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On maximal diagonalizable Lie subalgebras of the first Hochschild cohomology

Let A be a basic connected finite dimensional algebra over an algebraically closed field, with ordinary quiver without oriented cycles. Given a presentation of A by quiver and admissible relations, Assem and de la Peña have constructed an embedding of the space of additive characters of the fundamental group of the presentation into the first Hochschild cohomology group of A. We compare the embeddings given by the different presentations of A. In some situations, we characterise the images of these embeddings in terms of (maximal) diagonalizable subalgebras of the first Hochschild cohomology group (endowed with its Lie algebra structure).

Introduction

Let A be a finite dimensional algebra over an algebraically closed field k. The representation theory of A deals with the study of (right) A-modules. So we assume that A is basic and connected and it admits presentations A ≃ kQ/I by its (unique) ordinary quiver Q and an ideal I of admissible relations. In the eighties, Martinez-Villa and de la Peña introduced the fundamental group π1(Q, I) of (Q, I) ( [START_REF] Martínez-Villa | The universal cover of a quiver with relations[END_REF]). Like in topology, this group is defined using an equivalence relation ∼I (called the homotopy relation) on the set of unoriented paths in Q. This group is part of the so-called covering techniques initiated in [START_REF] Bongartz | Covering spaces in representation theory[END_REF][START_REF] Ch | Algebren, Darstellungsköcher Ueberlagerungen und zurück[END_REF]. In particular, it has led to the definition of simple connectedness and strong simple connectedness for an algebra ( [START_REF] Assem | On some classes of simply connected algebras[END_REF][START_REF] Skowroński | Simply connected algebras and Hochschild cohomologies[END_REF]). Also, it has proved to be a very useful tool in representation theory. For example, it is proved in [START_REF] Skowroński | Selfinjective algebras of polynomial growth[END_REF] that any domestic self-injective algebra admitting a Galois covering by a strongly simply connected locally bounded k-category is of quasitilted type. Note that in general, different presentations A ≃ kQ/I and A ≃ kQ/J may lead to non-isomorphic groups π1(Q, I) and π1(Q, J).

The fundamental group π1(Q, I) behaves much like the fundamental group of a topological space. For example, given a presentation ν : kQ ։ A (with kernel I), Assem and de la Peña have defined an injective group homomorphism θν : Hom(π1(Q, I), k + ) ֒→ HH 1 (A). Here HH 1 (A) is the first Hochschild cohomology group Ext 1 A op ⊗A (A, A) ( [START_REF] Hochschild | On the cohomology groups of an associative algebra[END_REF]). This result is to be compared with the classical isomorphism Hom(π1(X), Z) ∼ -→ H 1 (X; Z) relating the singular cohomology to the fundamental group of a path connected topological space X. It is known from [START_REF] Gerstenhaber | The cohomology structure of an associative ring[END_REF] that HH 1 (A) has a structure of Lie algebra, isomorphic to the Lie algebra of derivations of A (with the commutator as Lie bracket) factored out by the ideal of inner derivations. With this presentation of HH 1 (A), the derivations that lie in the image of θν, have been characterized in terms of diagonalizable derivations ( [START_REF] Farkas | Diagonalizable derivations of finite dimensional algebras[END_REF], see also [START_REF] De La Peña | On the first Hochschild cohomology group of an algebra[END_REF]).

The aim of this text is to characterise maximal diagonalisable Lie subalgebras of HH 1 (A) using the subspaces Im(θν) associated to the different presentations ν of A. Recall that, given a Lie algebra, the maximal diagonalizable (for the adjoint representation) subalgebras are related to Cartan subalgebras.

On the one hand, one can define a diagonalizability for elements in HH 1 (A) using the above notion of diagonalizable derivations. Also one can define the diagonalizability of a subset of HH 1 (A) (as the simultaneous diagonalizability of its elements). It appears that Im(θν) is diagonalizable, and that any diagonalizable subset of HH 1 (A) is contained in Im(θν ) for some presentation ν : kQ ։ A.

On the other hand, given two presentations ν : kQ ։ A and µ : kQ ։ A with kernel I and J respectively, it is not easy to compare the groups π1(Q, I) and π1(Q, J) (and therefore θν and θµ). In some cases, this is possible, however. For example, assume that (α, u) is a bypass in Q (that is, α is an arrow and u is an oriented path which is parallel to α and distinct from α), that τ ∈ k, and that J = ϕα,u,τ (I). Here ϕα,u,τ : kQ ∼ -→ kQ is the automorphism, called a transvection, which maps α to α + τ u, and which fixes any other arrow ( [START_REF] Meur | The fundamental group of a triangular algebra without double bypasses[END_REF]). In such a situation, if α ∼I u (or α ∼J u), then there is a natural surjective group homomorphism π1(Q, J) ։ π1(Q, I) (or π1(Q, I) ։ π1(Q, J), respectively); if α ∼I u and α ∼J u then π1(Q, I) equals π1(Q, J) and the natural homomorphisms are the identity maps; and if α ∼I u and α ∼J u, then I = J and π1(Q, I) = π1(Q, J). In each of these cases, we shall see that there is a simple relation between θν and θµ.

