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Patrick Le Meur
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Abstract

Let A be a basic connected finite dimensional algebra over an algebraically closed field, with
ordinary quiver without oriented cycles. Given a presentation of A by quiver and admissible relations,
Assem and de la Peña have constructed an embedding of the space of additive characters of the
fundamental group of the presentation into the first Hochschild cohomology group of A. We compare
the embeddings given by the different presentations of A. In some situations, we characterise the
images of these embeddings in terms of (maximal) diagonalizable subalgebras of the first Hochschild
cohomology group (endowed with its Lie algebra structure).

Introduction
Let A be a finite dimensional algebra over an algebraically closed field k. The representation theory
of A deals with the study of (right) A-modules. So we assume that A is basic and connected and
it admits presentations A ≃ kQ/I by its (unique) ordinary quiver Q and an ideal I of admissible
relations. In the eighties, Martinez-Villa and de la Peña introduced the fundamental group π1(Q, I)
of (Q, I) ([17]). Like in topology, this group is defined using an equivalence relation ∼I (called the
homotopy relation) on the set of unoriented paths in Q. This group is part of the so-called covering
techniques initiated in [6, 18]. In particular, it has led to the definition of simple connectedness and
strong simple connectedness for an algebra ([2, 20]). Also, it has proved to be a very useful tool
in representation theory. For example, it is proved in [19] that any domestic self-injective algebra
admitting a Galois covering by a strongly simply connected locally bounded k-category is of quasi-
tilted type. Note that in general, different presentations A ≃ kQ/I and A ≃ kQ/J may lead to
non-isomorphic groups π1(Q, I) and π1(Q, J).

The fundamental group π1(Q, I) behaves much like the fundamental group of a topological space.
For example, given a presentation ν : kQ ։ A (with kernel I), Assem and de la Peña have de-
fined an injective group homomorphism θν : Hom(π1(Q, I), k

+) →֒ HH
1(A). Here HH

1(A) is the first
Hochschild cohomology group Ext

1
Aop⊗A(A,A) ([12]). This result is to be compared with the classi-

cal isomorphism Hom(π1(X),Z)
∼
−→ H1(X; Z) relating the singular cohomology to the fundamental

group of a path connected topological space X. It is known from [10] that HH
1(A) has a structure of

Lie algebra, isomorphic to the Lie algebra of derivations of A (with the commutator as Lie bracket)
factored out by the ideal of inner derivations. With this presentation of HH

1(A), the derivations that
lie in the image of θν , have been characterized in terms of diagonalizable derivations ([9], see also [7]).

The aim of this text is to characterise maximal diagonalisable Lie subalgebras of HH
1(A) using the

subspaces Im(θν) associated to the different presentations ν of A. Recall that, given a Lie algebra, the
maximal diagonalizable (for the adjoint representation) subalgebras are related to Cartan subalgebras.

On the one hand, one can define a diagonalizability for elements in HH
1(A) using the above notion

of diagonalizable derivations. Also one can define the diagonalizability of a subset of HH
1(A) (as the

simultaneous diagonalizability of its elements). It appears that Im(θν) is diagonalizable, and that any
diagonalizable subset of HH

1(A) is contained in Im(θν) for some presentation ν : kQ ։ A.
On the other hand, given two presentations ν : kQ ։ A and µ : kQ ։ A with kernel I and J

respectively, it is not easy to compare the groups π1(Q, I) and π1(Q,J) (and therefore θν and θµ).
In some cases, this is possible, however. For example, assume that (α, u) is a bypass in Q (that is,
α is an arrow and u is an oriented path which is parallel to α and distinct from α), that τ ∈ k, and
that J = ϕα,u,τ (I). Here ϕα,u,τ : kQ

∼
−→ kQ is the automorphism, called a transvection, which maps

α to α + τu, and which fixes any other arrow ([13]). In such a situation, if α ∼I u (or α ∼J u),
then there is a natural surjective group homomorphism π1(Q,J) ։ π1(Q, I) (or π1(Q, I) ։ π1(Q, J),
respectively); if α ∼I u and α ∼J u then π1(Q, I) equals π1(Q,J) and the natural homomorphisms
are the identity maps; and if α 6∼I u and α 6∼J u, then I = J and π1(Q, I) = π1(Q, J). In each of
these cases, we shall see that there is a simple relation between θν and θµ.
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In order to formulate our main result, we use the quiver Γ of the homotopy relations of the
presentations of A ([13]). Its set of vertices is the set of the homotopy relations ∼Ker(ν) associated
to all the presentations ν : kQ ։ A. Also, there is an arrow ∼I→∼J if there exists a transvection
ϕα,u,τ such that J = ϕα,u,τ (I) and such that the natural surjective group homomorphism is a non
isomorphism π1(Q, I) ։ π1(Q, J). The quiver Γ has been introduced in order to find conditions
under which an algebra admits a universal Galois covering. This existence is related to the existence
of a unique source (that is, a vertex which is the target of no arrow). Actually, under one of the two
following conditions, Γ does have a unique source ([15, Prop. 2.11] and [16, Cor. 4.4]):

(H1) Q has no double bypass and k has characteristic zero (a double bypass is a 4-tuple (α, u, β, v)
where (α, u) and (β, v) are bypasses such that the arrow β appears in the path u).

(H2) A is monomial (that is, A ≃ kQ/I0 with I0 an ideal generated by a set of paths) and Q has no
multiple arrows.

Using these results, we prove the main theorem of the text.

Theorem 1. Assume that at least one the two hypotheses (H1) or (H2) is satisfied. Then:

(i) The maximal diagonalizable subalgebras of HH
1(A) are exactly the subalgebras of the form Im(θν)

where ν : kQ ։ A is a presentation such that ∼Ker(ν) is the unique source of Γ.

