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“GALOIS” AUTOMORPHISMS OF COMPLEX

REFLECTION GROUPS

I. MARIN AND J. MICHEL

Abstract. Let G be a complex reflection group and K its field of def-
inition (the subfield of C generated by the reflection character). We
show that Gal(K/Q) injects into the group A of outer automorphisms
of G which preserve reflections, and that this injection with a few ex-
ceptions can be chosen such that it commutes with the Galois action on
characters of G; further, replacing if needed K by an extension of order
2, the injection can be lifted to Aut(G), and every irreducible represen-
tations affords a model which is equivariant with respect to this lifting.
Along the way we give the structure of the group A and show that the
fundamental invariants of G can be chosen rational.

1. Introduction

Let G be a finite group generated by (pseudo)reflections in a vector space
V of dimension r <∞ over C. In this paper, we study the automorphisms
of G which preserve the set of reflections. It turns out that most of them
correspond to the action of a Galois group.

It is well known (see e.g. [Bens, 7.1.1]) that the representation V of G can
be already realized over the subfield of K of C generated by the traces of the
elements of G; the field K is called the field of definition of G. Further, it is
a well known result of Benard and Bessis ([Bena], [Bes]) that any irreducible
representation of G can be realized over K.

Let Γ = Gal(K/Q), let Aut(G) be the group of automorphisms of G, and
let Out(G) ≃ Aut(G)/(G/ZG) be the group of outer automorphisms. Our
main observation may be stated as follows:

Theorem 1.1. Assume G irreducible. Then for any irreducible representa-
tion ρ (with eight exceptions) of G there exists an injective homomorphism:

Γ
ιρ−→ Out(G) such that for any γ ∈ Γ, the representations γ(ρ) and ρ◦ ιρ(γ)

are isomorphic.
The exceptions are the four 5-dimensional representations of G27, two

of the 3 rational representations of dimension 6 of G29, and the two ratio-
nal representations of dimension 120 of G34. In these cases, the complex
conjugation c is an element of Γ, and its image in any injective morphism
Γ→ Out(G) will exchange in pairs the mentioned characters.
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The map ιρ above can “almost” be lifted to Aut(G). More precisely we
have

Theorem 1.2. Under the assumptions of theorem 1.1, there exists an exten-
sion K ′ of K such that [K ′ : K] ≤ 2 (and such that K ′/Q is still an abelian
extension), and an injective homomorphism ι̃ρ : Gal(K ′/Q)→ Aut(G) such
that the composition of ι̃ρ with the natural epimorphism Aut(G)→ Out(G)
factors through Γ and induces ιρ.

One may take K ′ = K except when G is G27 or some of the dihedral
groups G(e, e, 2).

The maps ιρ and ι̃ρ can be taken independent of ρ except for the groups
G(de, e, r) when e and r have a common divisor ≥ 3.

When G is not one of the groups G(de, e, r) mentioned above, since there
is no ambiguity, we will write ι (resp. ι̃) for the constant value of ιρ (resp.
ι̃ρ) (for the groups G27, G29 and G34 and an exceptional representation
for theorem 1.1, we take ι̃ρ to have the value it takes on non-exceptional
representations).

Theorem 1.1 has the following consequence, which can be formulated
without exception and without assuming G irreducible.

Corollary 1.3. Let G be any finite complex reflection group, and let χ be
an irreducible character of G. If, for all a ∈ Out(G) we have χ◦a = χ, then
χ takes its values in Q.

We turn now to the study of the subgroup A ⊂ Out(G) of automorphisms
which preserve the set of reflections. Let N ⊂ Out(G) be the subgroup
induced by NGL(V )(G). Then we have

Theorem 1.4. Let G be a finite irreducible complex reflection group. For
any ρ ∈ Irr(G), we have A = N ⋊ Im(ιρ).

The main ingredient for proving theorem 1.4 is that (cf. theorem 4.1)
any faithful irreducible representation where the reflections of G still act by
reflections is a Galois conjugate of V .

Suppose we can find a model over some field L of a faithful representation
ρ of G such that ρ(G) as a set is globally invariant by Gal(L/Q). Then any
γ ∈ Gal(L/Q) induces a permutation of ρ(G) and thus a permutation on G,
which is an automorphism. We get thus an homomorphism ι̃ : Gal(L/Q)→
Aut(G). If L = K ′ this ι̃ is an ι̃ρ suitable for theorem 1.2.

Given an homomorphism Gal(L/Q)
ι̃−→ Aut(G), and a model of an arbi-

trary representation ρ over L, we say that the model is ι̃-equivariant if for
any γ ∈ Gal(L/Q) and any g ∈ G, we have ρ(ι̃(γ)(g)) = γ(ρ(g)). Consider-
ations as above led us to check the following theorem:

Theorem 1.5. Let G be an irreducible finite complex reflection group which
is not G22 and let K ′ and ι̃ be as in theorem 1.2. Let ρ be any irreducible rep-
resentation of G. Then there is a model of ρ over K ′ which is ι̃ρ-equivariant.
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In the case of G22, we have K = K ′ = Q(i,
√

5). There is no globally
invariant model over K ′ of the reflection representation. We need to replace

K ′ by the extension K ′′ = Q(e
2iπ
20 ) to get a ι̃ρ-equivariant model (then K ′′

also works for any other representation). This example illustrates the fact
that asking for a ι̃ρ-equivariant model is stronger than merely asking as in
theorem 1.2 for a model such that ρ ◦ ι̃ρ(γ) ≃ γ(ρ) for any γ.

Theorem 1.5 has the following consequence (which could have been ob-
served from the explicit values of the invariants discovered by various au-
thors, mostly in the 19th century). In this proposition we take K ′′ as above
for G22, and in the other cases we let K ′′ = K ′.

Corollary 1.6. Let G ⊂ GL(V ) be any irreducible complex reflection group
where V is a K ′′-vector space, where K ′′ is as above. There is Q-form
V = V0 ⊗Q K ′′ such that the fundamental invariants of G can be taken
rational, i.e. in the symmetric algebra of the dual of V0.

Let V reg be the complement in V of the reflecting hyperplanes for G. The
fundamental group of the variety V reg/G is the braid group of G. We deduce
from 1.6 the following

Corollary 1.7. The variety V reg/G is defined over Q.

The techniques we use for checking theorem 1.5 enable us also to give a
probably shorter proof of the Benard-Bessis theorem (see remark 7.6).

Acknowledgments. We thank David Harari for teaching us about the
Brauer group, and Gunter Malle for a thorough reading of a first version of
the paper.

2. Background and Notation

We will use the following notation throughout this paper. V is a vector
space over the subfield K of C. G is a finite subgroup of GL(V ) generated
by (pseudo)-reflections. We assume that K is the field of definition of G,
that is, it is the subfield of C generated by the traces of the elements of G.
The group G is irreducible if the representation V of G is irreducible. It
is imprimitive if V admits a non-trivial decomposition V = V1 ⊕ . . . ⊕ Vn

stabilized by the action of G (that is, the Vi are permuted by G); otherwise
G is primitive.

We will consider only irreducible groups G unless explicitly stated other-
wise. Corollary 1.3 is about general reflection groups. Let us show how it
can be deduced from theorem 1.1.

Proposition 2.1. Let G be any finite complex reflection group, let K be its
field of definition and let Γ = Gal(K/Q). Let S be the set of irreducible rep-
resentations of G which cannot be realized over Q. Then for any ρ ∈ S there

exists an injection Γ
ιρ−→ Out(G) such that for any γ ∈ Γ the representations

γ(ρ) and ρ ◦ ιρ(γ) are isomorphic.
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Proof of proposition 2.1. Proposition 2.1 is an obvious consequence of 1.1
when G is irreducible. For a general reflection group G, we have a decompo-
sition into irreducible groups: V = V1 ⊕ . . .⊕ Vn, G = G1 × . . .×Gn where
Gi ⊂ GL(Vi). If Ki is the field of definition of Gi then K is the subfield of C
generated by K1, . . . ,Kn, whence if Γi = Gal(Ki/Q) we have natural quo-
tient morphisms Γ→ Γi such that the product map Γ→ ∏

i Γi is injective.
We deduce an injective map Γ→ Out(G) by composing Γ→

∏

i Γi with the
individual maps Γi → Out(Gi) deduced from 1.1 and then with the natural
injection Out(G1)× . . .Out(Gn)→ Out(G). Since any irreducible represen-
tation ρ of G is of the form ρ1⊗ . . .⊗ ρn where ρi ∈ Irr(Gi), proposition 2.1
follows readily. �

Statement 1.3 is an obvious corollary of 2.1.
The Shephard-Todd classification of irreducible finite reflection groups

(see e.g. [Cohen]) shows that there is one infinite series, identified by three
integer parameters d, e and r, and denoted by G(de, e, r); this series consists
of imprimitive groups, except for G(1, 1, r) = Sr and G(d, 1, 1) which is the
cyclic group of order d. In addition there are 34 exceptional primitive ones,
denoted G4 to G37.

3. The infinite series

The group G(de, e, r) is defined as the subgroup of GLr(C) consisting of
n by n monomial matrices such that each matrix has entries in the set µde

of de-th roots of unity, and the product of non-zero entries is in µd (for the
case of Sr = G(1, 1, r) this defines a non-irreducible representation; one has
to quotient by the one-dimensional fixed points). In particular, G(de, e, r)
is a normal subgroup of index e in G(de, 1, r).