In order to formulate our main result, we use the quiver Γ of the homotopy relations of the presentations of A ( [START_REF] Meur | The fundamental group of a triangular algebra without double bypasses[END_REF]). Its set of vertices is the set of the homotopy relations ∼ Ker(ν) associated to all the presentations ν : kQ ։ A. Also, there is an arrow ∼I →∼J if there exists a transvection ϕα,u,τ such that J = ϕα,u,τ (I) and such that the natural surjective group homomorphism is a non isomorphism π1(Q, I) ։ π1(Q, J). The quiver Γ has been introduced in order to find conditions under which an algebra admits a universal Galois covering. This existence is related to the existence of a unique source (that is, a vertex which is the target of no arrow). Actually, under one of the two following conditions, Γ does have a unique source [START_REF] Meur | The universal cover of an algebra without double bypass[END_REF]Prop. 2.11] and [START_REF] Meur | The universal cover of a monomial algebra without multiple arrows[END_REF]Cor. 4.4]):

(H1) Q has no double bypass and k has characteristic zero (a double bypass is a 4-tuple (α, u, β, v) where (α, u) and (β, v) are bypasses such that the arrow β appears in the path u).

(H2) A is monomial (that is, A ≃ kQ/I0 with I0 an ideal generated by a set of paths) and Q has no multiple arrows.

Using these results, we prove the main theorem of the text.

Theorem 1. Assume that at least one the two hypotheses (H1) or (H2) is satisfied. Then:

(i) The maximal diagonalizable subalgebras of HH 1 (A) are exactly the subalgebras of the form Im(θν ) where ν : kQ ։ A is a presentation such that ∼ Ker(ν) is the unique source of Γ.

(ii) If G, G ′ are two such subalgebras of HH 1 (A), then there exists an algebra automorphism ψ :

A ∼ -→ A inducing a Lie algebra automorphism ψ * : HH 1 (A) ∼ -→ HH 1 (A) such that G ′ = ψ * (G).
Note that the Lie algebra HH 1 (A) has already been studied (see [START_REF] Guil-Asensio | The group of outer automorphisms and the Picard group of an algebra[END_REF][START_REF] Strametz | The Lie algebra structure on the first Hochschild cohomology group of a monomial algebra[END_REF], for instance). The text is organised as follows. In Section 1 we recall all the definitions we will need and prove some useful lemmas. In Section 2, we introduce the notion of diagonalizability in HH 1 (A). In particular, we will prove that a subset of HH 1 (A) is diagonalizable is and only if it is contained in Im(θν) for some presentation ν : kQ ։ A. In Section 3 we compare the Lie algebra homomorphisms θν for different presentations ν of A, using the quiver Γ. Finally, in Section 4 we prove Theorem 1.

This text is part of the author's thesis ( [START_REF] Meur | Revêtements galoisiens et groupe fondamental des algèbres de dimension finie[END_REF]) made at Universitï¿ 1 2 Montpellier II under the supervision of Claude Cibils.

Preliminaries

Terminology and notations for quivers

Let Q be a quiver. We write Q0 and Q1 for the set of vertices and of arrows, respectively. We read (oriented) paths from the right to the left, that is, we view a path u as a morphism and the concatenation vu of two paths u and v such that the source of v equals the target of u as a composition of morphisms. Given x ∈ Q0, the trivial path (of length 0, with source and target equal to x) is denoted by ex. Two paths are called parallel if they have the same source and the same target. An oriented cycle in Q is a non trivial path whose source and target are equal. If α ∈ Q1 we consider its formal inverse α -1 with source and target equal to the target and the source of α, respectively. Hence, we get the double quiver

Q such that Q 0 = Q0 and Q 1 = Q1 ∪ {α -1 | α ∈ Q1}. Then, a walk in Q is exactly an oriented path in Q. Given a walk γ = α εn n . . . α ε 1 1 (with αi ∈ Q1, εi ∈ {±1}), its inverse γ -1 is by definition α -ε 1 1 . . . α -εn n .

Presentations by quiver and admissible relations

Let Q be a quiver. Its path algebra kQ is the k-algebra whose basis as a k-vector space is the set of paths in Q (including the trivial paths), and whose product is bilinearly induced by the concatenation of paths (if u, v are two paths such that the source of v is different from the target of u, then we set vu = 0). The unit of kQ is

P x∈Q 0 ex and kQ is finite dimensional if and only if Q is finite (that is
Q0 and Q1 are finite) and has no oriented cycles. We let kQ + be the ideal of kQ generated by the arrows.

An admissible ideal of kQ is an ideal I such that (kQ + ) N ⊆ I ⊆ (kQ + ) 2 for some N 2. In such a case, the elements of I are called relations and, following [START_REF] Martínez-Villa | The universal cover of a quiver with relations[END_REF], a minimal relation of I is a relation s P i=1 tiui = 0 such that t1, . . . , ts ∈ k * and u1, . . . , us are pairwise distinct paths in Q, and such that there is no non empty proper subset S ⊂ {1, . . . , s} satisfying P i∈S tiui ∈ I. In such a case, u1, . . . , us are necessarily parallel. Note that I is generated by its minimal relations. Recall (see [START_REF] Auslander | Representation theory of artin algebras[END_REF]) that any finite dimensional k-algebra A is Morita equivalent to a basic one. If A is basic, then there exists a unique quiver Q, the ordinary quiver of A, and a surjective k-algebra homomorphism ν : kQ ։ A whose kernel is an admissible ideal of kQ. Also, {ν(ex) | x ∈ Q0} is a complete set of primitive orthogonal idempotents of A. The homomorphism ν is called a presentation (by quiver and admissible relations). We have A ≃ kQ/Ker(ν) and A is connected if and only if Q is connected.