(ii) If G,G′ are two such subalgebras of HH
1(A), then there exists an algebra automorphism ψ : A

∼
−→

A inducing a Lie algebra automorphism ψ∗ : HH
1(A)

∼
−→ HH

1(A) such that G′ = ψ∗(G).

Note that the Lie algebra HH
1(A) has already been studied (see [11, 21], for instance).

The text is organised as follows. In Section 1 we recall all the definitions we will need and
prove some useful lemmas. In Section 2, we introduce the notion of diagonalizability in HH

1(A). In
particular, we will prove that a subset of HH

1(A) is diagonalizable is and only if it is contained in
Im(θν) for some presentation ν : kQ ։ A. In Section 3 we compare the Lie algebra homomorphisms
θν for different presentations ν of A, using the quiver Γ. Finally, in Section 4 we prove Theorem 1.

This text is part of the author’s thesis ([14]) made at Universiẗı¿ 1
2

Montpellier II under the
supervision of Claude Cibils.

1 Preliminaries

1.1 Terminology and notations for quivers

Let Q be a quiver. We write Q0 and Q1 for the set of vertices and of arrows, respectively. We
read (oriented) paths from the right to the left, that is, we view a path u as a morphism and the
concatenation vu of two paths u and v such that the source of v equals the target of u as a composition
of morphisms. Given x ∈ Q0, the trivial path (of length 0, with source and target equal to x) is
denoted by ex. Two paths are called parallel if they have the same source and the same target. An
oriented cycle in Q is a non trivial path whose source and target are equal. If α ∈ Q1 we consider
its formal inverse α−1 with source and target equal to the target and the source of α, respectively.
Hence, we get the double quiver Q such that Q0 = Q0 and Q1 = Q1 ∪ {α−1 | α ∈ Q1}. Then, a walk
in Q is exactly an oriented path in Q. Given a walk γ = αεn

n . . . αε11 (with αi ∈ Q1, εi ∈ {±1}), its
inverse γ−1 is by definition α−ε1

1 . . . α−εn
n .

1.2 Presentations by quiver and admissible relations

Let Q be a quiver. Its path algebra kQ is the k-algebra whose basis as a k-vector space is the set of
paths in Q (including the trivial paths), and whose product is bilinearly induced by the concatenation
of paths (if u, v are two paths such that the source of v is different from the target of u, then we set
vu = 0). The unit of kQ is

P

x∈Q0

ex and kQ is finite dimensional if and only if Q is finite (that is

Q0 and Q1 are finite) and has no oriented cycles. We let kQ+ be the ideal of kQ generated by the
arrows.

An admissible ideal of kQ is an ideal I such that (kQ+)N ⊆ I ⊆ (kQ+)2 for some N > 2. In such
a case, the elements of I are called relations and, following [17], a minimal relation of I is a relation
s

P

i=1

tiui 6= 0 such that t1, . . . , ts ∈ k∗ and u1, . . . , us are pairwise distinct paths in Q, and such that

there is no non empty proper subset S ⊂ {1, . . . , s} satisfying
P

i∈S

tiui ∈ I . In such a case, u1, . . . , us

are necessarily parallel. Note that I is generated by its minimal relations.
Recall (see [4]) that any finite dimensional k-algebra A is Morita equivalent to a basic one. If A

is basic, then there exists a unique quiver Q, the ordinary quiver of A, and a surjective k-algebra
homomorphism ν : kQ ։ A whose kernel is an admissible ideal of kQ. Also, {ν(ex) | x ∈ Q0} is a
complete set of primitive orthogonal idempotents of A. The homomorphism ν is called a presentation
(by quiver and admissible relations). We have A ≃ kQ/Ker(ν) and A is connected if and only if Q is
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connected.

1.3 Presentation of HH
1(A)

Let A be a basic finite dimensional k-algebra and let {e1, . . . , en} be a complete set of primitive
orthogonal idempotents. A unitary derivation ([7]) is a k-linear map d : A → A such that d(ab) =
ad(b) + d(a)b for any a, b ∈ A and such that d(ei) = 0 for every i. Let Der0(A) be set of unitary
derivations. It is a Lie algebra for the commutator. In the sequel, all derivations will be unitary. So we

shall call them derivations. Let E := {
n

P

i=1

tiei | t1, . . . , tn ∈ k}. Then E is a semi-simple subalgebra of

A and A = E⊕ r where r is the radical of A. Let Int0(A) := {δe : A→ A, a ∈ A 7→ ea− ae | e ∈ E},
this is an ideal of Der0(A). Throughout this text, we shall use the following presentation proved in
[7]:

Theorem 1. ([7]) HH
1(A) ≃ Der0(A)/Int0(A) as Lie algebras.

In the following lemma, we collect some useful properties on derivations.

Lemma 1.1. Let d ∈ Der0(A), then d(ejAei) ⊆ ejAei. Assume that the ordinary quiver Q of A has
no oriented cycles, then d(r) ⊆ r and d(r2) ⊆ r

2.

Proof: Since d is unitary and since Q has no oriented cycles, we have d(r) ⊆ r. So, d(r2) ⊆ r
2. �

If ψ : A
∼
−→ A is a k-algebra automorphism such that ψ(ei) = ei for every i, then the map

d 7→ ψ ◦d◦ψ−1 induces a Lie algebra automorphism of HH
1(A), denoted by ψ∗ : HH

1(A)
∼
−→ HH

1(A).