In this text we will denote by ζn the primitive root of unity e2iπ/n. The
field of definition of G(de, e, r) is the field K = Q(ζde), except when d = 1
and r = 2. In this last case, G(e, e, 2) is the dihedral group of order 2e, whose
field of definition is K = Q(cos(2π

e )) = Q(ζe + ζ−1
e ) and we set K ′ = Q(ζe).

It is clear from these definitions that, using the model V = V0⊗QK ′ where
V = K ′r which is implicit when we talk about matrices, the set G(de, e, r)
is globally invariant under the induced action of Gal(K ′/Q) on GLr(K

′). It
follows that this action induces a morphism η : Gal(Q(ζde)/Q) → Aut(G).
The purpose of this section is to show that a slight variation on η satisfies the
properties of theorem 1.2, which implies the weaker theorem 1.1. Actually
we will get a more precise version of 1.2, stating the ι̃ρ equivariance of some
models, which gives also theorem 1.5.

For i ∈ Z prime to de, we denote by si ∈ Gal(Q(ζde)/Q) the element
defined by si(ζde) = ζi

de.

3.1. Dihedral groups. The group G(e, e, 2) is generated by

t =

(
0 ζe

ζ−1
e 0

)

, s =

(
0 1
1 0

)
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with relations s2 = t2 = 1, (ts)e = 1 (this is the usual presentation of the
dihedral group of order 2e). For i prime to e we have η(si)(s) = s and
η(si)(t) = (ts)is. In particular η(si)(ts) = (ts)i. We may also check that for
any x ∈ G we have η(s−i)(x) = sη(si)(x)s.

Recall that K = Q(ζe) and K ′ = Q(ζe + ζ−1
e ). It follows that the

quotient Γ′ = Gal(K ′/Q) → Γ = Gal(K/Q) is obtained by identifying
si and s−i, thus the above computations show that the composed morphism

Γ′ η−→ Aut(G) → Out(G) factors through Γ, leading to the following com-
mutative diagram where we have written ι̃ for η.

Γ′ � �
ι̃

//

##F

F

F

F

F

F

F

F

F

����

Aut(G)

����
Γ

ι
// Out(G)

The maps ι̃ and ι above satisfy the hypotheses of theorems 1.1 and 1.2.
We note that the above reflection representation is actually ι̃-equivariant,

thus we have property 1.5 for the reflection representation.
It is clear that 1.1 and 1.2 hold for the linear characters of G, because

they take values in Q. The remaining irreducible representations of G have
a model of the form

t 7→
(

0 ζr
e

ζ−r
e 0

)

, s 7→
(

0 1
1 0

)

, ts 7→
(

ζr
e 0
0 ζ−r

e

)

for some r, and are determined up to isomorphism by the value of ζr
e + ζ−r

e ,
so 1.1, 1.2 and 1.5 also hold for them.

Construction of ι. We will now determine when it is possible to take
K ′ = K. It is classical that the short exact sequence

1→ Gal(Q(ζe)/Q(ζe + ζ−1
e ))→ Gal(Q(ζe)/Q)→ Gal(Q(ζe + ζ−1

e )/Q)→ 1

splits precisely when Q(ζe) contains a quadratic imaginary extension of Q.
This is the case if and only if 4|e or there exists an odd prime factor of e
congruent to 3 modulo 4. In that case one can define injective morphisms
Γ→ Aut(G) by composition.

Γ′ � �
ι̃

//

����

Aut(G)

����
Γ

>>

ι

;;

ι
// Out(G)

We cannot expect to lift this morphism to Aut(G) in general, as already
shows the example e = 5. In that case, it is easily checked that Γ =
Gal(Q(

√
5)/Q) has order two and that all involutive automorphisms of G

are inner.
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3.2. The case G(d, 1, r). The group G = G(d, 1, r) is generated by the
diagonal matrix t with diagonal entries (ζd, 1, . . . , 1) and the permutation
matrices {s1, . . . , sr−1} corresponding to the transpositions (k, k + 1). We
have η(sα)(t) = tα and η(sα)(sk) = sk.

We show an easy proof of 1.1 and 1.2 for these groups starting from the
case r = 2. Then G has order 2d2, and its irreducible representations have
dimension 1 and 2. The case of linear characters is an immediate check.
The 2-dimensional representations are given, for ζ1, ζ2 ∈ µd, ζ1 6= ζ2, by the
model

ρζ1,ζ2(t) =

(
ζ1 0
0 ζ2

)

ρζ1,ζ2(s1) =

(
0 1
1 0

)

It is readily checked that

ρζ1,ζ2 ◦ η(sα) = sα ◦ ρζ1,ζ2 = ρζα
1 ,ζα

2

and this shows theorems 1.1, 1.2 for the groups G(d, 1, 2) by taking K ′ = K
and ι̃ = η. The first equality in the above formula shows also that the model
is η-equivariant, giving thus 1.5.

Theorems 1.1 and 1.2 are then easily deduced from this for the groups
G(d, 1, r). This comes from the fact that, for r ≥ 3, each irreducible repre-
sentation of G(d, 1, r) is determined up to isomorphism by its restriction to
the parabolic subgroup G(d, 1, r − 1) (see e.g. [ArKo] corollary 3.12).

We will give a proof of 1.5 for G(d, 1, r) in the same spirit in 7.2. But in
the next section we will more constructively give explicit models which are
are ι̃ρ-equivariant for a suitable ι̃ρ.

3.3. The general case G(de, e, r). We recall from [Ar] and [ArKo] explicit
models for the irreducible representations of G(de, 1, r) and G(de, e, r). Let
L be the set of de-tuples λ = (λ0, . . . , λde−1) of partitions with total size
r. We denote by T (λ) the set of standard tableaux of shape λ, that is
the set of tuples T = (T0, . . . , Tde−1) such that Ti is a filling of the Young
diagram of λi with numbers in [1, r], with the conditions that each of these
numbers appear (exactly once) in one of the filled diagrams, and that they
are increasing across the rows and columns of each Ti. For m ∈ [1, r] we let
T(m) = i if m is placed in Ti.

To λ ∈ L we associate the Q-vector space V 0(λ) of basis T (λ), and
define V (λ) = V 0(λ) ⊗ Q(ζde). Explicit formulas in [ArKo] describe a
representation ρλ of G(de, 1, r) over V (λ), and the ρλ provide a complete
set of representatives for the irreducible representations of G(de, 1, r) (see
[ArKo] corollary 3.14). We recall from [ArKo] the following facts :

• If T = (T0, . . . , Tde−1) then ρλ(t)T = ζ
T(1)
de T.

• The matrices ρλ(si) for 1 ≤ i ≤ n−1 are rational in the basis T (λ),
thus belong to GL(V 0(λ)).

From the formulas η(sα)(t) = tα and η(sα)(sk) = sk and the above facts, it
is clear that these models over Q(ζde) satisfy theorem 1.2 by taking ι̃ = η;



GALOIS AUTOMORPHISMS 7

actually, these computations show that the model ρλ is ι̃-equivariant, which
gives theorem 1.5.

For analysis of the restriction of ρλ to G(de, e, r), we need to be more
explicit on two points.
• We describe precisely ρλ(si): given a tuple of tableaux T, let Ti↔i+1 be
the tuple obtained by exchanging the numbers i and i + 1 in T when this is
still a tuple of standard tableaux, and 0 otherwise (this last case will only
occur when the numbers i and i+1 occur in the same tableau and on either
the same line or the same column). Then, if i and i + 1 occur in the same
tableau, define their axial distance a(i, i+1) to be the distance between the
diagonals where they occur (more precisely, if i occurs at coordinates i0, i1
and i + 1 at coordinates j0, j1 we set a(i, i + 1) = (i0 − i1) − (j0 − j1)). It
is clear that for a standard tableau we always have a(i, i + 1) 6= 0. Finally,
take the convention that when i and i+1 do not occur in the same tableau,
then a(i, i + 1) =∞ so that 1/a(i, i + 1) = 0. Then the formula is:

(3.1) ρλ(si)T =
1

a(i, i + 1)
T + (1 +

1

a(i, i + 1)
)Ti↔i+1

• Given λ, we describe the partition tuple sα(λ) such that sα ◦ ρλ ≃ ρ
sα(λ).

It is given by sα(λ) = (λ0, λα, λ2α, . . . , λ(de−1)α). If we define the operator
Σα : T (λ)→ T (sα(λ)) by Σα(T ) = (T0, Tα, T2α, . . . , T(de−1)α), we have more
precisely Σα ◦ sα ◦ ρλ = ρ

sα(λ) ◦ Σα.
We now look at the group G(de, e, r). It is the normal subgroup of index

e generated by te, st
1, s1, . . . , sr; the quotient is cyclic, generated by t. Let

χ be the generator of the group of linear characters of the quotient which
maps t to ζe. From the formulae for the action of t and si, it is easy
to find the tuple σ(λ) such that χ ⊗ ρλ ≃ ρσ(λ); it is given by σ(λ) =
(λd, λd+1, . . . , λd+de−1) (where the indices are taken (mod de)). Let Cλ be
the subgroup of 〈σ〉 which stabilizes λ, and let σb be its generator. By
Clifford theory, the representation ρλ restricts to G(de, e, r) as the sum of
#Cλ distinct irreducible representations.

