al., 1993). The sodium flow configuration is of the same type — recalled
in figure 4. The gallium experiment has a volume of about 6 litres with
2R ~ 20 cm, insulating (steel) boundary conditions, and uses 2x11kW mo-
tors to drive the flow. The sodium setup holds 70 liters with 2R ~ 40 cm, has
conducting (copper shell) boundary conditions and uses 2x75kW motors.
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Figure 4. Experimental set-up. The magnetic induction coils can produce an applied
field of about 20 Gauss inside the flow, either parallel to the rotation axis or perpendicular
to it. The magnetic field is measured locally in situ using a Hall probe located in the
median plane, at a distance D ~ R/2 from the rotation axis.

The rotation rates of the driving discs are equal and opposite, adjustable
in the range Q € [0 — 50] Hz.

Both set-up are equipped with a piezoelectric pressure transducer mounted
flush with the cylindrical wall. Figure 5(a) shows an example of the fluc-
tuations in time of the pressure measured at the flow wall. The sudden
drops are ascribed to concentrated vortex filaments (Fauve et al., 1993;
Abry et al., 1994; Cadot et al., 1995) that have visualized using water
seeded with air bubbles (Douady et al., 1991); their core size has been
measured acoustically (Dernoncourt et al., 1998) and is found to be of the
order of the Taylor microscale. The rms intensity of the pressure fluctu-
ations varies as the square of the rotation rates of the discs, as shown in
figure 5(b). This yields a measurement of the intensity of the rms velocity
fluctuations (Fauve et al., 1993; Mordant et al., 1997):

Prms ™~ %P’Uzms- (4)

This, in turn, gives an estimate of the efficiency of the discs driving the
flow, evaluated as the ratio of the rms velocity fluctuation to the disc rim
speed:

I(u — Urms — 2prms/p (5)
Ukim 21 RS)

We obtain K, = 0.12 for the gallium experiment using flat discs bear-
ing an etched pattern and K, = 0.83 in the sodium setup using discs with
curved blades. This value is in good agreement with the optimization pro-
cess and the water measurements.

For each experiment, we have also checked the scaling of the power con-
sumption of the flow as a function of the discs rotation rate. As stated pre-
viously, a dimensional argument in the limit of very large kinetic Reynolds



10 MARIE, J. BURGUETE, A. CHIFFAUDEL*, F. DAVIAUD, D. ERICHER, C. GASQUET ET AL.

[bar]

[bar]

p ms
P rms

I I L L L
0 50 100 150 200 250 300

Q? [HZ}]

8 10 12 14 16 18 20
time [s]

Figure 5. (a) time variation of the pressure measured at the flow wall (Q = 17 Hz); (b)
evolution of the rms value of the pressure fluctuations with the discs rotation rate.

numbers yields:

P=KppR°Q® | (6)

where Kp is a dimensionless factor that depends on the geometry of the
cell and of the shape of the driving discs. To obtain P, we monitor the cur-
rent and voltage in the driving motors or we record the temperature drift
inside the flow when the external cooling is turned off. Both methods give
results in very good agreement. We obtain Kp = 2.57 in the gallium set-up
(discs with a 5 mm deep etched pattern), and Kp = 33.9 in the sodium
experiments with the discs as defined by the optimization procedure.

Magnetic measurements : Induction coils are placed with their axis either
aligned with the motors rotation axis or perpendicular to it — cf. figure 4.
As a result, one can apply to the flow a steady magnetic field By with
strength in the range 1-20 Gauss. This field does not modify the flow, since
the interaction parameter N = B2/puoU? is of the order of N ~ 107°.
However, it is distorted by the flow motion that generates an induced field
b results. We measure the three components of the local magnetic field inside
the flow using a calibrated and temperature compensated 3D Hall probe
(F.W. BELL). Its dynamical range is 65 dB and time resolution 20 ps. The
signal is digitized using a 16-bit data acquisition card (DataTranslation)
and stored on PC.

4. Results
4.1. INDUCTION

Let us begin with a description of the main characteristics of the mag-
netic measurements, made in situ and with an externally applied field. The
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equation governing the magnetic field I;generated by the flow, reads:
O — —Ab = (Bo.V)i — (@.V)b+ (b.V)i . (7)

At low Rm, the first term on the right hand side of the equation for b is
dominant and the induced field is thus also proportional to Rm. At larger
Rm, the two last terms of the equation for b are not negligible and the
induced field is no longer proportional to Rm.