Presentation of HH 1 (A)

Let A be a basic finite dimensional k-algebra and let {e1, . . . , en} be a complete set of primitive orthogonal idempotents. A unitary derivation ( [START_REF] De La Peña | On the first Hochschild cohomology group of an algebra[END_REF]) is a k-linear map d : A → A such that d(ab) = ad(b) + d(a)b for any a, b ∈ A and such that d(ei) = 0 for every i. Let Der0(A) be set of unitary derivations. It is a Lie algebra for the commutator. In the sequel, all derivations will be unitary. So we shall call them derivations. Let E :=

{ n P i=1 tiei | t1, . . . , tn ∈ k}. Then E is a semi-simple subalgebra of A and A = E ⊕ r where r is the radical of A. Let Int0(A) := {δe : A → A, a ∈ A → ea -ae | e ∈ E},
this is an ideal of Der0(A). Throughout this text, we shall use the following presentation proved in [START_REF] De La Peña | On the first Hochschild cohomology group of an algebra[END_REF]:

Theorem 1. ([7]) HH 1 (A) ≃ Der0(A)/Int0(A) as Lie algebras.
In the following lemma, we collect some useful properties on derivations.

Lemma 1.1. Let d ∈ Der0(A), then d(ejAei) ⊆ ejAei. Assume that the ordinary quiver Q of A has no oriented cycles, then d(r) ⊆ r and d(r 2 ) ⊆ r 2 .
Proof: Since d is unitary and since Q has no oriented cycles, we have

d(r) ⊆ r. So, d(r 2 ) ⊆ r 2 . If ψ : A ∼ -→ A is a k-algebra automorphism such that ψ(ei) = ei for every i, then the map d → ψ • d • ψ -1 induces a Lie algebra automorphism of HH 1 (A), denoted by ψ * : HH 1 (A) ∼ -→ HH 1 (A).

Fundamental groups of presentations

Let (Q, I) be a bound quiver (that is, Q is a finite quiver and I is an admissible ideal of kQ). The homotopy relation ∼I was defined in [START_REF] Martínez-Villa | The universal cover of a quiver with relations[END_REF] as the equivalence class on the set of walks in Q generated by the following properties:

(1) αα -1 ∼I ey and α -1 α ∼I ex for any arrow α with source x and target y,

(2) wvu ∼I wv ′ u if w, v, v ′ , u are walks such that the concatenations wvu and wv ′ u are well defined and such that v ∼I v ′ ,

(3) u ∼I v if u and v are paths in a same minimal relation (with a non zero scalar).

Note that if r1, . . . , rt are minimal relations generating the ideal I, then the condition (3) above may be replaced by the following one ( [START_REF] Bardzell | H 1 and representation of finite dimensional algebras[END_REF]):

(3 ′ ) u ∼I v if u and v are paths in Q appearing in ri (with a non zero scalar) for some i ∈ {1, . . . , t}.

The ∼I -equivalence class of a walk γ is be denoted by [γ]I . Let x0 ∈ Q0, following [START_REF] Martínez-Villa | The universal cover of a quiver with relations[END_REF], the set of ∼Iequivalence classes of walks with source and target x0 is denoted by π1(Q, I, x0). The concatenation of walks endows this set with a group structure whose unit is [ex 0 ]I . This group is called the fundamental group of (Q, I) at x0. If Q is connected, then the isomorphism class of π1(Q, I, x0) does not depend on the choice x0. In such a case, we write π1(Q, I) for π1(Q, I, x0). If A is a basic connected finite dimensional k-algebra and if ν : kQ ։ A is a presentation, the group π1(Q, Ker(ν)) is called the fundamental group of the presentation ν. The following example shows that two presentations of A may have non isomorphic fundamental groups. Proof: We use a non multiplicative version of Grï¿ 1 2 bner bases ( [START_REF] Adams | An introduction to Gröbner bases[END_REF], see also [START_REF] Farkas | Synergy in the theories of Gröebner bases and path algebras[END_REF]). Fix an arbitrary total order u1 < . . . < uN on the set of paths in Q and let (u * 1 , . . . , u * N ) be the basis of Hom k (kQ, k) dual to (u1, . . . , uN ). Following [15, Sect. 1], the Grï¿ 1 2 bner basis of I is the unique basis (r1, . . . , rt) defined by the three following properties:

(i) rj ∈ ui j + Span(ui ; i < ij) for some ij , for every j, (ii) u * i j (r j ′ ) = 0 unless j = j ′ , (iii) i1 < . . . < it.

It follows from these properties that:

(iv) r = t P j=1 u * i j (r)rj for any r ∈ I.

Recall from [15, Sect. 1] that r1, . . . , rt are minimal relations of I so that ≡I is generated by the property (3 ′ ) defining ∼I . So we only need to prove that that d(rj) ∈ k.rj for any j. We proceed by induction on j ∈ {1, . . . , t}. By assumption on d and thanks to (i), we have d(r1) ∈ I ∩ Span(ui ; i i1). Hence, (iii) and (iv) imply that d(r1) ∈ k.r1. Let j ∈ {1, . . . , d -1} and assume that d(r1) ∈ k.r1, . . . , d(rj) ∈ k.rj . By assumption on d and thanks to (i) and (ii), we have d(rj+1) ∈ I ∩ Span(ui ; i ij+1) and u * i l (d(rj+1)) = 0 if l j. So, (iii) and (iv) imply that d(rj+1) ∈ k.rj+1. This finishes the induction and proves the lemma.