We can actually define an operator S on V (λ) associated to σb whose
eigenspaces will be the irreducible constituents. For T = (T0, . . . , Tde−1) we
set S(T) = (Tbd, Tbd+1, . . . , Tbd+de−1). Since σb(λ) = λ, this is another tuple
of tableaux of shape λ. It is easy to check that S commutes to ρλ(si) and
to ρλ(st

1), and that S ◦ ρλ(t) = ζb
eρλ(t) ◦ S. It follows that S commutes

with the action of G(de, e, r) and its eigenspaces V (λ, ω) = Ker(S − ω) for
ω ∈ µ#Cλ

afford irreducible representations of G(de, e, r). We denote by
ρλ,ω the representation afforded by V (λ, ω); it is clear that

pω :=
1

#Cλ

#Cλ−1
∑

i=0

ω−iSi

is the G(de, e, r)-invariant projector on V (λ, ω).
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From this we get, if we denote χλ,ω the character of ρλ,ω:

χλ,ω(g) =
1

#Cλ

#Cλ−1
∑

i=0

ω−i Trace(ρλ(g)Si).

We get then, using that the matrix S is rational in our chosen basis of V (λ):

sα(χλ,ω(g)) =
1

#Cλ

#Cλ−1
∑

i=0

sα(ω)−i Trace(sα(ρλ(g))Si).

From this we get, if we write Sλ for S to keep track where it acts:

sα(χλ,ω(g)) =
1

#Cλ

#Cλ−1
∑

i=0

ω−iα Trace(Σ−1
α ρ

sα(λ)(g)ΣαSi
λ).

Now, it is easy to check that ΣαSλΣ−1
α = Sα

sα(λ), so

sα(χλ,ω(g)) =
1

#Cλ

#Cλ−1
∑

i=0

ω−iα Trace(ρ
sα(λ)(g)Siα

sα(λ)) = χ
sα(λ),ω(g).

While we have by a similar computation

χλ,ω(ι̃(sα)(g)) =
1

#Cλ

#Cλ−1
∑

i=0

ω−i Trace(sα(ρλ(g))Si
λ)

=
1

#Cλ

#Cλ−1
∑

i=0

ω−i Trace(ρ
sα(λ)(g)Siα

sα(λ))

= χ
sα(λ),sα

−1(ω)(g).

We will now make similar computations at the level of models. We first
recall Ariki’s models (cf. [Ar, section 2]), and then introduce a simpler
one more suited to computations. Ariki chooses a basis of V (λ, ω) given
by the pω(T), where he chooses for T representatives of the S-orbits on
T given by the subset T0 of tuples of tableaux which satisfy T(1) < bd.
Setting T(ω) = pω(T), we then get formulas for the action of the generators

of G(de, e, r) on the basis {T(ω)}T∈T0 . We will write θ = ζb
e to simplify

notations. Using that ρλ(t)pω = pωθρλ(t), we get ρλ(t)T(ω) = ζ
T(1)
de T(ωθ)

from which we get

ρλ,ω(te)T(ω) = ζ
T(1)
d T(ω).

To write the formula for si, first note that if T ∈ T0 then Ti↔i+1 is not in

general in T0 when i = 1. We have to take T′
1↔2 = S⌊T(2)

bd
⌋T1↔2 to get an

element of T0. Using that pω(T′
1↔2) = ω⌊T(2)

bd
⌋pω(T1↔2), we get for i > 1

ρλ,ω(si)T
(ω) =

1

a(i, i + 1)
T(ω) + (1 +

1

a(i, i + 1)
)T

(ω)
i↔i+1.
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and

ρλ,ω(s1)T
(ω) =

1

a(1, 2)
T(ω) + (1 +

1

a(1, 2)
)ω−⌊T(2)

bd
⌋T′(ω)

1↔2.

Finally, using the above formulas we get

ρλ,ω(st
1)T

(ω) = ζ
T(1)−T(2)
de ρλ,ω(s1)T

(ω).

We now introduce a model which does not depend on a choice of repre-
sentatives T0, using the equality pωθ−1 ◦ρλ(g) = pωρλ(Ad t(g)) which implies
χλ,θi(g) = χλ,1(Ad(t−i)g). We choose the same model as Ariki of ρλ,1, ex-
cept that, as the image by p1 of a tuple T is the same as that of all elements
of the same S-orbit, we take as basis elements the averages of S-orbits.
We denote by (T) the average of the S-orbit of T. We thus get a basis
{(T)}(T)∈T (λ)/S of V (λ, 1). We take the same basis for V (λ, θi) and define

ρλ,θi(g) := ρλ,1(Ad(t)−ig). We need to record the following formulas for
ρλ,1:

(3.2)

ρλ,1(t
e)(T) = ζ

T(1)
d (T),

ρλ,1(si)(T) =
1

a(i, i + 1)
(T) + (1 +

1

a(i, i + 1)
)(Ti↔i+1) for any i

ρλ,1(s
tk

1 )(T) = ζ
k(T(1)−T(2))
de ρλ,1(s1)(T).

(note that the above formulas make sense since both ζ
T(1)
d and ζ

T(1)−T(2)
de

are constant on a given S-orbit). It becomes then a simple matter to check
that

sα ◦ ρλ,θi = ρλ,θi ◦ Ad ti(1−α) ◦ η(sα) = ρλ,θi ◦Ad ti ◦ η(sα) ◦ Ad t−i

(this formula is obvious for the generators t and si where i 6= 1. It is thus

sufficient to check it for stk
1 ; one uses the above formulas and the fact that

ρλ,1(s1) is a rational matrix). For any i we define ι̃ρ
λ,θi

: Γ → Aut(G) by

ι̃ρ
λ,θi

(sα) = Ad ti ◦ η(sα) ◦ Ad t−i. The formula above becomes sα ◦ ρλ,θi =

ρλ,θi ◦ ι̃ρ
λ,θi

(sα), i.e. that ρλ,θi is ι̃ρ
λ,θi

-equivariant, which proves 1.2 and

theorem 1.5.

4. Reflection representations

Before going on to prove 1.2 for exceptional groups, we use the previous
results to show proposition 1.4. By a reflection representation of a reflection
group G, we mean a faithful representation such that the image of a reflection
of G is a reflection.

Theorem 4.1. Let G ⊂ GL(V ) be an irreducible complex reflection group,
where V is a vector space over the field of definition K of G. Then the
reflection representations of G are the transformed of V by the action of
Gal(K/Q).
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Proof. The theorem is proved by a computer check for the exceptional re-
flection groups, by looking at the character tables. Both the action of the
Galois group, and which representations are faithful and send reflections to
reflections are readily seen from the character tables.

We now look at the groups G(de, e, r). We first look at the case e = 1.
The result is clear if G is cyclic so we assume r > 1, and use the notations
of section 3.3.

Let us determine when ρλ(t) is a reflection. First, notice that there is
only one tableau corresponding to a given young diagram and with a given
content if and only if the diagram is a column or a line. For a partition λ
we denote by |λ| the size of λ (the sum of the lengths of its parts). Since

T ∈ T (λ) are eigenvectors of ρλ(t) with eigenvalue ζ
T(1)
de , there must be

exactly one T ∈ T (λ) such that T(1) 6= 0. This means that there must
be exactly one i 6= 0 such that |λi| 6= 0, with a Young diagram a line or a
column. We must also have that λ0 is a line or a column; if |λ0| = 0 then
the representation is of dimension 1 and cannot be faithful since r > 1. Also
if |λi| > 1 then r ≥ 3 and there are at least two T such that T(1) = i. So
we must have λi = {1}. Finally, note that i must be prime to de otherwise
ρλ is not faithful (since ρλ(t) does not have order de). To summarize, we
have λ0 = {r − 1} or {1r−1} and λi = {1} for some i prime to de.

Let us now analyze when ρλ(si) is a reflection (or equivalently all ρλ(si)
for i = 1, . . . , r−1 are reflections, since they are conjugate). The formula 3.1
shows that ρλ(si) in the basis T (λ) is block-diagonal, with diagonal blocks
indexed by the basis elements T and Ti↔i+1, which are thus of size 1 when
Ti↔i+1 = 0 and of size 2 otherwise.

(i) If Ti↔i+1 6= 0 the corresponding block is

(
1

a(i,i+1) 1 + 1
a(i,i+1)

1− 1
a(i,i+1)

−1
a(i,i+1)

)

whose eigenvalues are 1 and −1.
(ii) If Ti↔i+1 = 0, then i and i + 1 are in the same tableau, and in the

same line or column. We have that T is an eigenvector of ρλ(si),
for the eigenvalue 1

a(i,i+1) = 1 when i and i + 1 are in the same line

and 1
a(i,i+1) = −1 when i and i + 1 are in the same column.

For ρλ(si) to be a reflection there cannot be more than two j with |λj| 6= 0
otherwise case (i) would occur more than once (with i and i + 1 in different
tableaux). Similarly, if there are two j such that |λj | 6= 0 then the two
Young diagrams must be lines or columns otherwise case (i) would occur
more than once. Actually, the two diagrams must be lines since if one is a
column of height > 1 then case (ii) with eigenvalue −1 has to occur at least
once. And for ρλ(sr−1) to be a reflection one of the lines has to be of length
1, otherwise by removing the last square of each line we can still fill the rest
in at least two different ways which leads to too many instances of (i).