1.4 Fundamental groups of presentations

Let (Q, I) be a bound quiver (that is, Q is a finite quiver and I is an admissible ideal of kQ). The
homotopy relation ∼I was defined in [17] as the equivalence class on the set of walks in Q generated
by the following properties:

(1) αα−1 ∼I ey and α−1α ∼I ex for any arrow α with source x and target y,

(2) wvu ∼I wv
′u if w, v, v′, u are walks such that the concatenations wvu and wv′u are well defined

and such that v ∼I v
′,

(3) u ∼I v if u and v are paths in a same minimal relation (with a non zero scalar).

Note that if r1, . . . , rt are minimal relations generating the ideal I , then the condition (3) above may
be replaced by the following one ([5]):

(3′) u ∼I v if u and v are paths in Q appearing in ri (with a non zero scalar) for some i ∈ {1, . . . , t}.

The ∼I -equivalence class of a walk γ is be denoted by [γ]I . Let x0 ∈ Q0, following [17], the set of ∼I -
equivalence classes of walks with source and target x0 is denoted by π1(Q, I, x0). The concatenation of
walks endows this set with a group structure whose unit is [ex0 ]I . This group is called the fundamental
group of (Q, I) at x0. If Q is connected, then the isomorphism class of π1(Q, I, x0) does not depend
on the choice x0. In such a case, we write π1(Q, I) for π1(Q, I, x0). If A is a basic connected finite
dimensional k-algebra and if ν : kQ ։ A is a presentation, the group π1(Q,Ker(ν)) is called the
fundamental group of the presentation ν. The following example shows that two presentations of A
may have non isomorphic fundamental groups.

Example 1.2. Let A = kQ/I where Q is the quiver: 1

b
''

a

77 2
c // 3 and I =< ca >. Set x0 = 1.

Then π1(Q, I) ≃ Z is generated by [b−1a]I . On the other hand, A ≃ kQ/J where J =< ca − cb >,
and π1(Q, J) is the trivial group.

In the sequel we shall use the following technical lemma.

Lemma 1.3. Let (Q, I) be a bound quiver where Q has no oriented cycles and let d : kQ → kQ be
a linear map such that d(I) ⊆ I, and d(u) = tuu for some tu ∈ k, for any path u. Let ≡I be the
equivalence relation on the set of paths in Q generated by the condition (3) defining ∼I . Then, the
following implication holds for any paths u, v:

u ≡I v implies tu = tv .

Proof: We use a non multiplicative version of Gr̈ı¿ 1
2
bner bases ([1], see also [8]). Fix an arbitrary

total order u1 < . . . < uN on the set of paths in Q and let (u∗
1, . . . , u

∗
N ) be the basis of Homk(kQ, k)

dual to (u1, . . . , uN ). Following [15, Sect. 1], the Gr̈ı¿ 1
2
bner basis of I is the unique basis (r1, . . . , rt)

defined by the three following properties:
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(i) rj ∈ uij + Span(ui ; i < ij) for some ij , for every j,

(ii) u∗
ij

(rj′) = 0 unless j = j′,

(iii) i1 < . . . < it.

It follows from these properties that:

(iv) r =
t

P

j=1

u∗
ij

(r)rj for any r ∈ I .

Recall from [15, Sect. 1] that r1, . . . , rt are minimal relations of I so that ≡I is generated by the
property (3′) defining ∼I . So we only need to prove that that d(rj) ∈ k.rj for any j. We pro-
ceed by induction on j ∈ {1, . . . , t}. By assumption on d and thanks to (i), we have d(r1) ∈
I ∩ Span(ui ; i 6 i1). Hence, (iii) and (iv) imply that d(r1) ∈ k.r1. Let j ∈ {1, . . . , d − 1} and
assume that d(r1) ∈ k.r1, . . . , d(rj) ∈ k.rj . By assumption on d and thanks to (i) and (ii), we have
d(rj+1) ∈ I ∩ Span(ui ; i 6 ij+1) and u∗

il
(d(rj+1)) = 0 if l 6 j. So, (iii) and (iv) imply that

d(rj+1) ∈ k.rj+1. This finishes the induction and proves the lemma. �

1.5 Comparison of fundamental groups

Let A be a basic connected finite dimensional k-algebra with ordinary quiver Q without oriented
cycles. We defined the transvections in the introduction. A dilatation ([13]) is an automorphism
D : kQ

∼
−→ kQ such that D(ei) = ei for any i and such that D(α) ∈ k.α for any α ∈ Q1. The

following proposition will be useful in the sequel, it was proved in [15]:

Proposition 1.4. ([15, Prop. 2.5]) Let I be an admissible ideal of kQ, let ϕ be an automorphism of
kQ and let J = ϕ(I). If ϕ is a dilatation, then ∼I and ∼J coincide. Assume that ϕ = ϕα,u,τ :

- If α ∼I u and α ∼J u then ∼I and ∼J coincide.

- If α 6∼I u and α ∼J u then ∼J is generated by ∼I and α ∼J u.

- If α 6∼I u and α 6∼J u then I = J and ∼I and ∼J coincide.

In particular, if α ∼J u, then the identity map on the set of walks in Q induces a surjective group
homomorphism π1(Q, I) ։ π1(Q,J).

Here generated means: generated as an equivalence relation on the set of walks in Q, and satisfying
the conditions (1) and (2) in the definition of the homotopy relation. If I, J are admissible ideals
such that there exists ϕα,u,τ satisfying J = ϕα,u,τ(I), α 6∼I u and α ∼J u, then we say that ∼J is
a direct successor of ∼I . Proposition 1.4 allows one to define a quiver Γ associated to A as follows
([13, Def. 4.1]):

- Γ0 = {∼I | I is an admissible ideal of kQ such that A ≃ kQ/I},

- there is an arrow ∼→∼′ if ∼J is a direct successor of ∼I .

