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fundamental groups of and algebra

Patrick Le Meur ∗†

10th January 2007

Abstract

Let A be a basic connected finite dimensional k-algebra with ordinary quiver Q without oriented
cycle. We compare the group morphisms θν : Hom(π1(Q,Ker(ν)), k

+) → HH1(A) established in [3], for
the different presentations ν : kQ ։ A by quiver and admissible relations. We characterise the spaces
Im(θν) in terms of diagonalisable subspaces of HH1(A). Assuming that A has no double bypass and k
has characteristic zero, or that A is monomial and without multiple arrows, we characterise the maximal
diagonalisable subalgebras of HH1(A) using the quiver of the homotopy relations of the presentations of
A introduced in [11].

Introduction

Let A be a finite dimensional algebra over an algebraically closed field k. In the study of the derived
category of A, the Hochschild cohomology ([9]) HH∗(A) plays an important role because it is an invariant
of the derived category (see [10]) and also because it carries a lot of structure since it is k-algebra,
a Lie algebra and more generally a Gerstenhaber algebra (see [8]). In particular, HH1(A) is a Lie
subalgebra of HH∗(A). Recall that A is naturally an A − A-bimodule (or a A ⊗ A-module) and that
HH∗(A) =

⊕
n>0

HHn(A) where HHn(A) = ExtiA⊗A(A,A).

The space HH1(A) was studied intensively (see for example [3], [5], [7], [16], [17], [18] and [19]).
In particular, in [3], I. Assem and J. A. de la Peña have proved that if A is basic and connected, if
the ordinary quiver Q of A has no oriented cycle and if ν : kQ ։ A is a presentation, then there is an
injective mapping of abelian groups θν : Hom(π1(Q,Ker(ν)), k

+) →֒ HH1(A). Here π1(Q,Ker(ν)) is the
fundamental group of the ν defined in [15]. Later, in [7], D. Farkas, E. Green and E. .N. Marcos have
studied the elements of Im(θν) using the notion of diagonalisable derivation.

The aim of this text is to characterise the subspaces Im(θν) of HH1(A) in terms of Lie algebras
and to compare the morphisms θν associated to the different presentations ν of A. Indeed, following [7],
it is possible to define a notion of diagonalisability for an element HH1(A) (which corresponds to the
notion of diagonalisability of a derivation) and also of a subset of HH1(A) (which corresponds to the
simultaneous diagonalisability of a set of derivations). It appears that Im(θν) is a diagonalisable subset
of HH1(A) and that any diagonalisable subset of HH1(A) is contained in Im(θν) for some presentation
ν. In order to compare the morphisms θ? associated to the different presentations of A, we will use the
comparisons between the fundamental groups of the presentations of A made by the author in [14]. Recall
that if ν : kQ ։ A is a presentation with kernel I , then the fundamental group π1(Q, I) is defined as the
quotient space of the set of unonriented paths (called walks) in Q by a homotopy relation ∼I depending
on I . Assuming that Q has no oriented cycle, it was proved in [14] that the homotopy relations of the
presentations of A can be displayed as the vertices of finite, connected quiver Γ without oriented cycle and
such that for any arrow ∼I→∼J there is a natural surjective group morphism π1(Q, I) ։ π1(Q, J). In
such a situation, if ν and µ are presentations of A such that Ker(ν) = I and Ker(µ) = J , then we will see
that Im(θµ) ⊆ Im(θν). This property and the above description of the spaces Im(θν) as diagonalisable
subspaces of HH1(A) lead naturally to the following question:
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Is it possible to characterise and compare the maximal diagonalisable subspaces of HH1(A)?

The above explanations suggest that such a subspace of HH1(A) should be of the form Im(θν) for ν a
presentation such that ∼Ker(ν) is a source of Γ. We shall give a precise answer to the above question
assuming one of the following hypotheses which ensure that Γ has a unique source (see [14, Prop. 2.11]
and [13, Cor. 4.4]):

(H1) Q has no double bypass and k has characteristic zero.

(H2) A is monomial (i.e. A ≃ kQ/I0 with I0 an ideal generated by a set of paths) and Q has no multiple
arrows.

More precisely we will prove the following theorem which is the main result of this text.

Theorem 1. Assume that at least one the two hypotheses (H1) and (H2) is satisfied. Then:

(i) The maximal diagonalisable subalgebras of HH1(A) are exactly the subalgebras of the form Im(θν)
where ν : kQ ։ A is a presentation such that ∼Ker(ν) is the unique source of Γ.

(ii) If G, G′ are two such subalgebras of HH1(A), then there exists an algebra automorphism ψ : A
∼
−→ A

inducing a Lie algebra automorphism ψ∗ : HH1(A)
∼
−→ HH1(A) and such that G′ = ψ∗(G).

The text is organised as follows. In Section 1 we recall all the definitions we will need and proof some
useful lemmas. In Section 2, we introduce the notion of diagonalisability in HH1(A). In particular, we
will prove that a subset of HH1(A) is diagonalisable is and only if it is contained in Im(θν) for some
presentation ν : kQ ։ A. In Section 3 we compare the morphisms θν for different presentations ν of A,
using the quiver Γ. Finally, in Section 4 we prove Theorem 1.

This text is part of the author’s thesis ([12]) made at Université Montpellier II under the supervision
of Claude Cibils.