We now look at the case when only one |λj | 6= 0. The diagram must not
be a line or a column otherwise ρ is not faithful. For i = r − 1 case (i) will
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occur more than once if the diagram has more than two corners. If there
are two corners, when they are removed the rest must be a line or a column;
this means the diagram must be a hook; and the height of the hook has to
be 2 otherwise case (ii) with eigenvalue −1 will occur. Finally if there is one
corner the diagram is a rectangle; this rectangle has to be 2 × 2 otherwise
by removing the corner one would get a diagram with two corners which is
not a hook which would lead to too many eigenvalues −1 for sr−2.

To summarize, we must have i 6= j such that λi = {n− 1} and λj = {1},
or only one i with |λi| 6= 0 with diagram either a hook of height 2 or a 2× 2
square (the last for r = 4).

The above analysis shows that the reflection representations of G(de, 1, r)

are the ρ
λ

(i) for i prime to de, where λ
(i)
0 = {r − 1} and λ

(i)
i = {1}. By the

formula just below 3.1 we have si ◦ ρ
λ

(1) = ρ
λ

(i) which proves the theorem.
Let us look now at G(de, e, r). We first notice that a representation which

is not the restriction of an irreducible representation of G(de, 1, r) is not
faithful. To prove this, we use that the central character of ρλ is given by

ωρλ
(z) = ζ

∑d−1
i=0 i|λi|

de (this can be deduced from the construction of ρλ as
induced from a generalized Young subgroup — see e.g. [Ze, p. 93–106]).
Here z is the generator of the center of G(de, 1, r), which can be identified
to the scalar ζde ∈ GL(Cr). If ρλ restricted to G(de, e, r) is not irreducible,
there is a divisor b of e such that for all i we have λi+de/b = λi (then each λi

occurs b times thus b divides gcd(e, r)). It follows that
∑d−1

i=0 i|λi| is divisible
by b thus ρλ is not faithful on the center. It is not even faithful on the center

of G(de, e, r) since that center is generated by z
e

gcd(e,r) and b still divides the
order of that element.

Thus the representation we are looking at is the restriction to G(de, e, r) of
some ρλ. We use the analysis of when ρλ(si) is a reflection. Notice first that
the representations with only one diagram are not faithful, since by formula
3.2 s1 and st

1 have same image since for any T we have T(1) = T(2). Thus
we are in the case where we have i 6= j such that λi = {n−1} and λj = {1}.
Actually, for the representation to be faithful we must have ρλ(stk

1 ) 6= ρλ(s1)
for any k prime to de, thus T(2)−T(1) must be prime to de, i.e. j− i must
be prime to de.

Analyzing when ρλ(te) is a reflection along the same lines we did for ρλ(t)
we find that j ≡ 0 (mod d). Since ρλ and ρσ(λ) have same restriction to
G(e, e, r) where σ is the “shift” by d as in section 3.3, we may assume j = 0.
Thus we get the same λ and can finish the proof of the theorem in the same
way as in the case G(de, 1, r). �

We now prove 1.4 whose statement we recall.

Corollary 4.2. Let G ⊂ GL(V ) be an irreducible complex reflection group.
Let A be the subgroup of Out(G) which preserves the reflections and let
N be the subgroup induced by NGL(V )(G). For any ρ ∈ Irr(G), we have
A = N ⋊ Im(ιρ).



12 I. MARIN AND J. MICHEL

Proof. First, it is clear that N is normalized by Im(ιρ), since if ν ∈ N is
induced by n ∈ GL(V ) and a = ιρ(γ), then a ◦ ν ◦ a−1 is the element of N
induced by γ(n).

We then show that N and Im(ιρ) meet trivially. Let χ be the character
of G on V . If a ∈ N , then for any g ∈ G, we have χ(a(g)) = χ(g); while
if γ ∈ Γ − {Id}, since K is the field generated by the values of χ, there is
g ∈ G such that γ(χ(g)) = χ(ιρ(γ)(g)) 6= χ(g).

Let now a ∈ A be any element. Then if ρ0 is the representation of G given
by V , then ρ0◦a is another reflection representation. Thus by 4.1 there exists
b ∈ Im(ιρ) such that ρ0 ◦ a ◦ b ≃ ρ0. Thus there is n ∈ GL(V ) such that for
any g ∈ G we have nρ0(a(b(g)))n−1 = ρ0(g). Thus n ∈ NGL(V )(G) q.e.d. �

We note that, in accordance with the above corollary, the various mor-
phisms ι̃ρ

λ,θi
for the groups G(de, e, r) differ by an element of N . Indeed

they are conjugate by a power of Ad t which is an element of N .

5. Exceptional groups

To verify 1.2 for the exceptional reflection group, we have used the GAP

package CHEVIE(see [CHEVIE]), which contains information about them,
including:

• Their realization via a permutation representation (on a set of
“roots” in V ).
• Their character table.

The character tables allow us to determine the permutation of Irr(G)
effected by an element of Gal(K/Q). The method we have used to check
1.1 is to compute the group of outer automorphisms of G which preserve
the set of reflections, and then to find a subgroup which induces the same
permutation group of Irr(G) as Gal(K/Q).

To compute automorphisms, we use a presentation for G, by means of a
diagram (see [BMR] and [BM]); if S is the generating set for this presenta-
tion, we enumerate up to inner automorphisms all tuples of reflections of G
which satisfy the relations for G, and generate G.

To find directly the orbits of G on the tuples of reflections is a too large
computation for the larger groups, such as G34 which has about 4.107 el-
ements; thus we use a recursive process: we choose the image of the first
generator s (which amounts to choosing a representative for each orbit of G
on the reflections); then we find the CG(s)-orbits of tuples which satisfy the
relations for S−{s} (by a recursive process) and then select those that have
the required relations with s; and finally weed out the tuples which do not
generate G. This allows us to find the subgroup A of outer automorphisms
which preserve the set of reflections in at most a few hours even for the
largest groups.

To find the image of Γ in A is rather easy since for the exceptional groups

the morphism Γ
ι−→ A is either surjective or has an image of index 2 (the
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last occurs exactly for G5, G7 and G28 = F4, which, in agreement with
corollary 4.2, are also the only exceptional groups where NGL(V )(G) induces
non-inner automorphisms; in these cases, NGL(V )(G) induces respectively

the automorphism (s, t) 7→ (t, s), the automorphism (s, t, u) 7→ (s, u−1, t−1),
the diagram automorphism of F4).

To check 1.2, we must lift ι to the group Aut(G), that is find representa-
tives of the image of ι which satisfy the relations for Γ. Since Γ is an abelian
2-group, these relations are order relations, plus commutation relations.

Few representatives of a given automorphism turn out to have the right
order, so we first compute all representatives which have the right order, and
then it is an easy job to pick among them elements which commute (this
procedure of course fails for G27 for which we must construct ι̃ rather than
ι; in this case we take K ′ = Q(ζ15); the group Gal(K ′/Q) is generated by c

and s7, this last element being of order 4 (it is of order 2 in Gal(K/Q)) ; we
can map these to automorphisms of order 2 and 4 respectively commuting
to each other — but it is impossible to map s7 to an automorphism of order
2).

The computational problem we find in this procedure is to compute the
product of two automorphisms; since an automorphism is represented by
the image of S, for this we need an expression as product of the generators
of the image of S. For all groups but G34 this was solved by enumerating all
elements of G by standard permutation group algorithms using a base and
a strong generating set. For G34 we managed by only considering automor-
phisms which extend the one for G33; since the normalizer of G33 in G34 is
G33 times the center of G34, such automorphisms map the last generator of
G34 to a conjugate by G33, which makes the computation feasible.

Table 1 summarizes our results for the exceptional reflection groups; it
gives the diagram for G, and then gives the value of K and describes ι in
terms of the generators S given by the diagram.

The nodes of the diagrams are labeled by the elements of S; we give to
these elements names in the list s, t, u, v, w, x in that order. A number inside
the node gives the order of the corresponding reflection when it is not 2. To
express the braid relations, we use the conventions for Coxeter diagrams:
two nodes which are not connected correspond to commuting reflections. A
single line connecting two nodes s and t corresponds to the relation sts = tst,
a double line to stst = tsts, a triple line to ststst = tststs, and a line labeled
with the number n corresponds to a braid relation stst · · ·

︸ ︷︷ ︸

n terms

= tsts · · ·
︸ ︷︷ ︸

n terms

.

These conventions are extended by additional ones; a circle joining 3 nodes
s, t and u, with the number n inside (when there is no number inside, 3 is
to be understood) corresponds to a clockwise circular relation stust · · ·

︸ ︷︷ ︸

n terms

=

tustu · · ·
︸ ︷︷ ︸

n terms

= ustus · · ·
︸ ︷︷ ︸

n terms

; for instance, the relation for G7, G11, G19 and the

generators s, t, u of G31 is stu = tus = ust. Similarly the 6 inside the
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triangle for G33 and G34 means that in addition to length 3 braid relations
implied by the sides of the triangle, there is the circular relation tuvtuv =
uvtuvt = vtuvtu.

The double line in G29 expresses a length 4 braid relation between v and
ut: vutvut = utvutv. The triangle symbol for G24 and G27 corresponds to
the relation s(uts)2 = (stu)2t. Finally, the groups G13 and G15 have more
complicated relations which are spelled out below the diagram.

The groups G28 = F4, G35 = E6, G36 = E7 and G37 = E8, which are
rational, do not appear in the table since our theorems are trivial for them.

The map ι is specified by giving for generators γ of Γ the tuple ι(γ)(S)
(where S is in the order s, t, u, v, w, x). The elements of Γ are denoted by c

for complex conjugation and by si for the following element: let Q(ζn) be
the smallest cyclotomic field containing K; then si is the restriction to K of
the Galois automorphism of Q(ζn) which sends ζn to ζi

n.