Example 1.5. Let A be as in Example 1.2, then J = ϕα,cb,1(I) and Γ is equal to ∼I→∼J .

The quiver Γ is finite, connected and has not oriented cycles ([13, Rem. 3, Prop. 4.2]). Moreover,
if Γ has a unique source ∼I0 (that is, a vertex with no arrow ending at it) then the fundamental group
of any admissible presentation of A is a quotient of π1(Q, I0). It was proved in [15] and [16] that Γ has
a unique source under one of the hypotheses (H1) or (H2) presented in the introduction. Moreover,
the hypotheses (H1) and (H2) both ensure the following proposition which will be particularly useful
to prove Theorem 1.

Proposition 1.6. ([15, Lem. 4.3] and [16, Prop. 4.3]) Assume that at least one of the two hypotheses
(H1) or (H2) is satisfied. Let ∼I0 ,∼I∈ Γ, where ∼I0 is the unique source of Γ. Then there exist a
dilatation D and a sequence of transvections ϕα1,u1,τ1 , . . . , ϕαl,ul,τl

such that:

- I = Dϕαl,ul,τl
. . . ϕα1,u1,τ1(I0).

- If we set Ii := ϕαi,ui,τi . . . ϕα1,u1,τ1(I0), then αi ∼Ii ui for every i.

If ∼I=∼I0 , then ∼I0 ,∼I1 , . . . ,∼Il ,∼I coincide.

1.6 Comparison of the fundamental groups and the Hochschild cohomology

Let A be a basic connected finite dimensional k-algebra . Assume that the ordinary quiver Q of A
has no oriented cycles. Let x0 ∈ Q0 and fix a maximal tree T of Q, that is, a subquiver of Q such that
T0 = Q0 and such that the underlying graph of T is a tree. With these data, Assem and de la Peña
have defined an injective homomorphism of abelian groups θν : Hom(π1(Q,Ker(ν)), k+) →֒ HH

1(A)
associated to any admissible presentation ν : kQ ։ A ([3]). We recall the definition of θν and refer the
reader to [3] for more details. For any x ∈ Q0 there exists a unique walk γx in T with source x0, with
target x and of minimal length for these properties. Let ν : kQ ։ A be an admissible presentation and
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let f ∈ Hom(π1(Q,Ker(ν)), k+) be a group homomorphism. Then, f defines a derivation ef : A→ A as

follows: ef(ν(u)) = f([γ−1
y uγx]∼Ker(ν)

) ν(u) for any path u with source x and target y. The following
proposition was proved in [3]:

Proposition 1.7. ([3]) The map f 7→ ef induces an injective map of abelian groups:

θν : Hom(π1(Q,Ker(ν)), k+) →֒ HH
1(A) .

Note that θν is not surjective in general. Indeed, if A is the path algebra of the Kronecker quiver,
then Ker(ν) = 0, dimk Im(θν) = 1, and dimk HH

1(A) = 3. Note also that despite its definition, the
homomorphism θν does not depend on the choice of T . Indeed, let T ′ be another maximal tree,
thus defining the walk γ′

x of minimal length in T ′ with source x0 and target x, for every vertex x.
Given a group homormorphism f : π1(Q,Ker(ν)) → k+ there is a new derivation f̂ : A → A (instead

of ef) obtained by applying the previous construction to T ′ (instead of to T ), that is f̂(ν(u)) =
f([γ′−1

y uγ′
x]Ker(ν))ν(u) for every path u in Q from x to y. Now let e =

P

x∈Q0

f([γ′−1
x γx]Ker(ν)) ex ∈ A.

It is easily checked that f̂ − ef is the inner derivation associated to e. In particular, ef and f̂ have
equal images in HH

1(A). So the construction of θν does not depend on the choice of the maximal
tree T .

The product in k endows Hom(π1(Q,Ker(ν)), k+) with a commutative k-algebra structure. So it
is also an abelian Lie algebra for the commutator. The following lemma proves that θν preserves this
structure. The proof is just a direct computation, so we omit it.

Lemma 1.8. θν : Hom(π1(Q,Ker(ν)), k+) →֒ HH
1(A) is a Lie algebra homomorphism. In particular,

Im(θν) is an abelian Lie subalgebra of HH
1(A).

Throughout this text, A will be a basic connected finite dimensional k-algebra with ordinary
quiver Q without oriented cycles (Q0 = {1, . . . , n}). We fix a complete set {e1, . . . , en} of primitive
orthogonal idempotents of A. So A = E ⊕ r, where E = k.e1 ⊕ . . . ⊕ k.en and r is the radical of
A. Without loss of generality, we assume that any presentation ν : kQ ։ A is such that ν(ei) = ei.
Finally, in order to use the Lie algebra homomorphisms θν , we fix a maximal tree T in Q.

2 Diagonalizability in HH
1(A)

The aim of this section is to prove some useful properties on the subspaces Im(θν) in terms of
diagonalizability in HH

1(A). Note that diagonalizability was introduced for derivations of A in [9].
For short, a basis of A is a basis B of the k-vector space A such that: B ⊆

S

i,j

ejAei, such that

{e1, . . . , en} ⊆ B, and such that B\{e1, . . . , en} ⊆ r. Note the following link between bases and
presentations of A:

- If ν : kQ ։ A is a presentation of A, then there exists a basis B such that ν(α) ∈ B for any
α ∈ Q1 and such that any element of B is of the form ν(u) with u a path in Q. We say that
this basis B is adapted to ν.

- If B is a basis of A, then there exists a presentation ν : kQ ։ A such that ν(α) ∈ B for any
α ∈ Q1. We say that the presentation ν is adapted to B.