1 Preliminaries

Terminology and notations for quivers. If Q is a quiver, Q0 = {1, . . . , n} (resp. Q1) will denote
the set of vertices (resp. of arrows). The source (resp. target) of α ∈ Q1 will be denoted by s(α) (resp.
by t(α)). The stationary path (i.e. of length 0) with source and target i ∈ Q0 will be denoted by
ex. The (oriented) paths in Q are read from the right to the left, i.e. the path αn . . . α1 with source x
and target y denotes the sequence of arrows α1, . . . , αn such that s(α1) = x, s(αi+1) = t(αi) for every
i, and t(αn) = y. Two paths are called parallel if they have the same source and the same target. If
u = αm . . . α1 and v = βn . . . β1 are paths in Q, the concatenantion vu is defined if t(αm) = s(β1) and is
equal to vu = βn . . . β1αm . . . α1, with the convention vu = u (resp. vu = v) if v (resp. u) is stationary.
An oriented cycle in Q is a non stationary path whose source and target are equal. If α ∈ Q1 we
consider its formal inverse α−1 with source s(α−1) := t(α) and target t(α−1) := s(α). A walk in Q with
source x and target y is either the stationary path ex (in which case y = x) or a sequence α1, . . . , αn of
arrows and formal inverses of arrows of Q such that s(α1) = x, s(αi+1) = t(αi) for every i and t(αn) = y,
in such a case, the walk is denoted by αn . . . α1. The concatenation of walks in Q is defined similarly to
the concatenation of paths. If γ = αn . . . α1 is walk, we will denote by γ−1 the walk α−1

1 . . . α−1
n with the

convention (α−1)−1 for any arrow α. A bypass (see [2]) is a pair (α, u) where α 6= u, α ∈ Q1 and u is a
path in Q parallel to α. A double bypass (see [11]) is a 4-tuple (α, u, β, v) where (α, u) and (β, v) are
bypasses such that the arrow β appears in the path u.

Admissible presentations. If Q is a finite quiver (i.e. Q0 and Q1 are finite), its path algebra kQ
is the k-algebra whose basis as a k-vector space is the set of paths in Q (including the stationary paths)

and whose product is bilinearly induced by the concatenation of paths. The unit of kQ is
n∑
i=1

ei and kQ

is finite dimensional if and only if Q has no oriented cycle. An admissible ideal of kQ is an ideal I
verifying the following conditions:

1. I is generated by linear combinations of paths of length at least 2,

2. there exists N > 2 such that any path of length at least N lies in I .

In such a case, the elements of I are called relations and, following [15], a minimal relation of I is a

relation
s∑
i=1

tiui 6= 0 such that:

1. t1, . . . , tl ∈ k∗ and u1, . . . , ul are pairwise distinct paths in Q,
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2. if S ⊆ {1, . . . , n} verifies
∑
i∈S

tiui ∈ I , then S = ∅ or S = {1, . . . , s}.

With the above notations, the paths u1, . . . , un are necessarily parallel. Notice that I is generated by its
minimal relations. Let A be a finite dimensional k-algebra . Then A is Morita equivalent to a basic finite
dimensional k-algebra A′, where basic means that A′ = P1 ⊕ . . .⊕ Pn where P1, . . . , Pn are pairwise non
isomorphic indecomposable projective A′-modules. If A is basic, then (see [4]) there exists a quiver Q
and a surjective k-algebra morphism ν : kQ ։ A whose kernel is an admissible ideal of kQ. The quiver Q
is then unique and called the ordinary quiver of A and {ν(ei) | i ∈ Q0} is a complete set of primitive
orthogonal idempotents. The morphism ν is called an (admissible) presentation. In such a situation,
A ≃ kQ/Ker(ν) and A is connected if and only if Q is connected (i.e. the underlying graph of Q is
connected).

Presentation of HH1(A). Let A be a basic finite dimensional k-algebra and let {e1, . . . , en} be a
complete set of primitive orthogonal idempotents. A unitary derivation (see [16]) is a k-linear mapping
d : A → A such that d(ab) = ad(b) + d(a)b for any a, b ∈ A and such that d(ei) = ei for every i. Let
Der0(A) be set of unitary derivations. It is a Lie algebra for the bracket [d, d′] = d ◦ d′ − d′ ◦ d. In the

sequel, all derivations will be unitary, hence, we shall call them derivations, for short. Let E := {
n∑
i=1

tiei}.

Then E is a semi-simple subalgebra of A and A = E ⊕ r where r is the radical of A. Let Int0(A) :=
{δe : A → A, a ∈ A 7→ ea− ae | e ∈ E}, this is an ideal of Der0(A). Throughout this text, we shall use
the following presentation established in [16]:

Theorem 1.1. (see [16]) HH1(A) ≃ Der0(A)/Int0(A) as Lie algebras.

In the following lemma, we collect some useful properties on derivations.

Lemma 1.2. Let d ∈ Der0(A), then d(ejAei) ⊆ ejAei. Assume that the ordinary quiver Q of A has no
oriented cycle, then d(r) ⊆ r and d(r2) ⊆ r

2.

Proof: The first assertion is a direct consequence of the fact that d is a unitary derivation. Let
u ∈ ejrei\r

2. Since Q has no oriented cycle, we have i 6= j. Hence d(u) ∈ ejAei = ejrei. This
proves that d(r) ⊆ r. Since d is a derivation, we infer that d(r2) ⊆ r

2. �

If ψ : A
∼
−→ A is a k-algebra automorphism such that ψ(ei) = ei for every i, then the mapping

d 7→ ψ ◦d ◦ψ−1 defines a Lie algebra automorphism of Der0(A) and preserves Int0(A). Hence, it induces
a Lie algebra automorphism which will be denoted by ψ∗ : HH1(A)

∼
−→ HH1(A).

Fundamental groups of presentations. Let (Q, I) be a bound quiver (i.e. Q is a finite quiver
and I is an admissible ideal of kQ). The homotopy relation ∼I was defined in [15] as the equivalence
class on the set of walks in Q generated by the following properties:

(1) αα−1 ∼I ey and α−1α ∼I ex for any arrow α with source x and target y,

(2) wvu ∼I wv
′u if w, v, v′, u are walks such that the concatenations wvu and wv′u are well defined

and such that v ∼I v
′,

(3) u ∼I v if u and v are paths in Q appearing in a same minimal relation (with a non zero scalar).

Notice that if r1, . . . , rt are minimal relations generating I , then the condition (3) above may be replaced
by the following one (see [5]):

(3′) u ∼I v if u and v are paths in Q appearing in ri (with a non zero scalar) for some i ∈ {1, . . . , t}.