Table 1: The morphism ι̃

Group Diagram Field ι̃

G4 ©
s
3 ©

t
3 Q(ζ3) c 7→ (s−1, st−1)

G5 ©
s
3 ©

t
3 Q(ζ3) c 7→ (s−1, st−1)

G6 ©
s

©
t
3 Q(ζ12)

c 7→ (s−1, t−1),

s7 7→ (st−1st, t)

G7 s© n©3 t

©3 u
Q(ζ12)

c 7→ (s−1, t−1, (u−1)s),

s7 7→ (sut, t, u)

G8 ©
s
4 ©

t
4 Q(i) c 7→ (s−1, t−1)

G9 ©
s

©
t
4 Q(ζ8)

c 7→ (s−1, t−1),

s5 7→ (stts, t)

G10 ©
s
3 ©

t
4 Q(ζ12)

c 7→ ((s−1)t
−1

, t−1)

s7 7→ (sttss, t−1)

G11 s© n©3 t

©4 u
Q(ζ24)

c 7→ (s−1, t−1, (u−1)s),

s13 7→ (stsut, t, u),

s19 7→ (s, t, (u−1)tu−1s)

G12 s© n4 ©t

©u
Q(
√
−2) c 7→ (t, s, u)
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Table 1: The morphism ι̃

Group Diagram Field ι̃

G13

n
s© n© t

© u
5 4

tust = ustu,

stust = ustus

Q(ζ8)
c 7→ (s, u, ts),

s3 7→ (s, utu, usu)

G14 ©
s

8 ©
t
3 Q(ζ3,

√
−2)

c 7→ (s−1, (t−1)s),

s7 7→ (s, tsttst)

G15

u©
5

�
�
©s

©3 t

stu = ust,

tusts = ustst

Q(ζ24)
c 7→ (s, t−1, us),

s13 7→ (susu, t, u),

s19 7→ (s, t, usus)

G16 ©
s
5 ©

t
5 Q(ζ5) s2 7→ (s2, (t2)s

2t−1s)

G17 ©
s

©
t
5 Q(ζ20)

c 7→ (s−1, t−1),

s7 7→ (st−1st2 , t2)

G18 ©
s
3 ©

t
5 Q(ζ15)

c 7→ (s−1, t−1),

s7 7→ (st−1s, t2)

G19 s© n©3 t

©5 u
Q(ζ60)

c 7→ (st, t−1, u−1),

s7 7→ (sts, tst
−1

, u2),

s41 7→ (s, (t−1)(ut)su , u)

G20 ©
s
3

5 ©
t
3 Q(ζ3,

√
5)

c 7→ (s−1, t−1),

s7 7→ (s, s(ts−1)2)

G21 ©
s

10 ©
t
3 Q(ζ12,

√
5)

c 7→ (s−1, t−1),

s7 7→ (s(t−1)st
, t),

s13 7→ (st−1sts , t)

G22 s© n5 ©t

©u
Q(i,
√

5)
c 7→ (u, t, s),

s7 7→ (ust, uts, tus)

G23 = H3 ©
s

5 ©
t
©
u

Q(
√

5) s2 7→ (utsts, u, t)
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Table 1: The morphism ι̃

Group Diagram Field ι̃

G24 ©
s

△©
t

�
©u

�� Q(
√
−7) c 7→ (u, t, s)

G25 ©
s
3 ©

t
3 ©

u
3 Q(ζ3) c 7→ (s−1, t−1, u−1)

G26 ©
s

©
t
3 ©

u
3 Q(ζ3) c 7→ (s−1, t−1, u−1)

G27 ©
s

△©
t

5�
©u

� Q(ζ3,
√

5)

K ′ = Q(ζ15)

c 7→ (stut, t, u),

s7 7→ (uts, tu, t)

G29 ©
s
©
t

←−©
u

�
©v

� Q(i) c 7→ (s, t, u, vu)

G30 = H4 ©
s

5©
t
©
u
©
v

Q(
√

5) s2 7→ (utsts, u, t, vutstuststuvuts)

G31 ©
v

�
©
s
©
t

n
©
w

©
u� Q(i) c 7→ (u, t, s, w, v)

G32 ©
s
3 ©

t
3 ©

u
3 ©

v
3 Q(ζ3) c 7→ (s−1, t−1, u−1, v−1)

G33 ©
s
©
t

6←−©
v

�
©u

�
©
w

Q(ζ3) c 7→ (w, v, u, t, s)

G34 ©
s
©
t

6←−©
v

�
©u

�
©
w
©
x

Q(ζ3) c 7→ (w, v, u, t, s, xwvtuvwstuvts)

We have some observations to make on table 1. First, the morphism ι̃ is
not unique; often, there are even many different orbits of possible ι̃ up to
inner automorphisms of G. Each time we have chosen one which preserves
a parabolic subgroup, which will be used to construct nice models of the
reflection representation of G in section 7.

This is not always the choice with the simplest formulas. In particular,
for Shephard groups (those which have the same diagram, apart from the
order of the reflections, as a Coxeter group, thus the same braid group as a
Coxeter group), it turns out that it is always possible to find a morphism
which maps the complex conjugation c to the automorphism which sends
each element of S to its inverse. When c does not generate Gal(K/Q), one
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can send s7 to (sts−1
, t−1) for G10 and s2 to (s2, (s2)t

−2s2
) for G16 to get such

a morphism (in the case of G14, s7 can keep the same image as in table 1).
A general explanation for this phenomenon would be desirable.

6. Galois descent

The existence of a model over K globally invariant by Γ = Gal(K/Q) of
a faithful representation of G, namely its reflection representation, enabled
us in the G(de, e, r) case to construct the morphism ι : Γ→ Aut(G).

In this section, we show how by Galois descent, one can conversely try to
construct a globally invariant model for any given irreducible representation
— more precisely we will try to get a ι̃-equivariant model. The possible
obstruction to do so is an element of the Brauer group of K ′ that turns out
to be always trivial except for the group G22.

6.1. Non-abelian Galois cohomology. Recall from [Se] that, if H is a
group acting on the left on a group Q, then a map h 7→ Ah from H to Q
is a cocycle if Ast = Ass(At) for all s, t ∈ H. A particular cocycle, called
the zero cocycle, is given by sending all elements of H to the trivial element
of Q. The set of cocycles is denoted Z1(H,Q). Two cocycles h 7→ Ah and
h 7→ Bh are said to be cohomologous if there exists a ∈ Q such that Bh =
a−1Ahh(a). This defines an equivalence relation on Z1(H,Q) whose set of
equivalence classes is denoted H1(H,Q). The set of cocycles cohomologous
to the zero cocycle is called the set of coboundaries and is denoted B1(H,Q).
If Q is commutative these definitions coincide with those of ordinary group
cohomology.

Application to 1.5. Let ρ : G→ GL(E) where E is a K ′-vector space be
an irreducible representation. Assume we choose a Q-form E = E0 ⊗Q K ′.
This defines an action of Γ′ = Gal(K ′/Q) on E and by 1.1 for γ ∈ Γ′ we have
γ ◦ ρ ≃ ρ ◦ ι̃(γ). This means that that there exists Aγ ∈ GL(E) such that
for any g ∈ G we have Aγγ(ρ(g))A−1

γ = ρ(ι̃(γ)(g)). Since ρ is absolutely
irreducible, by Schur’s lemma, Aγ gives a well-defined element of PGL(E).
It is immediate to check that γ 7→ Aγ is in a fact a cocycle, that is, an
element of Z1(Γ′,PGL(E)).

Assume now that ρ has a globally invariant model, of the form g 7→
aρ(g)a−1; this means that there exists a map ι′ : Γ′ → Aut(G) such that
γ(aρ(g)a−1) = aρ(ι′(γ)(g))a−1, or in other terms that the model is ι′-
equivariant for some ι′ : Γ′ → Aut(G). If ι′ = ι̃ we get the equality in
PGL(E) that a−1γ(a) = Aγ , that is that {γ 7→ Aγ} ∈ B1(Γ′,PGL(E)).
Thus the obstruction to the existence of ι̃-equivariant model is an element
of H1(Γ′,PGL(E)).

In practice to apply this procedure we encounter another problem which
turns out to involve also Galois cohomology: although we know that any
ρ has a model over K ′ (even K), sometimes (e.g. when using the CHEVIE

data) we are not given such a model but a model E = E0 ⊗K ′ L over some
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Galois extension L of K ′. Again the fact that for γ ∈ Π = Gal(L/K ′)
we have γ ◦ ρ ≃ ρ means that we can find an intertwiner Aγ such that
Aγγ(ρ(g))A−1

γ = ρ(g), which is an element of Z1(Π,PGL(E)); and again the
existence of a model over K ′ is equivalent to this cocycle to be a coboundary.

We will now give an algorithm to check the vanishing of a cocycle of a
Galois group into the projective linear group.