The property of being diagonalizable (as a linear map) is stable under the sum with an inner derivation
as the following lemma shows. The proof is immediate.

Lemma 2.1. Let u : A→ A be a linear map, let e ∈ E and let B be a basis of A. Then u is diagonal
with respect to the basis B if and only if the same holds for u+ δe.

The preceding lemma justifies the following definition.

Definition 2.2. Let f ∈ HH
1(A) and let d be a derivation representing f . Then f is called diagonal-

izable (and diagonal with respect to a basis B of A) if and only if d is diagonalizable (and diagonal
with respect to B, respectively).

The subset D ⊆ HH
1(A) is called diagonalizable if and only if any there exists a basis B of A such

that any f ∈ D is diagonal with respect to B.

The following proposition gives a criterion for a subset D ⊂ HH
1(A) to be diagonalizable.

Proposition 2.3. Let D ⊆ HH
1(A). Then, D is diagonalizable if and only if every element of D is

diagonalizable and [f, f ′] = 0 for any f, f ′ ∈ D.

Proof: Clearly, ifD is diagonalizable, then so is every element of D and [f, f ′] = 0 for every f, f ′ ∈ D.
We prove the converse. For each f ∈ D, let df be a derivation representing f . So df is diagonal
with respect to some basis and it suffices to prove that this basis may be assumed to be the same
for all f ∈ D. Note that df induces a diagonalizable linear map df : ejrei → ejrei, for every i, j (see

Lemma 1.1). Also, for every f, f ′ ∈ D, there exist scalars t
(f,f ′)
i ∈ k, for i ∈ {1, . . . , n}, such that
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[df , df ′ ] is the inner derivation δ
e(f,f′) , where e(f,f

′) =
n

P

i=1

t
(f,f ′)
i ei. Now, let i, j ∈ {1, . . . , n}. Then,

given f, f ′ ∈ D, we have two diagonalizable maps df , df ′ : ejrei → ejrei whose commutator is equal

to (t
(f,f ′)
j − t

(f,f ′)
i )Idejrei . So this commutator must be zero. This shows that there exists a basis Bi,j

of ejrei for which df : ejrei → ejrei has a diagonal matrix. So any f ∈ D is diagonal with respect to
the basis B = {e1, . . . , en}∪

S

i,j

Bi,j which does not depend on f . This proves thatD is diagonalizable.�

Our main example of diagonalizable subspace of HH
1(A) is Im(θν):

Proposition 2.4. Let ν : kQ ։ A be a presentation. Then, Im(θν) is diagonalizable.

Proof: Let B be a basis of A adapted to ν and let I = Ker(ν). Then θν(f) is diagonal with respect
to B, for every f ∈ Hom(π1(Q, I), k

+). �

In this section, we aim at proving that any diagonalizable subset of HH
1(A) is contained in Im(θν)

for some presentation ν. It was proved in [9] that any diagonalizable derivation (with suitable technical
conditions) defines an element of HH

1(A) lying in Im(θν) for some ν. We will use the following similar
result.

Lemma 2.5. Let f ∈ HH
1(A) be diagonalizable. Let B be a basis with respect to which f is diagonal.

Let ν : kQ ։ A be a presentation adapted to B. Then f ∈ Im(θν).

Proof: Let I = Ker(ν) and let d : A → A be a derivation representing f . We set r := ν(r),
for any r ∈ kQ. Let α ∈ Q1. By assumption on B, there exists tα ∈ k such that d(α) = tαα.
Let tu := tα1 + . . . + tαn , for any path u = αn . . . α1 (with αi ∈ Q1). So d(u) = tuu, because
d is a derivation. More generally, if γ = αεn

n . . . αε11 is a walk in Q (with αi ∈ Q1), let us set

tγ :=
n

P

i=1

(−1)εi tαi , with the convention that tγ = 0 if γ is trivial. We now to prove that the map

γ 7→ tγ defines a group homomorphism g : π1(Q, I) → k+, [γ]I 7→ tγ and that f = θν(g).
First, we prove that the group homomorphism g : π1(Q, I) → k+ is well defined. By definition of

the scalar tγ , we have:

(i) tex = 0 for any x ∈ Q0 and tγ′γ = tγ′ + tγ for any walks γ, γ′ such that the walk γ′γ is defined.

(ii) tα−1α = tex and tαα−1 = tey for any arrow x
α
−→ y ∈ Q1.

(iii) twvu = twv′u for any walks w, v, v′, u such that tv = tv′ , and such that the walks wvu, wv′u are
defined.

In order to prove that g is well defined, it only remains to prove that tu = tv whenever u, v are
paths in Q appearing in the same minimal relation of I (with non zero scalars). For this purpose, let
d′ : kQ → kQ be the linear map such that d′(u) = tuu for any path u in k. Thus, d ◦ ν = ν ◦ d′. In
particular, d′(I) ⊆ I . So we may apply Lemma 1.3 to d′ and deduce that:

(iv) tu = tv if u, v are paths in Q lying in the support of a same minimal relation of I .

From (ii), (iii) and (iv) we deduce that we have a well defined map g : π1(Q, I) → k, [γ]I 7→ tγ .
Moreover, (i) proves that g is a group homomorphism.

Now we prove that f = θν(g). For any path u with source x and target y, we have g([γ−1
y uγx]I) =

tu − tγy + tγx . Hence, θν(g) ∈ HH
1(A) is represented by the derivation eg : A → A such that

eg(u) = (tu − tγy + tγx)u for any path u with source x and target y. Let us set e :=
P

x∈Q0

tγxex ∈ E.

Therefore, eg + δe = d. This proves that f = θν(g). �

Now we can state the main result of this section. It is a direct consequence of Proposition 2.4 and
of Lemma 2.5.