The ∼I -equivalence class of a walk γ will be denoted by [γ]I . Let x0 ∈ Q0, following [15], the set of ∼I -
equivalence classes of walks with source and target x0 is denoted by π1(Q, I, x0). The concatenation of
walks endows this set with a group structure whose unit is [ex0 ]I . This group is called the fundamental
group of (Q, I) at x0. If Q is connected, then the isomorphism class of π1(Q, I, x0) does not depend on
the choice x0. In such a case, we shall write π1(Q, I) for π1(Q, I, x0). If A is a basic connected finite
dimensional k-algebra and if ν : kQ ։ A is a presentation, the group π1(Q,Ker(ν)) will be called the
fundamental group of the presentation ν. The following example shows that two presentations of
A may have non isomorphic fundamental groups.

Example 1.3. Let A = kQ/I where Q is the quiver: 1

b
''

a

77 2
c // 3 and I =< ca >. Set x0 = 1.

Then π1(Q, I) ≃ Z is generated by [b−1c−1a]I . On the other hand, A ≃ kQ/J where J =< ca− cb > and
π1(Q,J) is the trivial group.
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In the sequel we will use the following technical lemma.

Lemma 1.4. Let (Q, I) be a bound quiver where Q has no oriented cycle and let d : kQ → kQ be a
linear mapping such that d(I) ⊆ I and verifying d(u) = tuu for some u ∈ k, for any path u. Let ≡I be
the equivalence relation on the set of paths in Q generated by the condition (3) defining ∼I . Then, the
following implication holds for any paths u, v:

u ≡I v ⇒ tu = tv

Proof: We shall use a non multiplicative version of Gröbner bases (see [1] and [6]). Fix an arbitrary
total order u1 < . . . < uN on the set of paths in Q and let (u∗

1, . . . , u
∗
N ) be the basis of (kQ)∗ dual to

(u1, . . . , uN ). Following [14, Sect. 1], the Gröbner basis of I is the unique basis (r1, . . . , rt) defined by
the three following properties:

(i) rj ∈ uij + Span(ui ; i < ij) for some ij , for every j,

(ii) u∗
ij

(rj′) = 0 unless j = j′,

(iii) i1 < . . . < it.

It follows from these properties that:

(iv) r =
t∑

j=1

u∗
ij

(r)rj for any r ∈ I .

Recall from [14, Sect. 1] that r1, . . . , rt are minimal relations of I so that ≡I is generated by the property
(3′) defining ∼I . This property and the assumption on d imply that in order to prove the lemma, it
suffices to prove that d(rj) ∈ k.rj for any j. Let us prove this assertion by induction on j ∈ {1, . . . , t}.
By assumption on d and thanks to (i), we have d(r1) ∈ I ∩ Span(ui ; i 6 i1). Hence, (iii) and (iv)
imply that d(r1) ∈ k.r1. Let j ∈ {1, . . . , d − 1} and assume that d(r1) ∈ k.r1, . . . , d(rj) ∈ k.rj . By
assumption on d and thanks to (i) and (ii), we have d(rj+1) ∈ I ∩Span(ui ; i 6 i1) and u∗

il
(d(rj+1)) = 0

if l 6 j. So, (iii) and (iv) imply that d(rj+1) ∈ k.rj+1. This finishes the induction and proves the lemma.�

Comparison of fundamental groups. Let A be a basic connected finite dimensional k-algebra with
ordinary quiver Q without oriented cycle. A dilatation (see [11]) is an automorphism D : kQ

∼
−→ kQ

such that D(ei) = ei for any i and such that D(α) ∈ k.α for any α ∈ Q1. If (α, u) is a bypass and τ ∈ k,
the transvection (see [11]) ϕα,u,τ : kQ

∼
−→ kQ is the automorphism such that ϕα,u,τ (ei) = ei for every

i, such that ϕα,u,τ (α) = α+ τu and such that ϕα,u,τ (β) = β for any arrow β 6= α. These automorphisms
allow to compare the fundamental groups of the presentations of an algebra. More precisely, we have the
following proposition announced in [11] and proved in [14]:

Proposition 1.5. ([14, Prop. 2.5]) Let I be an admissible ideal of kQ, let ϕ be an automorphism of kQ
and let J = ϕ(I). If ϕ is a dilatation, then ∼I and ∼J coincide. Assume that ϕ = ϕα,u,τ :

- If α ∼I u and α ∼J u then ∼I and ∼J coincide.

- If α 6∼I u and α ∼J u then ∼J is generated by ∼I and α ∼J u.

- If α 6∼I u and α 6∼J u then I = J and ∼I and ∼J coincide.

In particular, if α ∼I u, then the identity map on the set of walks of Q induces a surjective group morphism
π1(Q, I) ։ π1(Q,J).

Here generated means: generated as an equivalence relation on the set of walks of Q, and verifying
the conditions (1) and (2) above in the definition of the homotopy relation. If I, J are admissible ideals
such that there exists ϕα,u,τ verifying J = ϕα,u,τ(I), α 6∼I u and α ∼J u, then we shall say that ∼J is a
direct successor of ∼I . Proposition 1.5 allows one to define a quiver Γ associated to A as follows (see
[11, Def. 4.1]):

- Γ0 = {∼I | I is an admissible ideal of kQ such that A ≃ kQ/I},

- there is an arrow ∼→∼′ if ∼J is a direct successor of ∼I .

Example 1.6. Let A be as in Example 1.3, then J = ϕα,cb,1 and Γ is equal to ∼I→∼J .

The quiver Γ is finite, connected and has not oriented cycle ([11, Rem. 3, Prop. 4.2]). Moreover, if
Γ has a unique source ∼I0 (i.e. a vertex with no arrow ending at it) then the fundamental group of any
admissible presentation of A is a quotient of π1(Q, I0). It was proved in [14] and [13] that Γ has a unique
source under one of the hpotheses (H1) or (H2) presented in the introduction. Moreover, the hypotheses
H1 and H2 both ensure the following proposition which will be particularly useful to prove Theorem 1.