6.2. Brauer groups. In this subsection and the next one, K0 ⊂ K will de-
note an arbitrary Galois extension of number fields. Let Γ = Gal(K/K0) and
let Br(K/K0) = H2(Γ,K×) be the Brauer group. Let E = E0 ⊗K0 K be a
K0-form of a finite dimensional K-vector space E. The short exact sequence
1 → K× → GL(E) → PGL(E) → 1 gives rise to a Galois cohomology long
exact sequence (of pointed sets; see [Se, prop. 2 p. 133]):

1→ H0(Γ,K×)→ H0(Γ,GL(E))→ H0(Γ,PGL(E))→ H1(Γ,K×)→
H1(Γ,GL(E))→ H1(Γ,PGL(E))→ H2(Γ,K×)

and in particular a coboundary operator H1(Γ,PGL(E)) → H2(Γ,K×).
This map sends {γ 7→ Aγ} ∈ H1(Γ,PGL(E)) to the class of (γ, τ) 7→
Ãγγ(Ãτ )Ã−1

γτ in H2(Γ,K×), where, for all γ ∈ Γ, Ãγ is a representative
of Aγ in GL(E). This definition does not depend on the choice of the rep-

resentatives Ãγ and this map is known to be injective (this uses the version
of Hilbert’s theorem 90 which says that H1(Γ,GL(E)) is trivial; see [Se] ch.
X proposition 8 and proposition 9).

In the important case where K is a cyclic extension of degree n of K0, as-
sume Γ = 〈γ〉 and let N : K → K0 be the norm map x 7→ xγ(x) . . . γn−1(x).
Then an explicit isomorphism from H2(Γ,K×) to the 0-th Tate cohomology

group Ĥ0(Γ,K×) = K×
0 /NK× is given by the Nakayama map

c 7→
n−1∏

k=0

c(γk, γ)

hence {γ 7→ Aγ} is sent to the class of Ãγγ(Ãγ) . . . γn−1(Ãγ) (a scalar matrix
identified to an element of K×

0 ) in K×
0 /NK×.

It follows that, when K is a cyclic extension of K0, the vanishing of
c ∈ H2(Γ,K×) = Br(K/K0) boils down to the verification that some element
of K×

0 is a norm of an element of K. When K is an abelian extension of
K0, we can always reduce to this case by induction on [K : K0], by the
inflation-restriction exact sequence for Brauer groups. Indeed, choosing a
cyclic subgroup Γ′ of Γ defines a Galois sub-extension K1 = KΓ′

of K such
that Gal(K/K1) is cyclic. We then have the exact sequence (see [Se] ch. X
§4 proposition 6)

0→ Br(K1/K0)→ Br(K/K0)→ Br(K/K1)
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and we may follow the following procedure : first check that the image
in Br(K/K1) is zero, and then start again with the induced element in
Br(K1/K0), until K1/K0 itself becomes a cyclic extension.

We finally mention the following general result.

Proposition 6.1. If #Γ is prime to dim(E), then H1(Γ,PGL(E)) = 0

Proof. Let N = dim(E). Let c ∈ H1(Γ,PGL(E)) and let A be the central
simple algebra associated to it. Let e be its exponent, that is the order of
its class [A] in the Brauer group of K0. Since A ⊗ K ≃ MN (K) we have
[A][K] = 0 in the Brauer group hence e|[K : K0] and e|#Γ (see [Se] X §4
ex. 2). On the other hand, A ≃Mr(D) with D a skew field whose center is
K0 and dimK0 A = N2. It follows that N2 = [A : K0] = r2[D : K0]. Now
[D : K0] = m2 for some integer m (called the index of D). It is a classical
fact that the exponent divides the index ([Se] X §5 ex. 3a), thus e|N , and
e = 1 since N and #Γ are coprime. The conclusion follows from the fact
that H1(Γ,PGL(E)) embeds in the Brauer group of K0. �

Explicit computations. In practice (e.g. to get an explicit model over
a smaller field of a representation), it is not enough to solve the problem
whether a cocycle {γ 7→ Aγ} ∈ Z1(Γ,PGL(E)) is a coboundary. We want
an explicit element M ∈ PGL(E) such that Aγ = M−1γ(M) for all γ ∈ Γ.
If we can get a preimage (Bγ) of (Aγ) in Z1(Γ,GL(E)), then by Hilbert’s

Theorem 90 this cocycle is a coboundary, meaning that there exist M̃ ∈
GL(E) such that Bγ = M̃−1γ(M̃ ) for all γ ∈ Γ. A rather constructive proof
of this theorem (see e.g. [Se] ch. X proposition 3) goes as follows. For all
C ∈ End(E), the expression

X =
∑

γ∈Γ

Bγγ(C)

satisfies γ(X) = B−1
γ X. Because K has characteristic zero, general argu-

ments imply that “many” C ∈ K exist such that X is invertible. If this is
the case, then Bγ = Xγ(X)−1 thus M̃ = X−1 is the desired solution. For
instance, if Gal(K/K0) = {1, γ} has order 2 with generator γ0, then the
condition on C is that −Cγ(C) is not an eigenvalue for B−1

Id Bγ0 .
In the case where K is a cyclic extension of K0, the study of the previous

section shows that we can always lift a coboundary to a cocycle {γ 7→ Bγ}
for GL(E). Indeed, if Γ = 〈γ〉 we have seen that Ãγγ(Ãγ) . . . γn−1(Ãγ) =

N(λ)Id for some λ ∈ K× so that Bγ = λ−1Ãγ belongs to Z1(Γ,GL(E)) (it

is easy to check that the equation Id = Ãγ . . . γn−1(Ãγ) is necessary and

sufficient for Ãγi = Ãγ . . . γi−1(Ãγ) to define a cocycle of 〈γ〉).

6.3. An algorithm to check 1.5. Let ρ : G → GL(E) be an irreducible
representation of G over the K ′-vector space E for which we would like to get
a ι̃-equivariant model. When K ′/Q is cyclic, we found an explicit necessary
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and sufficient condition for a class in H1(Γ′,PGL(E)) to vanish and thus to
give an equivariant model.

In general we know that K ′/Q is an abelian extension. We will show how
to reduce by induction to the case of a cyclic extension, by making explicit
the inflation-restriction exact sequence in this case.

Choose a tower of (Galois) extensions Q = K0 ⊂ K1 ⊂ · · · ⊂ Km = K ′

such that Kr/Kr−1 is a cyclic extension for all 1 ≤ r ≤ m. We fix a Q-form
E0 of E and a basis of E0 so that we identify E0 with Qn and E with K ′n.

Assume that, for some r ∈ [1,m] we have a model ρr : G → GL(E) of
ρ such that γ ◦ ρ = ρ ◦ ι(γ) for all γ ∈ Gal(K ′/Kr). We will show how to
decrease r.

Let {τ 7→ Mτ} ∈ Z1(Gal(K ′/Kr−1),PGL(E)) intertwining τ ◦ ρr and
ρr ◦ ι(τ) for τ ∈ Gal(K ′/Kr−1). For γ in the subgroup Gal(K ′/Kr) we
have Mγ = 1 by the induction hypothesis; we thus have Mτσ = Mτ for
all σ ∈ Gal(K ′/Kr) by the cocycle condition Mτγ = Mττ(Mγ). Hence Mτ

only depends on the class of τ in Gal(Kr/Kr−1), and lies in PGLn(Kr)
because Mτ = Mτγ = Mγτ = Mγγ(Mτ ) = γ(Mτ ) for all γ ∈ Gal(K ′/Kr). It
follow that {τ 7→Mτ} defines an element of Z1(Gal(Kr/Kr−1),PGLn(Kr));
we are thus reduced to a cyclic case; assuming we can solve it we find
X ∈ GLn(Kr) such that Mτ = Xτ(X)−1 for all τ ∈ Gal(K ′/Kr−1). Then
ρr−1(g) = Xρr(g)X−1 is a model of ρ such that γ ◦ρr−1 = ρr−1 ◦ ι(γ) for all
γ ∈ Gal(K ′/Kr−1).

We could successfully carry out this algorithm for all representations of
exceptional groups for which we had a model. However, with the exception
of the cyclic case, this procedure does not lead to necessary conditions. Note
however the following observation:

Proposition 6.2. Assume G to be an exceptional irreducible complex re-
flection group. Then any odd-dimensional irreducible representation has a
globally invariant model over K ′.

Proof. A case-by-case analysis shows that [K ′ : Q] is always a power of 2.
The result is then an immediate consequence of 6.1. �

7. Invariant models

We will now prove theorem 1.5 using the results of the previous sections
and multiplicity one property of tensor products.

For two representations ρ1, ρ2 of a group G, we will denote (ρ1 | ρ2) the
dimension of the space of intertwiners of ρ1 and ρ2. This coincides with the
usual scalar product of the corresponding characters.

We will make repeated use of the following lemma.

Lemma 7.1. Let G be a finite group and K be a field of characteristic 0.
Let ρ′ be a finite-dimensional representation of G defined over K and let
ρ ∈ Irr(G) be such that (ρ′ | ρ) = 1. Let χ be the character of ρ. Assume
that χ takes values in K. Then ρ admits a model over K and :
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• if γ ∈ Gal(K/Q) and a ∈ Aut(G) satisfy γ ◦ ρ′ = ρ′ ◦ a and γ ◦ χ =
χ ◦ a, then ρ admits a model over K such that γ ◦ ρ = ρ ◦ a.
• if there exists j : Gal(K/Q) → Aut(G) such that γ ◦ ρ′ = ρ′ ◦ j(γ)

and γ ◦ χ = χ ◦ j(γ), then ρ admits a j-equivariant model over K.