Comparison of fundamental groups

Let A be a basic connected finite dimensional k-algebra with ordinary quiver Q without oriented cycles. We defined the transvections in the introduction. A dilatation ( [START_REF] Meur | The fundamental group of a triangular algebra without double bypasses[END_REF]) is an automorphism D : kQ ∼ -→ kQ such that D(ei) = ei for any i and such that D(α) ∈ k.α for any α ∈ Q1. The following proposition will be useful in the sequel, it was proved in [START_REF] Meur | The universal cover of an algebra without double bypass[END_REF]: [START_REF] Meur | The universal cover of an algebra without double bypass[END_REF]Prop. 2.5]) Let I be an admissible ideal of kQ, let ϕ be an automorphism of kQ and let J = ϕ(I). If ϕ is a dilatation, then ∼I and ∼J coincide. Assume that ϕ = ϕα,u,τ :

Proposition 1.4. ([
-If α ∼I u and α ∼J u then ∼I and ∼J coincide.

-If α ∼I u and α ∼J u then ∼J is generated by ∼I and α ∼J u.

-If α ∼I u and α ∼J u then I = J and ∼I and ∼J coincide.

In particular, if α ∼J u, then the identity map on the set of walks in Q induces a surjective group homomorphism π1(Q, I) ։ π1(Q, J).

Here generated means: generated as an equivalence relation on the set of walks in Q, and satisfying the conditions (1) and (2) in the definition of the homotopy relation. If I, J are admissible ideals such that there exists ϕα,u,τ satisfying J = ϕα,u,τ (I), α ∼I u and α ∼J u, then we say that ∼J is a direct successor of ∼I . Proposition 1.4 allows one to define a quiver Γ associated to A as follows ([13, Def. 4.1]):

-Γ0 = {∼I | I is an admissible ideal of kQ such that A ≃ kQ/I}, -there is an arrow ∼→∼ ′ if ∼J is a direct successor of ∼I .

Example 1.5. Let A be as in Example 1.2, then J = ϕ α,cb,1 (I) and Γ is equal to ∼I →∼J .

The quiver Γ is finite, connected and has not oriented cycles ([13, Rem. 3, Prop. 4.2]). Moreover, if Γ has a unique source ∼I 0 (that is, a vertex with no arrow ending at it) then the fundamental group of any admissible presentation of A is a quotient of π1(Q, I0). It was proved in [START_REF] Meur | The universal cover of an algebra without double bypass[END_REF] and [START_REF] Meur | The universal cover of a monomial algebra without multiple arrows[END_REF] that Γ has a unique source under one of the hypotheses (H1) or (H2) presented in the introduction. Moreover, the hypotheses (H1) and (H2) both ensure the following proposition which will be particularly useful to prove Theorem 1.

Proposition 1.6. ( [START_REF] Meur | The universal cover of an algebra without double bypass[END_REF]Lem. 4.3] and [START_REF] Meur | The universal cover of a monomial algebra without multiple arrows[END_REF]Prop. 4.3]) Assume that at least one of the two hypotheses (H1) or (H2) is satisfied. Let ∼I 0 , ∼I ∈ Γ, where ∼I 0 is the unique source of Γ. Then there exist a dilatation D and a sequence of transvections ϕα 1 ,u 1 ,τ 1 , . . . , ϕα l ,u l ,τ l such that:

-I = Dϕα l ,u l ,τ l . . . ϕα 1 ,u 1 ,τ 1 (I0).
-If we set Ii := ϕα i ,u i ,τ i . . . ϕα 1 ,u 1 ,τ 1 (I0), then αi ∼I i ui for every i.

If ∼I =∼I 0 , then ∼I 0 , ∼I 1 , . . . , ∼I l , ∼I coincide.

Comparison of the fundamental groups and the Hochschild cohomology

Let A be a basic connected finite dimensional k-algebra . Assume that the ordinary quiver Q of A has no oriented cycles. Let x0 ∈ Q0 and fix a maximal tree T of Q, that is, a subquiver of Q such that T0 = Q0 and such that the underlying graph of T is a tree. With these data, Assem and de la Peña have defined an injective homomorphism of abelian groups θν : Hom(π1(Q, Ker(ν)), k + ) ֒→ HH 1 (A) associated to any admissible presentation ν : kQ ։ A ( [START_REF] Assem | The fundamental groups of a triangular algebra[END_REF]). We recall the definition of θν and refer the reader to [START_REF] Assem | The fundamental groups of a triangular algebra[END_REF] for more details. For any x ∈ Q0 there exists a unique walk γx in T with source x0, with target x and of minimal length for these properties. Let ν : kQ ։ A be an admissible presentation and let f ∈ Hom(π1(Q, Ker(ν)), k + ) be a group homomorphism. Then, f defines a derivation e f : A → A as follows: e f (ν(u)) = f ([γ -1 y uγx]∼ Ker(ν) ) ν(u) for any path u with source x and target y. The following proposition was proved in [START_REF] Assem | The fundamental groups of a triangular algebra[END_REF]: Proposition 1.7. ( [START_REF] Assem | The fundamental groups of a triangular algebra[END_REF]) The map f → e f induces an injective map of abelian groups:

θν : Hom(π1(Q, Ker(ν)), k + ) ֒→ HH 1 (A) .
Note that θν is not surjective in general. Indeed, if A is the path algebra of the Kronecker quiver, then Ker(ν) = 0, dim k Im(θν) = 1, and dim k HH 1 (A) = 3. Note also that despite its definition, the homomorphism θν does not depend on the choice of T . Indeed, let T ′ be another maximal tree, thus defining the walk γ ′

x of minimal length in T ′ with source x0 and target x, for every vertex x. Given a group homormorphism f : π1(Q, Ker(ν)) → k + there is a new derivation f : A → A (instead of e f ) obtained by applying the previous construction to

T ′ (instead of to T ), that is f (ν(u)) = f ([γ ′-1 y uγ ′ x ] Ker(ν) )ν(u) for every path u in Q from x to y. Now let e = P x∈Q 0 f ([γ ′-1 x γx] Ker(ν) ) ex ∈ A.
It is easily checked that fe f is the inner derivation associated to e. In particular, e f and f have equal images in HH 1 (A). So the construction of θν does not depend on the choice of the maximal tree T .

The product in k endows Hom(π1(Q, Ker(ν)), k + ) with a commutative k-algebra structure. So it is also an abelian Lie algebra for the commutator. The following lemma proves that θν preserves this structure. The proof is just a direct computation, so we omit it.

Lemma 1.8. θν : Hom(π1(Q, Ker(ν)), k + ) ֒→ HH 1 (A) is a Lie algebra homomorphism. In particular, Im(θν) is an abelian Lie subalgebra of HH 1 (A).

Throughout this text, A will be a basic connected finite dimensional k-algebra with ordinary quiver Q without oriented cycles (Q0 = {1, . . . , n}). We fix a complete set {e1, . . . , en} of primitive orthogonal idempotents of A. So A = E ⊕ r, where E = k.e1 ⊕ . . . ⊕ k.en and r is the radical of A. Without loss of generality, we assume that any presentation ν : kQ ։ A is such that ν(ei) = ei. Finally, in order to use the Lie algebra homomorphisms θν , we fix a maximal tree T in Q.

Diagonalizability in HH 1 (A)

The aim of this section is to prove some useful properties on the subspaces Im(θν) in terms of diagonalizability in HH 1 (A). Note that diagonalizability was introduced for derivations of A in [START_REF] Farkas | Diagonalizable derivations of finite dimensional algebras[END_REF]. For short, a basis of A is a basis B of the k-vector space A such that: B ⊆ S i,j ej Aei, such that {e1, . . . , en} ⊆ B, and such that B\{e1, . . . , en} ⊆ r. Note the following link between bases and presentations of A:

-If ν : kQ ։ A is a presentation of A, then there exists a basis B such that ν(α) ∈ B for any α ∈ Q1 and such that any element of B is of the form ν(u) with u a path in Q. We say that this basis B is adapted to ν.

-If B is a basis of A, then there exists a presentation ν : kQ ։ A such that ν(α) ∈ B for any α ∈ Q1. We say that the presentation ν is adapted to B.

The property of being diagonalizable (as a linear map) is stable under the sum with an inner derivation as the following lemma shows. The proof is immediate.

Lemma 2.1. Let u : A → A be a linear map, let e ∈ E and let B be a basis of A. Then u is diagonal with respect to the basis B if and only if the same holds for u + δe.

The preceding lemma justifies the following definition.

Definition 2.2. Let f ∈ HH 1 (A) and let d be a derivation representing f . Then f is called diagonalizable (and diagonal with respect to a basis B of A) if and only if d is diagonalizable (and diagonal with respect to B, respectively). The subset D ⊆ HH 1 (A) is called diagonalizable if and only if any there exists a basis B of A such that any f ∈ D is diagonal with respect to B.

The following proposition gives a criterion for a subset D ⊂ HH 1 (A) to be diagonalizable.

Proposition 2.3. Let D ⊆ HH 1 (A). Then, D is diagonalizable if and only if every element of D is diagonalizable and [f, f ′ ] = 0 for any f, f ′ ∈ D.
Proof: Clearly, if D is diagonalizable, then so is every element of D and [f, f ′ ] = 0 for every f, f ′ ∈ D. We prove the converse. For each f ∈ D, let d f be a derivation representing f . So d f is diagonal with respect to some basis and it suffices to prove that this basis may be assumed to be the same for all f ∈ D. Note that d f induces a diagonalizable linear map d f : ej rei → ejrei, for every i, j (see Lemma 1.1). Also, for every f, f ′ ∈ D, there exist scalars t

(f,f ′ ) i ∈ k, for i ∈ {1, . . . , n}, such that [d f , d f ′ ] is the inner derivation δ e (f,f ′ ) , where e (f,f ′ ) = n P i=1 t (f,f ′ ) i ei. Now, let i, j ∈ {1, . . . , n}. Then, given f, f ′ ∈ D, we have two diagonalizable maps d f , d f ′ : ejrei → ej rei whose commutator is equal to (t (f,f ′ ) j -t (f,f ′ ) i
)Ide j re i . So this commutator must be zero. This shows that there exists a basis Bi,j of ejrei for which d f : ejrei → ejrei has a diagonal matrix. So any f ∈ D is diagonal with respect to the basis B = {e1, . . . , en}∪ S i,j

Bi,j which does not depend on f . This proves that D is diagonalizable.