When the magnetic Reynolds number is low enough, the induction
equation is dominated by the stretching term (the ‘quasistatic’ approxi-
mation (Golistyn, 1960; Moffatt, 1961)) and reads:

— —

1 -
(Bo- V)it - Ab 0. (8)

For an external field By applied along direction 7, the i-th component of the
induced field results from the stretching by the velocity gradient d;u;. At
low Rm, induction is directly linked to the velocity gradient tensor [d;u;];
in addition, the amplitude of the induced field is directly proportional to
the magnitude of the applied field (the ratio of the two provide an intrinsic
definition of the magnetic Reynolds number — cf. (Martin et al., 2000)).

Q=8Hz B0 LONG Q=8Hz BOTRANS
16 ( a) " . 14 b T T
14t . 1 12—( ) °
) 7 —
12+ R 100 //
10 o’/ 1 ol 3/
g 8, g 6 p
o) & o
6L at & 1
47 ',0 oL ’ /// il
2 w — ]
0 5 10 15 %o E 0 g
B, Gl B, [C]

Figure 6. Induced field as a function of the applied field, for counter rotating discs
at Q@ = 8 Hz. (a) Bp is applied along the axis of rotation; (b) By perpendicular to the
axis of rotation. Symbols are: (o) axial component b, of the induced field, (*) azimuthal

component, (+) radial component and (¢) induction magnitude ||6]|. The measurement
probe is located near the mid-plane, 10 cm from the axis of rotation.

An example of the variation of the average components of the induced
magnetic field with the applied field is given in figure 6. In each case, the
magnitudes of the axial and azimuthal induced fields are of the same order
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and both larger than that of the radial field. This is in agreement with
the averaged velocity profile measurements (see figure 1. The total induced
field is of the same order as the applied one:

Nl o Ol

_aei _dPl 9, 9
0By 1,0NG 0By TRANS )

where Bp1ong and By Trans are the externally applied fields along the
axis of rotation or in the direction perpendicular to it (cf. figure 2).

For comparison, measurements in the gallium experiment at a compa-
rable rotation rate gives a maximum value 8||5||/8BO7LONG ~ 0.1, while

8||l;||/8B07TRANS is of the order of a few percent (Martin et al., 2000).
Recalling that this ratio is a definition of an intrinsic magnetic Reynolds
number, the observed increase in induction effects when going from the
gallium to the sodium experiment is attributed to the changes in the fluid
electrical conductivity (ona ~ 2.20Ga), size of the experiment (Lna ~ 2LGa)
and power in the driving motors (Pya ~ 7FPga). In addition, the impellers
profile has been optimized for a ratio of poloidal to toroidal velocity close to
1 so that the induction have the same magnitude in the axial and transverse
directions.

4.2. TIME EVOLUTION AND SPECTRUM

The data shown in the previous section are averaged over long periods of
time. In fact, due to the large value of the kinetic Reynolds number of the
flow, the flow is strongly turbulent, with rms velocity fluctuations (related
to the mean) in the range 30 to 50% (see the experimental set-up section).

We show in figure 7 the time evolution of the axially induced field for
a transverse By, at a rotation rate of 2 = 8 Hz. Large fluctuations are
observed with a level comparable to that of the velocity fluctuations of the
flow. In addition, they occur over slow time scales: the rms fluctuation
level is nearly unchanged if the signal is low-pass filtered below € or even
2/10. Such long time scales can be associated with ‘global’ fluctuations
of the mean flow which are known to exist in this geometry (Pinton and
Labbé, 1994); it is also of the order of magnitude of magnetic diffusion over
the flow size (Tair = poo R? ~ 1 s). Advective time scales are much faster:
for instance the advection of fluid past the Hall probe is of the order of
Tadv ~ dprobe/Urms ~ (dprobe/27R)T ~ 0.024T (T = Q~! is the integral
time scale of the flow).