Proof. Since ρ is an isotypic component of a ρ′ and has its character over K
it is defined over K ; indeed, the G-equivariant projector

p =
χ(1)

#G

∑

g∈G

χ(g−1)ρ′(g)

on the ρ-isotypic component of ρ′ belongs to EndK(V ). Moreover, if γ ◦χ =
χ ◦ a, we have

γ(p) =
χ(1)

#G

∑

g∈G

χ(a(g)−1)ρ′(a(g)) = p

thus a Q-form V ′ = V ′
0⊗QK induces a Q-form on V = Im p. It follows that

γ ◦ ρ = ρ ◦ a, which proves the last two points. �

7.1. Reflection representations. We now prove theorem 1.5 for the re-
flection representation of exceptional groups, that is the following proposi-
tion.

Proposition 7.2. Let G be an exceptional irreducible complex reflection
different from G22 given by ρ : G →֒ GL(V ) where V is a K-vector space
and K is the field of definition of G. Let K ′ be as in theorem 1.2. Then ρ
has a ι̃ρ-equivariant model over K ′.

Recall that K = K ′ except when G = G27.

Models for reflection representations of 2-dimensional groups from

the braid group. A way to obtain the 2-dimensional representations of the
groups G4 to G22 is by using the following matrices:

s 7→
(

x1
y1+y2

y1y2
− (z1+z2)x2

r

0 x2

)

, t 7→
(

y1 + y2 1/x1

−y1y2x1 0

)

,u 7→
(

0 −r
y1y2x1x2

r z1 + z2

)

where r =
√

x1x2y1y2z1z2. The braid groups of G7, G11 and G19 are iso-
morphic to the same group B, with presentation 〈s, t,u | stu = tus = ust〉;
the above matrices give the 2-dimensional representation of B where the
eigenvalues of s (resp. t, u) are x1, x2 (resp. y1, y2, z1, z2). This represen-
tation factors through the Hecke algebra, the quotient of the group algebra
of B by the relations (s− x0)(s − x1) = 0, (t − y0)(t − y1)(t − y2) = 0 and
∏i=n−1

i=0 (u−zi) = 0 where n = 3 (resp. 4,5) for G7 (resp. G11, G19). In turn
the group algebra of G7 (resp. G11, G19) is the specialization of the Hecke
algebra for xi 7→ (−1)i, yi 7→ ζi

3, zi 7→ ζi
3 (resp. zi 7→ ζi

4, zi 7→ ζi
5); the Hecke

algebras for G4 to G6 are subalgebras of partial specializations of that for
G7 (the same holds for G8 to G15 with respect to G11 and G16 to G22 with
respect to G19): in each case, these algebras are generated by conjugates of
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a part of the generators (or of some power of them); the other generators
are specialized to the group algebra.

For G4, G8 and G16 the Hecke algebra is generated by u and su.
For G5, G10 and G18 it is generated by t and u.
For G6, G9 and G17 it is generated by s and u.
For G14 and G21 it is generated by s and t.
For G12 and G22 it is generated by s, ts and st.
For G20 it is generated by t and st.
For G13 it is generated by u2, s and st.
Finally for G15 it is generated by s, t and u2.

Proof of proposition 7.2. The statement is clear if the rank of G is odd,
by proposition 6.2. Then we may assume that, either G = G34, or that its
rank is 2 or 4. Recall that the groups of rank 2 are numbered G4, . . . , G22.

We started from a model of the reflection representations coming either
from the Hecke algebra as described above, or by root diagrams as considered
in [Cohen]. Then we apply the algorithm of Galois descent; in order to solve
norm equations we used the computer system MAGMA. All equations thus
obtained for the reflection representation were solvable except for G22.

Note that, even when the original model is globally invariant, the induced
morphism η : Γ → Aut(G) does not in general coincide with ι̃ρ. Further-
more, the induced action of η on the isomorphism classes of irreducible
representations of G may also differ from the natural Galois action of Γ, as
shows the second example below.

The models given in table 2 were simplified by the following elementary
observation. For all the images ι̃(Γ) chosen here, it turns out that there is a
generator s such that the subgroup H generated by s is stable under ι̃(Γ).
Lemma 7.1 thus implies that there is a basis of the underlying Q-form of
K2 on which the action of s is diagonal.

Example : the case of G9. Let us start with the model

s 7→
(

0 −ζ11
24

ζ24 0

)

, t 7→
(

i −ζ3

0 1

)

which is defined over Q(ζ24), an extension of degree 2 of K = Q(ζ8). By

Galois descent or directly one finds that conjugating by

(
1 0
0 ζ3

)

yields the

following model over K.

s 7→
(

0 −ζ8

ζ3
8 0

)

, t 7→
(

i −1
0 1

)

We have Γ ≃ Z/2Z × Z/2Z, with three subgroups of order 2 generated
by s−1, s5 and s3. To these three subgroups correspond three intermediate
extensions between Q and K. For each of these extensions, we get a cocycle
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Table 2. Invariant models for G4 to G21

G4 s 7→
(

1 0
0 ζ3

)

, t 7→ 1√
−3

(
−1 ζ3

2 ζ3

)

G5 s 7→
(

1 0
0 ζ3

)

, t 7→ 1√
−3

(
ζ3 ζ3

2 −1

)

G6 s 7→ 1√
3

(
1 1
2 −1

)

, t 7→
(

1 0
0 ζ3

)

G7 s 7→ 1√
3

(
1 1
2 −1

)

, t 7→
(

1 0
0 ζ3

)

, u 7→ 1√
−3

(
ζ3 ζ3

2 −1

)

G8 s 7→
(

1 0
0 i

)

, t 7→ i−1
2

(
−i 1
1 −i

)

G9 s 7→ 1
2

(√
2 2

1 −
√

2

)

, t 7→
(

1 0
0 i

)

G10 s 7→ 1
ζ3(i−1)

(
−i 2i
1
2 1

)

, t 7→
(

1 0
0 i

)

G11 s 7→ C = 1√
6

(
−2 1
2 2

)

, t 7→
(

1 0
0 ζ3

)

, u 7→ ζ3
(i+1)

√
3

(
−2ζ3 ζ3

2 2

)

G12 s 7→ D = 1
2

(
1 1 + 1√

−2

2 +
√
−2 −1

)

, t 7→ D, u 7→
(

1 0
0 −1

)

G13 s 7→
(

1 0
0 −1

)

, t 7→ 1√
2

(
1 −1
−1 −1

)

, u 7→ 1√
2

(
1 −i
i −1

)

G14 s 7→
(

1 0
0 −1

)

, t 7→ ζ2
3
2

(
−1 +

√
−2 1

−1 −1−
√
−2

)

G15 s 7→ C, t 7→
(

1 0
0 ζ3

)

, u 7→ 1√
3

(
1 ζ2

3
2ζ3 −1

)

G16 s 7→
(

1 0
0 ζ5

)

, t 7→ 1√
5

(
1− ζ3

5 ζ4
5 − 1

ζ5 − ζ2
5 ζ5 − ζ3

5

)

G17 s 7→M = i√
5

(
ζ4
5 − ζ5 ζ3

5 − ζ2
5

ζ3
5 − ζ2

5 ζ5 − ζ4
5

)

, t 7→
(

1 0
0 ζ5

)

G18 s 7→ N =
ζ2
3√
5

(
ζ2
5 − ζ4

5 1− ζ4
5

ζ5 − 1 ζ3
5 − ζ5

)

, t 7→
(

1 0
0 ζ5

)

G19 s 7→ N, t 7→M, u 7→
(

1 0
0 ζ5

)

G20 s 7→
(

1 0
0 ζ3

)

, t 7→ ζ2
3

2
√
−15

(
−5−

√
−15 2

10 5−
√
−15

)

G21 s 7→ 1
2
√

3

(

1 +
√

5 −1 + 1√
5

−5 +
√

5 −1−
√

5

)

, t 7→
(

1 0
0 ζ3

)
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sk 7→ Ak ∈ GL2(K), given by the following matrices

A−1 =

(
−i 0
0 1

)

, A5 =

(
−1 −1− i
0 1

)

, A3 =

(
i −1 + i
0 1

)

It turns out that the last step of the algorithm is easy, because these three
cocycles match, so we get in fact an element of Z1(Γ,GL2(K)). In order to
apply Hilbert Theorem 90 we need to find λ ∈ K such that λ + s−1(λ)A1 +
s5(λ)A2 + s3(λ)A3 is invertible ; it happens that λ = 1+ ζ8 + ζ3

8 is a solution
that gives the following invariant model

s 7→ 1

2

(
−1− ζ8 + ζ3

8 1/2 − ζ8 + ζ3
8

2 1 + ζ8 − ζ3
8

)

, t 7→
(

i i−1
2

0 1

)

Finally, we know that the subgroup generated by t is stable by ι̃(Γ). It is
thus possible to diagonalize it by a rational matrix. We get the still invariant
and simpler model

s 7→ 1

2

(√
2 2

1 −
√

2

)

, t 7→
(

1 0
0 i

)

An example for G7. The model ρ of the reflection representation of G7

given by

s 7→
(

1 0
0 −1

)

, t 7→ ζ2
3

(1 + i)

(
−1 −1
i −i

)

, u 7→ ζ2
3

(1 + i)

(
−1 i
−1 −i

)

is globally invariant, giving rise to an homomorphism η : Gal(Q(ζ12)/Q)→
Aut(G7) given by (specifying automorphisms, as in table 1, by the images
of s, t, u) c 7→ (s, u−1, t−1), s7 7→ (s, sus, uts). However, the automorphism
η(c) is not compatible with the action of the complex conjugation on other
characters of G, contrary to the homomorphism ι̃ given in table 1, which
corresponds to the model given in table 2. The existence of this example is
related to the fact that G7 is the only exceptional group such that the image
ι(Γ) is not central in the group A of proposition 1.4

7.2. Proof of 1.5 for exceptional groups. In this section we will deduce
the existence of an ι̃-equivariant model for every irreducible representation
of G from the existence of such a model for the reflection representation ρ0,
by applying lemma 7.1. We will need the following proposition.