4



Proposition 1.7. ([14, Lem. 4.3] and [13, Prop. 4.3]) Assume that at least one of the two hypotheses
H1 or H2 is satisfied: Let I0 be the admissible ideal such that ∼I0 is the unique source of Γ and let
kQ ։ A be a presentation with kernel I. Then there exist a dilatation D and a sequence of transvections
ϕα1,u1,τ1 , . . . , ϕαn,un,τn such that:

- I = Dϕαn,un,τn . . . ϕα1,u1,τ1(I0),

- if we set Ii := ϕαi,ui,τi . . . ϕα1,u1,τ1(I0), then αi ∼Ii ui for every i.

If ∼I is the unique source of Γ (i.e. ∼I=∼I0) then the homotopy relations ∼I0 ,∼I1 , . . . ,∼In ,∼I coincide.

Comparison of the fundamental groups and the Hochschild cohomology. Let A be a basic
connected finite dimensional k-algebra . Assume that the ordinary quiver Q of A has no oriented cycle.
Let x0 ∈ Q0 and fix a maximal tree T of Q, i.e. a subquiver of Q such that T0 = Q0 and such that
the underlying graph of T is a tree. With these data, I. Assem and J. A. de la Peña have defined in
[3] an injective mapping of abelian groups θν : Hom(π1(Q,Ker(ν)), k

+) →֒ HH1(A) associated to any
admissible presentation ν : kQ ։ A. We recall here the definition of θν and refer the reader to [3]
for more details. For any x ∈ Q0 there exists a unique walk γx in T with source x0, with target x
and with length minimal for these properties. Let ν : kQ ։ A be an admissible presentation and let
f ∈ Hom(π1(Q,Ker(ν)), k

+) be a group morphism. Then, f defines a unitary derivation f̃ : A → A as

follows: f̃(ν(u)) = f([γ−1
y yγx]∼Ker(ν)

) ν(u) for any path u with source x and target y. The following
proposition was proved in [3]:

Proposition 1.8. (see [3]) The mapping f 7→ f̃ induces an injective mapping of abelian groups:

θν : Hom(π1(Ker(ν)), k
+) →֒ HH1(A)

The abelian group Hom(π1(Q,Ker(ν)), k
+) naturally carries a structure of commutative k-algebra,

hence a structure of abelian Lie algebra. The following lemma proves that θν preserves this structure.

Lemma 1.9. θν : Hom(π1(Ker(ν)), k
+) →֒ HH1(A) is a Lie algebra morphism. In particular, Im(θν)

is an abelian Lie subalgebra of HH1(A).

Proof: Let f, f ′ ∈ Hom(π1(Ker(ν)), k
+). Then [θν(f), θν(f

′)] ∈ HH1(A) is represented by the deriva-

tion f̃ ◦ f̃ ′ − f̃ ′ ◦ f̃ : A→ A. Let u be a path in Q. It follows from the definition of θν that f̃ ◦ f̃ ′ − f̃ ′ ◦ f̃
vanishes on u. Hence, [θν(f), θν(f

′)] = 0. �

Lemma 1.9 shows that θν is not surjective in general. Indeed, assume for example that A = kQ where
Q = Ã3. If ν : ։ A is an admissible presentation, then Ker(ν) = 0 and π1(Q,Ker(ν)) ≃ Z so that
dimk Im(θν) = 1. On the other hand, one easily verifies that dimk HH

1(A) = 2.

Throughout this text, A will be a basic connected finite dimensional k-algebra with ordinary quiver
Q without oriented cycle (Q0 = {1, . . . , n}). We fix {e1, . . . , en} a complete set of primitive orthogonal
idempotents of A. The semi-simple subalgebra k.e1 ⊕ . . .⊕ k.en of A will be denoted by E. The radical
of A will be denoted by r. For short, we shall say “presentation” instead of “admissible presentation”.
Without loss of generality, we shall assume that any presentation ν : kQ ։ A verifies ν(ei) = ei. Finally,
in order to use the morphisms θν , we fix a maximal tree T of Q.

2 Diagonalisability in HH1(A)

The aim of this section is to give prove some useful properties on the subspaces Im(θν) in terms of
diagonalisability in HH1(A). Notice that diagonalisability was introduced for derivations of A in [7]. For
short, a basis of A is a basis B of the k-vector space A such that: B ⊆

⋃
i,j

ejAei, such that {e1, . . . , en} ⊆

B, and such that B\{e1, . . . , en} ⊆ r. We shall say that a linear mapping u : A → A is diagonalisable if
and only if there exists a basis as above such that the matrix of u in this basis is diagonal. In such a case,
B is called a diagonalisation basis of u. Notice the following link between bases and presentations of A:

- if ν : kQ ։ A is a presentation of A, then there exists a basis B such that ν(α) ∈ B for any α ∈ Q1

and such that any element of B is of the form ν(u) with u a path in Q. We shall say that this basis
B is adapted to ν,

- if B is a basis of A, then there exists a presentation ν : kQ ։ A such that ν(α) ∈ B for any α ∈ Q1.
We shall say that the presentation ν is adapted to B.
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Remark that if ν : kQ ։ A is a presentation and if B is a basis of A adapted to ν, then the presentation
ν is adapted to B. Notice also that diagonalisability is invariant up to a sum with an inner derivation as
the following lemma shows. The proof is immediate.

Lemma 2.1. Let u : A → A be a linear mapping, let e ∈ E and let B be a basis of A. Then B is a
diagonalisation basis for u if and only if the same holds for u+ δe.

The preceding lemma justifies the following definition.

Definition 2.2. Let f ∈ HH1(A) and let d be a derivation representing f . Then f is called diagonalisable
if and only if d is diagonalisable. In such a case, a diagonalisation basis of f is a diagonalisation basis of
d.