These time scales have a corresponding meaning in the correlation func-
tions and power spectra of the induction field. Correlation is shown in fig-
ure 8. One observes that the autocorrelation decreases with a characteristic
time of order T and is null for time lags larger than about 107. It shows
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Figure 7. Time variation of the axial component of the induced field inside the flow,
for a transverse applied field of magnitude By = 12.3 G, at a rotation rate = 8 Hz
(upper) and Q = 17 Hz (lower). The measurement probe is located near the mid-plane,
10 cm from the axis of rotation.

in particular that the drops in the induced field observed in figure 7 oc-
cur as decorrelated events. The components of the induced field are also
cross-correlated (dashed lines in the main figure 8: at Q = 8 Hz, the axial
and azimuthal components are correlated, whereas at 2 = 17 Hz the axial
and radial components are correlated. The induced field is also correlated
to the pressure fluctuations (inset of figure 8):

(b()p(0))1—0 ~ £0.2 (10)

a quite significant value considering that the measurements are made at
points located some 15 cm away in a flow where the Reynolds number is
larger than 106. We thus attribute the slow variations in the magnitude of
the induction to changes in the large scales of the hydrodynamic flow.
Spectra (Fourier transform of the auto correlation functions) are shown
in figure 9. The curves are very similar for the three components of the
induced field. Three regimes are observed: (i) for frequencies lower than
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Figure 8. Correlation of induction fluctuations. Autocorrelation functions for each of the
3 components of B-field (solid line) and largest (B;B;) cross correlation function (dashed
line). The inset shows the cross correlation function between pressure and magnetic field
component (axial: solid; azimuthal: dashed). The measurement probe is located near the
mid-plane, 10 cm from the axis of rotation. The pressure probe is mounted flush with
the inner wall, at a distance d = 10 cm from the magnetic probe.
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Figure 9. Power spectrum of the components of the magnetic induction. The measure-
ment probe is located near the mid-plane, 10 cm from the axis of rotation.

about €2/10, the spectral content is flat; (ii) for frequencies between ©/10
and  there is a power law behavior with an exponent close to —1; (iii)
for frequencies higher than Q the spectra decay algebraically with a slope
close to —11/3. This last regime corresponds to the turbulent fluctuations,
in agreement with Kolmogorov K41 phenomenology (Moffatt, 1961), pro-
vided that a Taylor hypothesis is valid for the local field measurement. This
observation is in agreement with measurements made in the Gallium ex-
periment (Odier et al., 1993). The power law regime l~)2(f) o f~! was not
readily observed in the Gallium set-up; it is consistent with measurements
of the Karlsruhe experiment (Stieglitz et al., 2000), and with numerical
results reported in (Frisch et al., 1975).
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4.3. EVOLUTION WITH THE MAGNETIC REYNOLDS NUMBER

Experiments with a steady externally applied field have been made for
rotation frequencies of the impellers between 0 and 24 Hz. In the case where
By is perpendicular to the axis of rotation, the corresponding evolution of
the average magnitude of the induced field |l;| and of its rms fluctuations
with the magnetic Reynolds number are shown in figure 10.

[G]

b_rms
°

10 - - -2 - e R

=
—
et
L
¢

Figure 10. Induction for an applied transverse field, Bg = 12.3 G. (a) Variation of the
average induced magnetic field with the magnetic Reynolds number of the flow; (b) rms

variation of the magnitude of b (it accounts for the error bars in (a)). In the calculation
of Rm, the variations of the electrical conductivity with the sodium temperature have
been accounted for. The measurement probe is located near the mid-plane, 10 cm away
from the axis of rotation.

At low discs rotation speed, the behavior is linear: the induced field is
proportional to the magnetic Reynolds number. As argued previously, such
a linear behavior is expected at low Rm and the values of the induction
strength obtained are in agreement with our optimization procedure.

At higher rotation rates, one observes a change in behavior: despite the
increase in the discs rotation rate, the amplitude of the induced field satu-
rates. As the magnitude of the induced field reaches the magnitude of the
applied one, it is not surprising to observe non linear effects. For instance,
when a transverse field is applied as in figure 10, an axial field compo-
nent is induced (cf. figure 6(b)); this may in turn generate a transverse
induced field as in figure 6(a). If this is the case in the above figure, the
non-linearity tends to decrease the overall magnitude of the induced field.
Further measurements are needed establish clearly these effects and their
link to a possible dynamo action in this geometry.

5. Concluding remarks

A sodium experimental platform has been established in a CNRS/ENS/CEA
collaboration, that has allowed new MHD measurements on von Karman
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swirling flows. The results reported here are based on the experiment first
run. Further progress are expected as the experiment proceeds.
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