Proposition 2.6. Let D ⊆ HH
1(A). Then D is diagonalizable if and only if there exists a presenta-

tion ν : kQ ։ A such that D ⊆ Im(θν).

Remark that Lemma 2.5 also gives a sufficient condition for θν to be an isomorphism. Recall that
A is called constricted if and only if dim eyAex = 1 for any arrow x→ y (this implies that Q has no
multiple arrows). In [5] it was proved that for such an algebra, two different presentations have the
same fundamental group.

Proposition 2.7. Assume that A is constricted. Let ν : kQ ։ A be any presentation of A. Then
θν : Hom(π1(Q, I), k

+) → HH
1(A) is an isomorphism. In particular, HH

1(A) is an abelian Lie algebra.

Proof: Since θν is one-to-one, we only need to prove that it is onto. Let B be a basis of A adapted
to ν, let f ∈ HH

1(A) and let d : A → A be a derivation representing f . Let x
α
−→ y be an arrow.

Then eyAex = k.ν(α) so that there exists tα ∈ k such that d(ν(α)) = tαν(α). Let u = αn . . . α1 be
any path in Q (with αi ∈ Q1). Since d is a derivation, we have d(ν(u)) = (tα1 + . . .+ tαn)ν(u). As
a consequence, d is diagonal with respect to B. Moreover, ν is adapted to B. So Lemma 2.5 proves
that f ∈ Im(θν). This proves that θν is an isomorphism. So HH

1(A) is abelian. �
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3 Comparison of Im(θν) and Im(θµ) for different presentations µ and

ν of A
If two presentations ν and µ of A are related by a transvection or a dilatation, then there is a simple
relation between the associated fundamental groups (see Proposition 1.4). In this section, we compare
θν and θµ. We first compare θν and θµ when µ = ν ◦D with D a dilatation. Recall that if J = D(I)
with D a dilatation, then ∼I and ∼J coincide, so that π1(Q, I) = π1(Q, J).

Proposition 3.1. Let ν : kQ ։ A be a presentation, let D : kQ
∼
−→ kQ be a dilatation. Let µ :=

ν ◦D : kQ ։ A. Let I = Ker(µ) and J = Ker(ν), so that J = D(I). Then θµ = θν .

Proof: Let f ∈ Hom(π1(Q, I), k
+). Then, θν(f) and θµ(f) are represented by the derivations d1 and

d2 respectively, such that for any arrow x
α
−→ y:

d1(ν(α)) = f([γ−1
y αγx]J ) ν(α)

d2(µ(α)) = f([γ−1
y αγx]I) µ(α) .

Therefore, d1(ν(α)) = d2(µ(α)) because D is a dilatation and because ∼I and ∼J coincide. This
implies that d1 = d2 and θν(f) = θµ(f). �

The following example shows that Proposition 3.1 does not necessarily hold true if ν and µ are
two presentations of A such that ∼Ker(ν) and ∼Ker(µ) coincide.

Example 3.2. Assume that char(k) = 2 and let A = kQ/I where Q is the quiver:

2

c

��>
>>

>>
>>

4
f

��>
>>

>>
>>

1

b

@@�������
a

// 3

e

@@�������

d

// 5

and I =< da, fecb, fea+ dcb >. Let T be the maximal tree such that T1 = {b, c, e, f}. Let ν : kQ ։

A = kQ/I be the natural projection. Let ψ := ϕa,cb,1ϕd,fe,1. Thus, I = ψ(I). Let µ := ν◦ψ : kQ ։ A
so that Ker(µ) = Ker(ν) = I . Observe that π1(Q, I) is the infinite cyclic group with generator
[b−1c−1a]I . So let f : π1(Q, I) → k+ be the unique group homomorphism such that f([b−1c−1a]I) = 1.
Then θν(f) is represented by the following derivation:

d1 : A −→ A
ν(x) 7−→ ν(x) if x ∈ {a, d}
ν(x) 7−→ 0 if x ∈ {b, c, e, f} .

On the other hand, θµ(f) is represented by the derivation:

d2 : A −→ A
ν(a) 7−→ ν(a) + ν(cb)
ν(d) 7−→ ν(d) + ν(fe)
ν(x) 7−→ 0 if x ∈ {b, c, e, f} .

It is easy to verify that d2 − d1 is not an inner derivation. Hence, θν 6= θµ.

Now we compare θν and θµ when µ = ν ◦ ϕα,u,τ and when the identity map on the set of walks
in Q induces a surjective group homomorphism π1(Q,Ker(ν)) ։ π1(Q,Ker(µ)).

Proposition 3.3. Let ν : kQ ։ A be a presentation, let ϕα,u,τ : kQ
∼
−→ kQ be a transvection and

let µ := ν ◦ ϕα,u,τ : kQ ։ A. Set I = Ker(ν) and J = Ker(µ), so that I = ϕα,u,τ (J). Suppose that
α ∼J u and let p : π1(Q, I) ։ π1(Q, J) be the quotient map (see Proposition 1.4). Then, the following
diagram commutes:

Hom(π1(Q, J), k+)

θµ

''PPPPPPPPPPPP

p∗

��

HH
1(A)

Hom(π1(Q, I), k
+)

θν

77nnnnnnnnnnnn

where p∗ : Hom(π1(Q, J), k+) →֒ Hom(π1(Q, I), k
+) is the embedding induced by p. In particular,

Im(θµ) ⊆ Im(θν).
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Proof: Recall that p is the map [γ]I 7→ [γ]J . Let f ∈ Hom(π1(Q,J), k+). So p∗(f) is the composition

π1(Q, I)
p
−→ π1(Q,J)

f
−→ k. We know that θµ(f) and θν(p

∗(f)) are represented by the derivations d1

and d2 respectively, such that for any arrow x
a
−→ y:

d1(µ(a)) = f([γ−1
y aγx]J ) µ(a) = p∗(f)([γ−1

y aγx]I) µ(a)

d2(ν(a)) = p∗(f)([γ−1
y aγx]I) ν(a) .