Our main example of diagonalizable subspace of HH 1 (A) is Im(θν):

Proposition 2.4. Let ν : kQ ։ A be a presentation. Then, Im(θν) is diagonalizable.

Proof: Let B be a basis of A adapted to ν and let I = Ker(ν). Then θν (f ) is diagonal with respect to B, for every f ∈ Hom(π1(Q, I), k + ).

In this section, we aim at proving that any diagonalizable subset of HH 1 (A) is contained in Im(θν ) for some presentation ν. It was proved in [START_REF] Farkas | Diagonalizable derivations of finite dimensional algebras[END_REF] that any diagonalizable derivation (with suitable technical conditions) defines an element of HH 1 (A) lying in Im(θν) for some ν. We will use the following similar result.

Lemma 2.5. Let f ∈ HH 1 (A) be diagonalizable. Let B be a basis with respect to which f is diagonal. Let ν : kQ ։ A be a presentation adapted to B. Then f ∈ Im(θν ).

Proof: Let I = Ker(ν) and let d : A → A be a derivation representing f . We set r := ν(r), for any r ∈ kQ. Let α ∈ Q1. By assumption on B, there exists tα ∈ k such that d(α) = tαα. Let tu := tα 1 + . . . + tα n , for any path u = αn . . . α1 (with αi ∈ Q1). So d(u) = tuu, because d is a derivation. More generally, if γ = α εn n . . . α ε 1 1 is a walk in Q (with αi ∈ Q1), let us set tγ := n P i=1 (-1) ε i tα i , with the convention that tγ = 0 if γ is trivial. We now to prove that the map γ → tγ defines a group homomorphism g : π1(Q, I) → k + , [γ]I → tγ and that f = θν(g).

First, we prove that the group homomorphism g : π1(Q, I) → k + is well defined. By definition of the scalar tγ, we have: (i) te x = 0 for any x ∈ Q0 and t γ ′ γ = t γ ′ + tγ for any walks γ, γ ′ such that the walk γ ′ γ is defined.

(ii) t α -1 α = te x and t αα -1 = te y for any arrow x α -→ y ∈ Q1.

(iii) twvu = t wv ′ u for any walks w, v, v ′ , u such that tv = t v ′ , and such that the walks wvu, wv ′ u are defined.

In order to prove that g is well defined, it only remains to prove that tu = tv whenever u, v are paths in Q appearing in the same minimal relation of I (with non zero scalars). For this purpose, let From (ii), (iii) and (iv) we deduce that we have a well defined map g : π1(Q, I) → k, [γ]I → tγ. Moreover, (i) proves that g is a group homomorphism. Now we prove that f = θν(g). For any path u with source x and target y, we have g([γ -1 y uγx]I ) = tu -tγ y + tγ x . Hence, θν(g) ∈ HH 1 (A) is represented by the derivation e g : A → A such that e g(u) = (tu -tγ y + tγ x )u for any path u with source x and target y. Let us set e := P

x∈Q 0 tγ x ex ∈ E.
Therefore, e g + δe = d. This proves that f = θν(g).

Now we can state the main result of this section. It is a direct consequence of Proposition 2.4 and of Lemma 2.5. Proposition 2.6. Let D ⊆ HH 1 (A). Then D is diagonalizable if and only if there exists a presentation ν : kQ ։ A such that D ⊆ Im(θν).

Remark that Lemma 2.5 also gives a sufficient condition for θν to be an isomorphism. Recall that A is called constricted if and only if dim eyAex = 1 for any arrow x → y (this implies that Q has no multiple arrows). In [START_REF] Bardzell | H 1 and representation of finite dimensional algebras[END_REF] it was proved that for such an algebra, two different presentations have the same fundamental group. Proposition 2.7. Assume that A is constricted. Let ν : kQ ։ A be any presentation of A. Then θν : Hom(π1(Q, I), k + ) → HH 1 (A) is an isomorphism. In particular, HH 1 (A) is an abelian Lie algebra.

Proof: Since θν is one-to-one, we only need to prove that it is onto. Let B be a basis of A adapted to ν, let f ∈ HH 1 (A) and let d : A → A be a derivation representing f . Let x α -→ y be an arrow. Then eyAex = k.ν(α) so that there exists tα ∈ k such that d(ν(α)) = tαν(α). Let u = αn . . . α1 be any path in Q (with αi ∈ Q1). Since d is a derivation, we have d(ν(u)) = (tα 1 + . . . + tα n )ν(u). As a consequence, d is diagonal with respect to B. Moreover, ν is adapted to B. So Lemma 2.5 proves that f ∈ Im(θν ). This proves that θν is an isomorphism. So HH 1 (A) is abelian.

3 Comparison of Im(θ ν ) and Im(θ µ ) for different presentations µ and ν of A If two presentations ν and µ of A are related by a transvection or a dilatation, then there is a simple relation between the associated fundamental groups (see Proposition 1.4). In this section, we compare θν and θµ. We first compare θν and θµ when µ = ν • D with D a dilatation. Recall that if J = D(I) with D a dilatation, then ∼I and ∼J coincide, so that π1(Q, I) = π1(Q, J). Therefore, d1(ν(α)) = d2(µ(α)) because D is a dilatation and because ∼I and ∼J coincide. This implies that d1 = d2 and θν (f ) = θµ(f ).