The subset D ⊆ HH1(A) is called diagonalisable if and only if any there exists a basis B of A such
that B is a diagonalisation basis of f for any f ∈ D.

It is well know that a family of endomorphisms (of a finite dimensional k-vector space) is simultaneously
diagonalisable as soon as these endomorphisms commute with each other and are diagonalisable. The
following proposition gives a similar characterisation for the diagonalisability of subsets of HH1(A).

Proposition 2.3. Let D ⊆ HH1(A). Then, D is diagonalisable if and only if every element of D is
diagonalisable and [f, f ′] = 0 for any f, f ′ ∈ D.

Proof: For each f ∈ D, let df be a derivation representing f . If there exists a common diagonalisation
basis for the elements of D, then the same holds for {df | f ∈ D} so that [df , df ′ ] = 0 for any f, f ′ ∈ D.
Consequently [f, f ′] = 0 for any f, f ′ ∈ D. Now let us prove the converse. The vanishing of the Lie

brackets implies that for any f, f ′ ∈ D there exists e(f,f
′) ∈ E such that [df , df ′ ] = δ

e(f,f′) . Let us write

e(f,f
′) =

n∑
i=1

t
(f,f ′)
i ei. Hence (see Lemma1.2), for any i, j, the derivations df and df ′ induce diagonalisable

linear mappings ejrei → ejri whose Lie bracket equals u 7→ (t
(f,f ′)
j − t

(d,d′)
i )u. Recall that if M,N are

square matrices such that M is diagonal, then the diagonal entries of MN −NM are all zero, so that if
moreover MN −NM is a scalar matrix, then MN −NM = 0. Consequently, the restriction of [df , df ′ ]
to ejrei is zero for any i, j. Since [df , df ′ ](ei) = 0 for any i, we deduce that:

- df : ejrei → ejrei is diagonalisable for every f ∈ D and every i, j,

- [df , df ′ ] = 0 for every f, f ′ ∈ D,

- A = E
⊕

⊕i,jejrei

Therefore, the classical simultaneous diagonalisation of pairwise commuting diagonalisable endomor-
phisms of a finite dimensional k-vector space gives rise to a basis of B in which the matrix of df is
diagonal for any f ∈ D. �

Our main example of diagonalisable subspace of HH1(A) is Im(θν):

Proposition 2.4. Let ν : kQ ։ A be a presentation. Then, Im(θν) is diagonalisable.

Proof: Let B be a basis of A adapted to ν and let I = Ker(ν). For any f ∈ Hom(π1(Q, I), k
+), the

element θν(f) ∈ HH1(A) is represented by the derivation f̃ which, by definition, verifies f̃(ν(u)) ∈ k.ν(u)
for any path u in Q. �

In this section, we aim at proving that any diagonalisable subset of HH1(A) is contained in Im(θν)
for some presentation ν. It was proved in [7] that any diagonalisable derivation (with suitable technical
conditions) defines an element of HH1(A) lying in Im(θν) for some ν. We will use the following similar
result.

Lemma 2.5. Let f ∈ HH1(A) and let B be a diagonalisation basis of f . Let ν : kQ ։ A be a presentation
adapted to B. Then f ∈ Im(θν).

Proof: Let I = Ker(ν) and let d : A → A be a derivation representing f . We shall write r for ν(r), for
any r ∈ kQ. Let α ∈ Q1, since B is a diagonalisation basis of f and since ν is adapted to B, there exists
tα ∈ k such that d(α) = tαα. For any path u = αn . . . α1 (with αi ∈ Q1), let us set tu := tα1 + . . .+ tαn

so that d(u) = tuu, because d is a derivation. More generally, if γ = αεn
n . . . αε11 is a walk in Q (with

αi ∈ Q1), let us set tγ :=
n∑
i=1

(−1)εitαi , with the convention that tγ = 0 if γ is stationary. We are

going to prove that the mapping γ 7→ tγ defines a group morphism g : π1(Q, I) → k+, [γ]I 7→ tγ and that
f = θν(g).

First, let us prove that the morphism g : π1(Q, I) → k+ is well defined. By definition of the scalar tγ ,
we have:
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(i) tex = 0 for any x ∈ Q0 and tγ′γ = tγ′ tγ for any walks γ, γ′ such that t(γ) = s(γ′).

(ii) tα−1α = tex and tαα−1 = tey for any arrow x
α
−→ y ∈ Q1.

(iii) twvu = twv′u for any walks w, v, v′, u verifying tv = tv′ , s(w) = t(v) = t(v′) and s(v) = s(v′) = t(u).

In order to prove that g is well defined, it only remains to prove that tu = tv whenever u, v are paths
in Q lying in the support of the same minimal relation of I . In this purpose, let d′ : kQ → kQ be the
linear mapping such that d′(u) = tuu for any path u in k. By definition of the scalar tu, this implies that
d ◦ ν = ν ◦ d′. In particular, d′(I) ⊆ I . So we may apply Lemma 1.4 to d′ and deduce that:

(iv) tu = tv if u, v are paths in Q lying in the support of a same minimal relation of I .

From (ii), (iii) and (iv) we deduce that we have a well defined mapping g : π1(Q, I) → k, [γ]I 7→ tγ .
Moreover, (i) proves that g is a group morphism.

Now let us prove that f = θν(g). For any path u with source x and target y, we have g([γ−1
y uγx]I) =

tu − tγy + tγx . Hence, θν(g) ∈ HH1(A) is represented by the derivation g̃ : A → A such that g̃(u) =
(tu − tγy + tγx )u for any path u with source x and target y. Let us set e :=

∑
x∈Q0

tγxex ∈ E. Therefore,

g̃ + δe = d. This proves that f = θν(g). �

Now we can state the main result of this section. It is a direct consequence of Proposition 2.4 and of
Lemma 2.5.