Let us prove that d1 and d2 coincide on ν(Q1). Let x
a
−→ y be an arrow. If a 6= α, then µ(a) = ν(a)

and the above characterizations of d1 and d2 imply that d1(ν(a)) = d1(µ(a)) = d1(ν(a)). Now assume
that a = α so that: ν(a) = µ(a)− τµ(u) and [γ−1

y aγx]J = [γ−1
y uγx]J (recall that a = α ∼J u). Thus:

d1(ν(a)) = d1(µ(α)) − τ d1(µ(u))
= f([γ−1

y αγx]J ) µ(α) − τf([γ−1
y uγx]J ) µ(u)

= f([γ−1
y αγx]J ) (µ(α) − τ µ(u))

= p∗(f)([γ−1
y αγx]I) ν(α)

= d2(ν(α)) = d2(ν(a)) .

Hence, d1 and d2 are two derivations of A and they coincide on ν(Q1). So d1 = d2 and θµ(f) =
θν(p

∗(f)) for any f ∈ Hom(π1(Q, J), k+). �

The following example shows that Proposition 3.3 does not necessarily hold true if ν is a pre-
sentation of A and ψ : kQ → kQ is an automorphism such that the identity map on the walks in Q
induces a surjective group homomorphism π1(Q,Ker(ν)) ։ π1(Q,Ker(ν ◦ ψ)).

Example 3.4. Let A = kQ/I where char(k) = 2, where Q is the quiver of Example 3.2 and where
I =< da, fea+ dcb >. Let ν : kQ ։ A be the natural projection with kernel I , let ψ := ϕd,ef,1ϕa,cb,1
and let µ := ν ◦ ψ : kQ ։ A. Hence Ker(µ) =< da+ fecb, fea+ dcb >. Note that π1(Q,Ker(ν)) ≃ Z

is generated by [b−1c−1a]I and that π1(Q,Ker(µ)) ≃ Z/2Z is generated by [b−1c−1a]J . Note also that
∼Ker(ν) is weaker that ∼Ker(µ) so that the identity map on the set of walks in Q induces a surjective
group homomorphism p : π1(Q,Ker(ν)) ։ π1(Q,Ker(µ)). Let T be the maximal tree such that
T1 = {b, c, e, f}. Let f : π1(Q,Ker(µ)) → k be the group homomorphism such that f([b−1c−1a]J ) = 1.
On the one hand, θµ(f) ∈ HH

1(A) is represented by the derivation:

d1 : A → A
µ(x) 7→ µ(x) if x ∈ {a, d}
µ(x) 7→ 0 if x ∈ {b, c, e, f} .

On the other hand, θν(p
∗(f)) ∈ HH

1(A) is represented by the derivation:

d2 : A → A
µ(a) 7→ µ(a) + µ(cb)
µ(d) 7→ µ(d) + µ(fe)
µ(x) 7→ 0 if x ∈ {b, c, e, f} .

One checks easily that d2 − d1 is not inner so that θµ(f) 6= θν(p
∗(f)). Moreover, Im(θν) and Im(θµ)

are one dimensional (because char(k) = 2, π1(Q,Ker(ν)) ≃ Z and π1(Q,Ker(µ)) ≃ Z/2Z) and d1, d2

are not inner. Hence Im(θµ) 6⊆ Im(θν).
Actually, Proposition 3.3 does not work here because the automorphism ψ : (kQ, J) → (kQ, I)

maps arrows to linear combination of paths which are not homotopic for ∼I . For example, ψ(a) =
a+ cb whereas a 6∼I cb (recall that π1(Q, I) ≃ Z is generated by [b−1c−1a]I).

Finally, we compare θν and θµ when µ = ν ◦ ψ with ψ : kQ
∼
−→ kQ an automorphism such that

Ker(ν) = Ker(µ).

Proposition 3.5. Let ν : kQ ։ A be a presentation and let I = Ker(ν). Let ψ : kQ
∼
−→ kQ be an

automorphism such that ψ(ei) = ei for every i and such that ψ(I) = I. Let µ := ν ◦ ψ : kQ ։ A so
that Ker(µ) = I. Let ψ : A

∼
−→ A be the k-algebra automorphism such that ψ ◦ µ = µ ◦ ψ. Then, the

following diagram commutes:

HH
1(A)

ψ
∗

∼

��

Hom(π1(Q, I), k
+)

θν

77nnnnnnnnnnn

θµ ''PPPPPPPPPPP

HH
1(A) .
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In particular, Im(θµ) is equal to the image of Im(θν) under the Lie algebra automorphism ψ∗ : HH
1(A)

∼
−→

HH
1(A) induced by ψ : A

∼
−→ A.

Proof: Since ψ fixes the idempotents e1, . . . , en, we know that ψ∗ is well defined. Let f ∈ Hom(π1(Q, I), k
+).

So θν(f) and θµ(f) are represented by the derivations d1 and d2 respectively, such that for any arrow
x

α
−→ y:

d1(ν(α)) = f([γ−1
y αγx]I) ν(α)

d2(µ(α)) = f([γ−1
y αγx]I) µ(α) .

In order to prove that ψ∗(θν(f)) = θµ(f) it suffices to prove that ψ ◦ d1 = d2 ◦ ψ. Let x
α
−→ y be an

arrow. Then:

d2 ◦ ψ(ν(α)) = d2(µ(α)) because ν = µ ◦ ψ−1 and ψ ◦ µ = µ ◦ ψ
= f([γ−1

y αγx]I) µ(α) .