The following example shows that Proposition 3.1 does not necessarily hold true if ν and µ are two presentations of A such that ∼ Ker(ν) and ∼ Ker(µ) coincide. Example 3.2. Assume that char(k) = 2 and let A = kQ/I where Q is the quiver: It is easy to verify that d2 -d1 is not an inner derivation. Hence, θν = θµ. Now we compare θν and θµ when µ = ν • ϕα,u,τ and when the identity map on the set of walks in Q induces a surjective group homomorphism π1(Q, Ker(ν)) ։ π1(Q, Ker(µ)). 
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 122 Let A = kQ/I where Q is the quiver: 1 b ' / 3 and I =< ca >. Set x0 = 1.Then π1(Q, I) ≃ Z is generated by [b -1 a]I . On the other hand, A ≃ kQ/J where J =< ca -cb >, and π1(Q, J) is the trivial group.In the sequel we shall use the following technical lemma. Lemma 1.3. Let (Q, I) be a bound quiver where Q has no oriented cycles and let d : kQ → kQ be a linear map such that d(I) ⊆ I, and d(u) = tuu for some tu ∈ k, for any path u. Let ≡I be the equivalence relation on the set of paths in Q generated by the condition (3) defining ∼I . Then, the following implication holds for any paths u, v: u ≡I v implies tu = tv .

  d ′ : kQ → kQ be the linear map such that d ′ (u) = tuu for any path u in k. Thus, d • ν = ν • d ′ . In particular, d ′ (I) ⊆ I. So we may apply Lemma 1.3 to d ′ and deduce that: (iv) tu = tv if u, v are paths in Q lying in the support of a same minimal relation of I.

Proposition 3 . 1 .

 31 Let ν : kQ ։ A be a presentation, let D : kQ ∼ -→ kQ be a dilatation. Let µ := ν • D : kQ ։ A. Let I = Ker(µ) and J = Ker(ν), so that J = D(I). Then θµ = θν .Proof: Let f ∈ Hom(π1(Q, I), k + ). Then, θν (f ) and θµ(f ) are represented by the derivations d1 and d2 respectively, such that for any arrow x α -→ y:d1(ν(α)) = f ([γ -1 y αγx]J ) ν(α) d2(µ(α)) = f ([γ -1y αγx]I ) µ(α) .

5 andI

 5 =< da, f ecb, f ea + dcb >. Let T be the maximal tree such that T1 = {b, c, e, f }. Let ν : kQ ։ A = kQ/I be the natural projection. Let ψ := ϕ a,cb,1 ϕ d,f e,1 . Thus,I = ψ(I). Let µ := ν •ψ : kQ ։ A so that Ker(µ) = Ker(ν) = I. Observe that π1(Q, I) is the infinite cyclic group with generator [b -1 c -1 a]I . So let f : π1(Q, I) → k + be the unique group homomorphism such that f ([b -1 c -1 a]I ) = 1.Then θν(f ) is represented by the following derivation:d1 : A -→ A ν(x) -→ ν(x) if x ∈ {a, d} ν(x) -→ 0 if x ∈ {b, c, e, f } . On the other hand, θµ(f ) is represented by the derivation: d2 : A -→ A ν(a) -→ ν(a) + ν(cb) ν(d) -→ ν(d) + ν(f e) ν(x) -→ 0 if x ∈ {b, c, e, f } .

Proposition 3 . 3 .

 33 Let ν : kQ ։ A be a presentation, let ϕα,u,τ : kQ ∼ -→ kQ be a transvection and let µ := ν • ϕα,u,τ : kQ ։ A. Set I = Ker(ν) and J = Ker(µ), so that I = ϕα,u,τ (J). Suppose that α ∼J u and let p : π1(Q, I) ։ π1(Q, J) be the quotient map (seeProposition 1.4). Then, the following diagram commutes:Hom(π1(Q, J), k + ) θµ ' ' p * HH 1 (A) Hom(π1(Q, I), k + )where p * : Hom(π1(Q, J), k + ) ֒→ Hom(π1(Q, I), k + ) is the embedding induced by p. In particular, Im(θµ) ⊆ Im(θν).

Proof: Recall that p is the map [γ]I → [γ]J . Let f ∈ Hom(π1(Q, J), k + ). So p * (f ) is the composition π1(Q, I) p -→ π1(Q, J) f -→ k. We know that θµ(f ) and θν(p * (f )) are represented by the derivations d1 and d2 respectively, such that for any arrow x Let us prove that d1 and d2 coincide on ν(Q1). Let x a -→ y be an arrow. If a = α, then µ(a) = ν(a) and the above characterizations of d1 and d2 imply that d1(ν(a)) = d1(µ(a)) = d1(ν(a)). Now assume that a = α so that: ν(a) = µ(a) -τ µ(u) and [γ -1

y aγx]J = [γ -1 y uγx]J (recall that a = α ∼J u). Thus:

.