Proposition 2.6. Let D ⊆ HH1(A). Then D is diagonalisable if and only if there exists a presentation
ν : kQ ։ A such that D ⊆ Im(θν).

Remark that Lemma 2.5 also gives a sufficient condition for θν to be an isomorphism. Recall that
A is called constricted if and only if dim eyAex = 1 for any arrow x → y (this implies that Q has no
multiple arrows). In [5] it was proved that for such an algebra, two different presentations have the same
fundamental group.

Proposition 2.7. Assume that A is constricted. Let ν : kQ ։ A be any presentation of A. Then
θν : Hom(π1(Q, I), k

+) → HH1(A) is an isomorphism. In particular, HH1(A) is an abelian Lie algebra.

Proof: Since θν is one-to-one, we only need to prove that it is onto. Let B be a basis of A adapted to
ν, let f ∈ HH1(A) and let d : A → A be a derivation representing f . Let x

α
−→ y be an arrow. Then

eyAex = K.ν(α) so that there exists tα ∈ k such that d(ν(α)) = tαν(α). Let u = αn . . . α1 be any path in
Q (with αi ∈ Q1). Since d is a derivation, we have d(ν(u)) = (tα1 + . . .+ tαn)ν(u). As a consequence, B
is a diagonalisation basis for d. Moreover, ν is adapted to B because B is adapted to ν. So Lemma 2.5
proves that f ∈ Im(θν). This proves that θν is an isomorphism. Finally HH1(A) is abelian because
Hom(π1(Q, I), k

+) is abelian. �

3 Comparison of Im(θν) and Im(θµ) for different presenta-

tions µ and ν of A

In Proposition 1.5 we have recalled that if two presentations ν and µ of A are linked by a transvection or
a dilatation, then there is a simple relation between the associated fundamental groups. In this section,
we shall use this relation to compare θν and θµ. Our first result compares θν and θµ when µ = ν ◦ D
with D a dilatation. Recall from Proposition 1.5 that if J = D(I) with D a dilatation, then ∼I and ∼J
coincide, so that π1(Q, I) = π1(Q,J).

Proposition 3.1. Let ν : kQ ։ A be a presentation, let D : kQ
∼
−→ kQ be a dilatation, let µ := ν ◦

D : kQ ։ A. Set I = Ker(µ) and J = Ker(ν), so that J = D(I). Then θµ = θν.

Proof: Let f ∈ Hom(π1(Q, I), k
+). Then, θν(f) and θµ(f) are represented by the derivations d1 and d2

respectively, such that for any arrow x
α
−→ y:

d1(ν(α)) = f([γ−1
y αγx]J ) ν(α)

d2(µ(α)) = f([γ−1
y αγx]I) µ(α)

On the other hand, for such an arrow x
α
−→ y, there exists tα ∈ k such that D(α) = tαα which im-

plies, thanks to the above property of d1 and d2 and thanks to the fact that ∼I and ∼J coincide, that
d1(µ(α)) = d2(µ(α)). Hence, d1 and d2 are two derivations of A and they coincide on µ(Q1). So d1 = d2
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and θν(f) = θµ(f), for any f ∈ Hom(π1(Q, I), k
+). �

The following example shows that the conclusion of Proposition 3.1 does not necessarily hold if ν and
µ are two presentations of A such that ∼Ker(ν) and ∼Ker(µ) coincide.

Example 3.2. Assume that car(k) = 2 and let A = kQ/I where Q is the quiver:

2

c

��>
>>

>>
>>

4
f

��>
>>

>>
>>

1

b

@@�������
a

// 3

e

@@�������

d

// 5

and I =< ba, vu, fea + dcb >. Let T be the maximal tree such that T1 = {b, c, e, f}. Let ν : kQ ։ A =
kQ/I be the natural projection. Let ψ := ϕa,cb,1ϕd,fe,1. Thus, I = ψ(I). Let µ := ν ◦ ψ : kQ ։ A so that
Ker(µ) = Ker(ν) = I. Remark that π1(Q, I) is the infinite cyclic group with generator [b−1c−1a]I . So let
f : π1(Q, I) → k+ be the unique group morphism such that f([b−1c−1a]I) = 1. Then θν(f) is represented
by the following derivation:

d1 : A −→ A
ν(x) 7−→ ν(x) if x ∈ {a, d}
ν(x) 7−→ 0 if x ∈ {b, c, e, f}

On the other hand, θµ(f) is represented by the derivation:

d2 : A −→ A
ν(a) 7−→ ν(a) + ν(cb)
ν(d) 7−→ ν(d) + ν(fe)
ν(x) 7−→ 0 if x ∈ {b, c, e, f}

It is easy to verify that d2 − d1 is not inner. Hence, θν 6= θµ.

Now we compare θν and θµ when µ = ν ◦ ϕα,u,τ and when the identity map on the set of walks in Q
induces a surjective group morphism π1(Q,Ker(ν)) ։ π1(Q,Ker(µ)).

Proposition 3.3. Let ν : kQ ։ A be a presentation, let ϕα,u,τ : kQ
∼
−→ kQ be a transvection and let

µ := ν ◦ ϕα,u,τ : kQ ։ A. Set I = Ker(ν) and J = Ker(µ), so that I = ϕα,u,τ (J). Suppose that
α ∼J u and let p : π1(Q, I) ։ π1(Q,J) be the quotient mapping (see Proposition 1.5). Then, the following
diagram commutes:

Hom(π1(Q, J), k+)

θµ

((PPPPPPPPPPPP

p∗

��

HH1(A)

Hom(π1(Q, I), k
+)

θν

66nnnnnnnnnnnn

where p∗ : Hom(π1(Q,J), k+) →֒ Hom(π1(Q, I), k
+) is the embedding induced by p. In particular, Im(θν) ⊆

Im(θµ).