On the other hand:

ψ ◦ d1(ν(α)) = f([γ−1
y αγx]I) ψ(ν(α))

= f([γ−1
y αγx]I) µ(α) because µ = ν ◦ ψ and ψ ◦ µ = µ ◦ ψ.

Hence, ψ ◦ d1 and d2 ◦ψ are derivations of A which coincide on ν(Q1). So ψ∗(θν(f)) = θµ(f) for any
f ∈ Hom(π1(Q, I, k

+)). �

4 Proof of Theorem 1
In this section, we prove Theorem 1. We begin with the following useful lemma.

Lemma 4.1. Assume that at least one of the two conditions (H1) or (H2) is satisfied. Let ν : kQ ։ A
be a presentation whose kernel I0 is such that ∼I0 is the unique source of Γ. Let µ : kQ ։ A be
another presentation. Then, there exist ν′ : kQ ։ A a presentation with kernel I0 and a k-algebra
automorphism ψ : A

∼
−→ A such that:

- ψ(ei) = ei for any i,

- Im(θµ) ⊆ Im(θν′) = ψ∗(Im(θν)).

If moreover ∼I and ∼I0 coincide, then the above inclusion is an equality.

Proof: Let ν : kQ/I0
∼
−→ A and µ : kQ/I

∼
−→ A be the isomorphisms induced by ν and µ respectively.

Hence, µ−1 ◦ ν : kQ/I0
∼
−→ kQ/I is an isomorphism which maps ei to ei for every i. Hence, there

exists an automorphism ϕ : kQ
∼
−→ kQ which maps ei to ei for every i and such that the following

diagram commutes (see [14, Prop. 2.3.18], for instance):

kQ

����

ϕ
// kQ

����
kQ/I0

µ̄−1ν̄
// kQ/I .

where the vertical arrows are the natural projections. So, the following diagram is commutative:

kQ
ϕ

//

ν

  A
AA

AA
AA

A
kQ

µ

~~}}
}}

}}
}}

A

Let us apply Proposition 1.6 to I . We keep the notations αi, ui, τi, Ii of that proposition. Let
ψ := ϕ−1Dϕαl,ul,τl

. . . ϕα1,u1,τ1 . Thus, ψ(I0) = I0 and ν′ := ν ◦ ψ : kQ ։ A is a presentation with
kernel I0. Thanks to Proposition 3.5 from which we keep the notations, we know that:

Im(θν′) = ψ⋆(Im(θν)) . (1)

Let us show that Im(θµ) ⊆ Im(θν′). By construction, we have µ = νϕ−1 = ν′ϕ−1
α1,u1,τ1 . . . ϕ

−1
αl,ul,τl

D−1.
For simplicity, we use the following notations: µ0 := ν′ and µi := ν′ϕ−1

α1,u1,τ1 . . . ϕ
−1
αi,ui,τi

for i ∈
{1, . . . , l}. Note that Ii = Ker(µi). Since αi ∼Ii ui and µi = µi−1 ◦ϕαi ,ui,−τi , Proposition 3.3 implies
that:

Im(θµl
) ⊆ Im(θµl−1) ⊆ . . . ⊆ Im(θµi) ⊆ Im(θµi−1) ⊆ . . . ⊆ Im(θµ0) = Im(θν′) . (2)
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Moreover, µ = µmD
−1 where D−1 is a dilatation. Hence, (1), (2) and Proposition 3.1 imply that:

Im(θµ) = Im(θµl
) ⊆ Im(θν′) = ψ⋆(Im(θν)) . (3)

Now assume that ∼I is the unique source of Γ. Then Proposition 1.6 imply that the homotopy rela-
tions ∼I0 ,∼I1 , . . . ,∼Il ,∼I coincide. Therefore, for any i ∈ {1, . . . , l}, we have µi−1 = µi ◦ ϕαi,ui,τi ,
and αi ∼Ii−1 ui. So Proposition 3.3, implies that Im(θµi−1) ⊆ Im(θµi). This proves that all the
inclusions in (2) are equalities, and so is the inclusion in (3). �

Now we can prove Theorem 1.
Proof of Theorem 1: (i) Let G be a maximal diagonalizable subalgebra of HH

1(A). Thanks to
Proposition 2.6, there exists a presentation µ : kQ ։ A such that G ⊆ Im(θµ). On the other hand,
Lemma 4.1, implies that there exists a presentation ν : kQ ։ A such that ∼Ker(ν) is the unique source
of Γ and such that Im(θµ) ⊆ Im(θν). Hence, G ⊆ Im(θν) where Im(θν) is a diagonalizable subalgebra
of HH

1(A), thanks to Proposition 2.4. The maximality of G forces G = Im(θν).
Conversely, let µ : kQ ։ A be a presentation such that ∼Ker(µ) is the unique source of Γ. Hence,

Im(θµ) is diagonalizable (thanks to Proposition 2.4) so there exists a maximal diagonalizable subal-
gebra G of HH

1(A) containing Im(θµ). Thanks to the above description, we know that G = Im(θν)
where ν : kQ ։ A is a presentation such that ∼Ker(ν) is the unique source of Γ. Moreover, Lemma 4.1

gives a k-algebra automorphism ψ : A
∼
−→ A such that Im(θµ) = ψ⋆(Im(θν)). Since ψ∗ is a Lie algebra

automorphism of HH
1(A), the maximality of G = Im(θν) implies that Im(θµ) is maximal.

(ii) is a consequence of (i) and of Lemma 4.1. �
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Studies in Mathematics. American Mathematical Society, 1994.
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