Hence, d1 and d2 are two derivations of A and they coincide on ν(Q1). So d1 = d2 and θµ(f

The following example shows that Proposition 3.3 does not necessarily hold true if ν is a presentation of A and ψ : kQ → kQ is an automorphism such that the identity map on the walks in Q induces a surjective group homomorphism π1(Q, Ker(ν)) ։ π1(Q, Ker(ν • ψ)). Example 3.4. Let A = kQ/I where char(k) = 2, where Q is the quiver of Example 3.2 and where I =< da, f ea + dcb >. Let ν : kQ ։ A be the natural projection with kernel I, let ψ := ϕ d,ef,1 ϕ a,cb,1 and let

a]J . Note also that ∼ Ker(ν) is weaker that ∼ Ker(µ) so that the identity map on the set of walks in Q induces a surjective group homomorphism p : π1(Q, Ker(ν)) ։ π1(Q, Ker(µ)). Let T be the maximal tree such that

On the one hand, θµ(f ) ∈ HH 1 (A) is represented by the derivation:

On the other hand, θν (p * (f )) ∈ HH 1 (A) is represented by the derivation:

One checks easily that d2 -d1 is not inner so that θµ(f ) = θν (p * (f )). Moreover, Im(θν) and Im(θµ) are one dimensional (because char(k) = 2, π1(Q, Ker(ν)) ≃ Z and π1(Q, Ker(µ)) ≃ Z/2Z) and d1, d2 are not inner. Hence Im(θµ) ⊆ Im(θν).

Actually, Proposition 3.3 does not work here because the automorphism ψ : (kQ, J) → (kQ, I) maps arrows to linear combination of paths which are not homotopic for ∼I . For example,

Finally, we compare θν and θµ when µ = ν • ψ with ψ : kQ ∼ -→ kQ an automorphism such that Ker(ν) = Ker(µ). 

.

In particular, Im(θµ) is equal to the image of Im(θν) under the Lie algebra automorphism ψ * : HH 1 (A)

Proof: Since ψ fixes the idempotents e1, . . . , en, we know that ψ * is well defined. Let f ∈ Hom(π1(Q, I), k + ). So θν(f ) and θµ(f ) are represented by the derivations d1 and d2 respectively, such that for any arrow x α -→ y:

In order to prove that ψ * (θν(f )) = θµ(f ) it suffices to prove that ψ • d1 = d2 • ψ. Let x α -→ y be an arrow. Then:

On the other hand:

Hence, ψ • d1 and d2 • ψ are derivations of A which coincide on ν(Q1). So ψ * (θν (f )) = θµ(f ) for any f ∈ Hom(π1(Q, I, k + )).

Proof of Theorem 1

In this section, we prove Theorem 1. We begin with the following useful lemma. We keep the notations αi, ui, τi, Ii of that proposition. Let ψ := ϕ -1 Dϕα l ,u l ,τ l . . . ϕα 1 ,u 1 ,τ 1 . Thus, ψ(I0) = I0 and ν ′ := ν • ψ : kQ ։ A is a presentation with kernel I0. Thanks to Proposition 3.5 from which we keep the notations, we know that:

Let us show that Im(θµ) ⊆ Im(θ ν ′ ). By construction, we have

For simplicity, we use the following notations: µ0 := ν ′ and µi := ν ′ ϕ -1 α 1 ,u 1 ,τ 1 . . . ϕ -1 α i ,u i ,τ i for i ∈ {1, . . . , l}. Note that Ii = Ker(µi). Since αi ∼I i ui and µi = µi-1 • ϕα i ,u i ,-τ i , Proposition 3.3 implies that:

Moreover, µ = µmD -1 where D -1 is a dilatation. Hence, (1), (2) and Proposition 3.1 imply that:

Now assume that ∼I is the unique source of Γ. Then Proposition 1.6 imply that the homotopy relations ∼I 0 , ∼I 1 , . . . , ∼I l , ∼I coincide. Therefore, for any i ∈ {1, . . . , l}, we have µi-1 = µi • ϕα i ,u i ,τ i , and αi ∼I i-1 ui. So Proposition 3.3, implies that Im(θµ i-1 ) ⊆ Im(θµ i ). This proves that all the inclusions in (2) are equalities, and so is the inclusion in (3). Now we can prove Theorem 1. Proof of Theorem 1: (i) Let G be a maximal diagonalizable subalgebra of HH 1 (A). Thanks to Proposition 2.6, there exists a presentation µ : kQ ։ A such that G ⊆ Im(θµ). On the other hand, Lemma 4.1, implies that there exists a presentation ν : kQ ։ A such that ∼ Ker(ν) is the unique source of Γ and such that Im(θµ) ⊆ Im(θν ). Hence, G ⊆ Im(θν) where Im(θν) is a diagonalizable subalgebra of HH 1 (A), thanks to Proposition 2.4. The maximality of G forces G = Im(θν).

Conversely, let µ : kQ ։ A be a presentation such that ∼ Ker(µ) is the unique source of Γ. Hence, Im(θµ) is diagonalizable (thanks to Proposition 2.4) so there exists a maximal diagonalizable subalgebra G of HH 1 (A) containing Im(θµ). Thanks to the above description, we know that G = Im(θν ) where ν : kQ ։ A is a presentation such that ∼ Ker(ν) is the unique source of Γ. Moreover, Lemma 4.1 gives a k-algebra automorphism ψ : A ∼ -→ A such that Im(θµ) = ψ⋆(Im(θν)). Since ψ * is a Lie algebra automorphism of HH 1 (A), the maximality of G = Im(θν) implies that Im(θµ) is maximal.

(ii) is a consequence of (i) and of Lemma 4.1.