Proof: Recall that p is the mapping [γ]I 7→ [γ]J . Let f ∈ Hom(π1(Q,J), k+). So p∗(f) is the composition

π1(Q, I)
p
−→ π1(Q, J)

f
−→ k. We know that θµ(f) and θν(p

∗(f)) are represented by the derivations d1 and
d2 respectively, such that for any arrow x

a
−→ y:

d1(µ(a)) = f([γ−1
y aγx]J ) µ(a) = p∗(f)([γyaγx]I) µ(a)

d2(ν(a)) = p∗(f)([γ−1
y aγx]I) ν(a)

Let us prove that d1 and d2 coincide on ν(Q1). Let x
a
−→ y be an arrow. If a 6= α, then µ(a) = ν(a) and

the above characterisations of d1 and d2 imply that d1(ν(a)) = d1(µ(a)) = d1(ν(a)). Now assume that
a = α so that: ν(a) = µ(a) − τµ(u) and [γ−1

y aγx]J = [γ−1
y uγx]J (recall that a = α ∼J u). Thus:

d1(ν(a)) = d1(µ(α)) − τ d1(µ(u))
= f([γ−1

y αγx]J ) µ(α) − τf([γ−1
y uγx]J ) µ(u)

= f([γ−1
y αγx]J ) (µ(α) − τ µ(u))

= p∗(f)([γ−1
y αγx]I) ν(α)

= d2(ν(α)) = d2(ν(a))
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Hence, d1 and d2 are two derivations of A and they coincide on ν(Q1). This proves that d1 = d2 and that
θµ(f) = θν(p

∗(f)) for any f ∈ Hom(π1(Q, J), k+). �

The following example shows that the conclusions of Proposition 3.3 do not necessarily hold if ν is a
presentation of A and ψ : kQ → kQ is an automorphism such that the identity map on the walks in Q
induces a surjective group morphism π1(Q,Ker(ν)) ։ π1(Q,Ker(ν ◦ ψ)).

Example 3.4. Let A = kQ/I where car(k) = 2, where Q is the quiver of Example 3.2 and where
I =< da, fea + dcb >. Let ν : kQ ։ A be the natural projection with kernel I, let ψ := ϕd,ef,1ϕa,cb,1
and let µ := ν ◦ ψ : kQ ։ A. Hence Ker(µ) =< da + fecb, fea + dcb >. Notice that π1(Q,Ker(ν)) ≃ Z

is generated by [b−1c−1a]I and that π1(Q,Ker(µ)) ≃ Z/2Z is generated by [b−1c−1a]J . Notice also that
∼Ker(ν) is weaker that ∼Ker(µ) so that the identity map on the set of walks in Q induces a surjective group
morphism p : π1(Q,Ker(ν)) ։ π1(Q,Ker(µ)). Let T be the maximal tree such that T1 = {b, c, e, f}.
Let f : π1(Q,Ker(µ)) → k be the group morphism such that f([b−1c−1a]J ) = 1 and let us verify that
θµ(f) 6= θν(p

∗(f)). On the one hand, θµ(f) ∈ HH1(A) is represented by the derivation:

d1 : A → A
µ(x) 7→ µ(x) if x ∈ {a, d}
µ(x) 7→ 0 if x ∈ {b, c, e, f}

On the other hand, θν(p
∗(f)) ∈ HH1(A) is represented by the derivation:

d2 : A → A
µ(a) 7→ µ(a) + µ(cb)
µ(d) 7→ µ(d) + µ(fe)
µ(x) 7→ 0 if x ∈ {b, c, e, f}

and one checks easily that d2 − d1 is not inner so that θµ(f) 6= θν(p
∗(f)). Moreover, Im(θν) and Im(θµ)

are one dimensional (because car(k) = 2, π1(Q,Ker(ν)) ≃ Z and π1(Q,Ker(µ)) ≃ Z/2Z) and d1, d2 are
not inner. Hence Im(θµ) = k.θµ(f) 6⊆ Im(θν) = k.θν(p

∗(f)).

Finally, we compare θν and θµ when µ = ν ◦ ψ with ψ : kQ
∼
−→ kQ an automorphism such that

Ker(ν) = Ker(µ).

Proposition 3.5. Let ν : kQ ։ A be a presentation and let I = Ker(ν). Let ψ : kQ
∼
−→ kQ be an

automorphism such that ψ(ei) = ei for every i and such that ψ(I) = I. Let µ := ν ◦ ψ : kQ ։ A so that
Ker(µ) = I. Let ψ : A

∼
−→ A be the k-algebra automorphism making commute the following diagram:

kQ

µ

��

ψ
// kQ

µ

��
A

ψ̄

// A

Then, the following diagram commutes:

HH1(A)

ψ
∗

∼

��

Hom(π1(Q, I), k
+)

θν

66nnnnnnnnnnnn

θµ ((PPPPPPPPPPPP

HH1(A)

In particular, Im(θµ) is equal to the image of Im(θν) under the Lie algebra automorphism ψ∗ : HH1(A)
∼
−→

HH1(A) induced by ψ : A
∼
−→ A.

Proof: Since ψ fixes the idempotents e1, . . . , en, ψ∗ is well defined. Let f ∈ Hom(π1(Q, I), k
+). So θν(f)

and θµ(f) are represented by the derivations d1 and d2 respectively, such that for any arrow x
α
−→ y:

d1(ν(α)) = f([γ−1
y αγx]I) ν(α)

d2(µ(α)) = f([γ−1
y αγx]I) µ(α)
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In order to prove that ψ∗(θν(f)) = θµ(f) it suffices to prove that ψ ◦d1 = d2 ◦ψ. Let x
α
−→ y be an arrow.

Then:
d2 ◦ ψ(ν(α)) = d2 ◦ ψ ◦ µ ◦ ψ−1(α) because ν = µ ◦ ψ−1

= d2 ◦ µ ◦ ψ(ψ−1(α)) because ψ ◦ µ = µ ◦ ψ
= d2(µ(α))
= f([γ−1

y αγx]I) µ(α)

On the other hand:

ψ ◦ d1(ν(α)) = ψ(f([γ−1
y αγx]I) ν(α))

= f([γ−1
y αγx]I) ψ(ν(α))

= f([γ−1
y αγx]I) ψ ◦ µ ◦ ψ−1(α) because µ = ν ◦ ψ

= f([γ−1
y αγx]I) µ ◦ ψ ◦ ψ−1(α) because ψ ◦ µ = µ ◦ ψ

= f([γ−1
y αγx]I) µ(α)

Hence, ψ ◦ d1 and d2 ◦ ψ are derivations of A and they coincide on ν(Q1). This proves that ψ∗(θν(f)) =
θµ(f) for any f ∈ Hom(π1(Q, I, k

+). �

4 Proof of Theorem 1

In this section, we will prove Theorem 1. We begin with the following useful lemma.

Lemma 4.1. Assume that at least one of the two conditions (H1) or (H2) is satisfied. Let ν : kQ ։ A be
a presentation with kernel I0 such that ∼I0 is the unique source of Γ, and let µ : kQ ։ A be a presentation.
Then, there exist ν′ : kQ ։ A a presentation with kernel I0 and a k-algebra automorphism ψ : A

∼
−→ A

verifying ψ(ei) = ei for any i and such that:

Im(θµ) ⊆ Im(θν′) = ψ∗(Im(θν))

If moreover ∼I=∼I0 , then the above inclusion is an equality.

Proof: Let ν : kQ/I0
∼
−→ A and µ : kQ/I

∼
−→ A be the isomorphisms induced by ν and µ respectively.

Hence, µ−1◦ν : kQ/I0
∼
−→ kQ/I is an isomorphism which maps ei to ei for every i. Hence (see for example

[12, Prop. 2.3.18]), there exists an automorphism ϕ : kQ
∼
−→ kQ mapping ei to ei for every i and such

that the following diagram commutes:

kQ

����

ϕ
// kQ

����
kQ/I0

µ̄−1ν̄
// kQ/I

where the vertical arrows are the natural projections. In particular, the following diagram is commutative:

kQ
ϕ

//

ν

  A
AA

AA
AA

A
kQ

µ

~~}}
}}

}}
}}

A

Now let us apply Proposition 1.7 to I . With the same notations, let ψ := ϕ−1Dϕαn,un,τn . . . ϕα1,u1,τ1 .
Thus, ψ(I0) = I0 and ν′ := ν ◦ ψ : kQ ։ A is a presentation with kernel I0. Thanks to Proposition 3.5
from which we keep the notations, we know that:

Im(θν′) = ψ⋆(Im(θν)) (1)

Now let us show that Im(θµ) ⊆ Im(θν′). By construction, we have µ = νϕ−1 = ν′ϕ−1
α1,u1,τ1 . . . ϕ

−1
αn,un,τn

D−1.
For simplicity, we shall use the following notations: µ0 := ν′ and µi := ν′ϕ−1

α1,u1,τ1 . . . ϕ
−1
αi,ui,τi

for
i ∈ {1, . . . , n}. Therefore, Ker(µi) = Ii for every i. Let i ∈ {1, . . . , n}, so:

· µi−1 : kQ ։ A and µi : kQ ։ A are two presentations of A,

· µi = µi−1 ◦ ϕ−1
αi,ui,τi

,

· Ker(µi) = Ii, Ker(µi−1) = Ii−1 and αi ∼Ii ui.
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From Proposition 3.3 we deduce that:

Im(θµn) ⊆ Im(θµm−1) ⊆ . . . ⊆ Im(θµi) ⊆ Im(θµi−1) ⊆ . . . ⊆ Im(θµ0) = Im(θν′) (2)

Moreover, µ = µmD
−1 where D−1 is a dilatation. Hence, (1), (2) and Proposition 3.1 imply that:

Im(θµ) = Im(θµn) ⊆ Im(θν′) = ψ⋆(Im(θν)) (3)

Now assume that ∼I is the unique source of Γ. Then Proposition 1.7 imply that the homotopy relations
∼I0 ,∼I1 , . . . ,∼In ,∼I coincide. Therefore, for any i ∈ {1, . . . , n}, we have:

· µi−1 = µi ◦ ϕαi,ui,τi ,

· Ker(µi) = Ii, Ker(µi−1) = Ii−1 and αi ∼Ii−1 ui,

These two properties imply, thanks to Proposition 3.3, that Im(θµi−1) ⊆ Im(θµi). This proves that all
the inclusions in (2) are equalities. And so does the inclusion in (3). �

Now we can prove Theorem 1.
Proof of Theorem 1: (i) Let G be a maximal diagonalisable subalgebra of HH1(A). Thanks to
Proposition 2.6, there exists a presentation µ : kQ ։ A such that G ⊆ Im(θµ). On the other hand,
Lemma 4.1, implies that there exists a presentation ν : kQ ։ A such that ∼Ker(ν) is the unique source
of Γ and verifying Im(θµ) ⊆ Im(θν). Hence, G ⊆ Im(θν) where Im(θν) is a diagonalisable subalgebra of
HH1(A), thanks to Proposition 2.4. The maximality of G forces G = Im(θν) where ∼Ker(ν) is the unique
source of Γ.

Conversely, let µ : kQ ։ A be a presentation such that ∼Ker(µ) is the unique source of Γ. Hence,
Im(θµ) is diagonalisable (thanks to Proposition 2.4) so there exists G a maximal diagonalisable subalgebra
of HH1(A) containing Im(θµ). Thanks to the above description, we know that G = Im(θν) where
ν : kQ ։ A is a presentation such that ∼Ker(ν) is the unique source of Γ. Moreover, Lemma 4.1 gives

a k-algebra automorphism ψ : A
∼
−→ A such that Im(θµ) = ψ⋆(Im(θν)). Since ψ∗ is a Lie algebra

automorphism of HH1(A), the maximality of G = Im(θν) implies that Im(θµ) is maximal.
(ii) is a consequence of (i) and of Lemma 4.1. �
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