Proposition 7.3. If G is of type G(d, 1, r) then, for all distinct ρ1, ρ2 ∈
Irr(G), we have (ρ1 ⊗ ρ0 | ρ2) ≤ 1. This also holds for exceptional groups,
except for G27, G29, G34, and G36 = E7. For these 4 exceptional groups, we
have (ρ1 ⊗ ρ0 | ρ2) ≤ 2 for distinct ρ1, ρ2 ∈ Irr(G).

Proof. The proof for the exceptional groups is a case-by-case computer
check. If G is of type G(d, 1, r) with r ≥ 2, let H denote its natural par-

abolic subgroup of type G(d, 1, r − 1), and ρ1 ∈ Irr(G). Then (IndG
H Id |

ρ0) = (Id | ResH ρ0) = 1 because H is a maximal parabolic subgroup. It
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follows that ρ1 ⊗ ρ0 embeds in ρ1 ⊗ IndG
H Id ≃ IndG

H ResH ρ1. In particular,
for ρ2 ∈ Irr(G) we have

(ρ1 ⊗ ρ0 | ρ2) 6 (IndG
H ResH ρ1 | ρ2) = (ResH ρ1 | ResH ρ2)

so it is sufficient to check that, if ρ1 6= ρ2, then (ResH ρ1 | ResH ρ2) ≤ 1.
This is obvious considering the branching rule (see [Ze, p. 104]). �

Proof of 1.5 for G(d, 1, r) and exceptional groups distinct from

G27, G29 or G34. We already proved that there exists ι̃ : Γ→ Aut(G) such
that

(i) ∀ρ ∈ Irr(G), γ ◦ ρ ≃ ρ ◦ ι(γ).
(ii) ρ0 admits a model such that γ ◦ ρ0 = ρ0 ◦ ι̃(γ).

We want to show that all ρ ∈ Irr(G) admit an ι̃-equivariant model over K,
that is a model over K such that γ ◦ρ = ρ◦ ι̃(γ) for all γ ∈ Γ. This obviously
holds if G is a Weyl group, so we may assume that G is not G36 = E7. First
note that every ρ ∈ Irr(G) embeds in some ρ⊗n

0 for some n, because ρ0 is a
faithful representation of G (cf. [FH, problem 2.37]). It follows that we can
define the level N(ρ) ∈ N of ρ by

N(ρ) = min{n ∈ N | ρ →֒ ρ⊗n
0 }.

In particular, N(ρ) = m + 1 implies that there exists ρ′ ∈ Irr(G) with
N(ρ′) = m such that ρ embeds in ρ′⊗ρ0. By (i) we know that the represen-
tations of level at most 1, that is the trivial representation and ρ0, admit an
equivariant model. We proceed by induction on the level. Assume that all
representations of level m admit an equivariant model, and let ρ ∈ Irr(G)
such that N(ρ) = m + 1. Let ρ′ ∈ Irr(G) of level m such that ρ →֒ ρ′ ⊗ ρ0.
By proposition 7.3 we have (ρ | ρ′ ⊗ ρ0) = 1. Moreover ρ′ ⊗ ρ0 admits an
equivariant model over K because ρ′ and ρ0 do. Then lemma 7.1 implies
that ρ admits an equivariant model over K and we conclude by induction
on the level.

Proof of 1.5 for G27, G29, G34. Let E ⊂ Irr(G) denote the set of excep-
tional (rational) representations described in the introduction. We note that
Id, ρ0 6∈ E . Let us consider the following algorithm.

Algorithm

(i) L← {Id, ρ0}.
(ii) For all ρ′ ∈ L, L′ ← L ∪ {ρ ∈ Irr(G) \ E | (ρ′ ⊗ ρ0 | ρ) = 1}.
(iii) If #L′ > #L, then L← L′ and go to (ii).
(iv) Return L.

The same arguments as above, based on lemma 7.1, show that all repre-
sentations in the subset L of Irr(G) \ E returned by this algorithm admit an
equivariant model over K. Note that this algorithm only uses the character
table of G. It is then enough to check that it returns Irr(G) \ E for G27, G29
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and G34 in order to conclude the proof of the theorem. Indeed, this is the
case if one applies step (ii) five times for G27 and G34, and four for G29.

7.3. The exceptional case of G22. In this case we have K = K ′ =Q(i,
√

5). We start from the following model ρ : G →֒ GL(V ) over the
degree 2 extension K ′′ = Q(ζ20) of K.

s 7→ ζ2
5 − ζ5

ζ20

√
5

(

1 1+
√

5
2

1+
√

5
2 −1

)

, t 7→
(

0 ζ9
20

−ζ20 0

)

, u 7→
(

0 −ζ20

ζ9
20 0

)

This model is Gal(K ′′/Q)-globally invariant. Note that the projection
Gal(K ′′/Q)→ Gal(K/Q) is not split. We check this by noting that Gal(K ′′/Q) ≃Z/4Z×Z/2Z admits only one subgroup isomorphic to Gal(K/Q) ≃ Z/2Z×Z/2Z, namely Gal(K ′′/Q(

√
5)), and this subgroup does not surject on

Gal(K/Q), because
√

5 ∈ K.
As predicted by the theorem of Benard and Bessis, we manage to find a

model ρ0 over K by Galois descent. It is possible to get a model over K such
that s−1 ◦ ρ = ρ ◦ ι̃(s−1) or such that s7 ◦ ρ = ρ ◦ ι̃(s7), but not both. The
reason is that it is not possible to get a model such that s13 ◦ ρ = ρ ◦ ι̃(s13).

Lemma 7.4. ρ does not admit any model over K which is globally invariant
by Gal(K/Q(i)).

Proof. We assume by contradiction that we are given such a model ρ1. Since
ρ1 is faithful there exists a ∈ Aut(G) of order 2 such that ρ1 ◦ a = s13 ◦ ρ1.
We check that all automorphisms of G preserve the set of reflections, thus
by theorem 4.1 and theorem 1.4 Out(G) acts faithfully and transitively on
the set of reflection representations. It follows that a and ι̃(s13) have the
same image in Out(G), namely ι(s13). In particular a = ι̃(s13) ◦ Ad(h) for
some h ∈ G. Exhausting all possibilities, we find using ρ0 that the image
of the cocycle defined by a in H1(Gal(K/Q(i)),PGL2(K)) ≃ K×/N(K×)
is always the class of 1/3 modulo N(K×). Using MAGMA we check that this
class is non trivial, thus leading to a contradiction. �

We now investigate which representations of G admit a globally invariant
model over K. This group has 18 irreducible representations, including two
1-dimensional ones. The four 2-dimensional (reflection) representations are
deduced from each other through Galois action, so none of them admits a
globally invariant model over K. In addition to these, there are 2 faithful
4-dimensional representations and 2 faithful 6-dimensional representations.

The center of G22 is cyclic of order 4, generated by Z = (stu)5. We have
Z2 = (ts)5. The other representations have for kernel a non-zero subgroup
of Z(G).

We show that the 8 odd-dimensional representations admit ι̃-equivariant
models over K by proposition 6.1, as in proposition 6.2. A computer check
shows that every non-faithful irreducible representation appear with multi-
plicity 1 in some tensor product ρ1⊗ρ2, where ρ1 and ρ2 are odd-dimensional
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irreducible representations. It follows that all these admit ι̃-equivariant mod-
els.

We now study in some detail the fate of the remaining (faithful) irre-
ducible representations. In particular, we prove the following.

Proposition 7.5. Let ρ be one of the faithful 4-dimensional or 6-dimensional
representations of G22. Then ρ admit globally invariant models over K,
which induce morphisms jρ : Γ → Aut(G). These morphisms can be cho-
sen injective, however the induced morphisms jρ : Γ → Out(G) are never
injective.

In both dimensions, one of the representations considered here satisfy
ρ(Z) = −i. It is sufficient to consider these to prove the proposition, since
they are conjugated in pairs by the Galois action. We let N = dim ρ ∈ {4, 6}.

Since ρ is faithful, the existence of a globally invariant model for ρ leads
to a morphism j : Γ→ Aut(G) satisfying γ ◦ ρ ≃ ρ ◦ j(γ) for all γ ∈ Γ, such
that the associated cocycle J = {γ 7→ Jγ} is cohomologically trivial.

We use the following procedure to check the proposition for an arbitrary
j : Γ → Aut(G) satisfying γ ◦ ρ ≃ ρ ◦ j(γ) for all γ ∈ Γ. Let γ0 = s13 and
note that Kγ0 = Q(i). Recall that γ0 and c generate Γ = Gal(Q(i,

√
5)/Q).

Restricting J to 〈γ0〉 yields a class in Q(i)×/NK× where N(x) = xγ0(x). If
this class is non-zero then J cannot be cohomologically trivial. Otherwise
there exists M ∈ GLN (K), which can be explicitly determined, such that
Jγ0 = M−1γ0(M) in PGLN (K). Then the cocycle γ 7→ Qγ = MJγγ(M)−1

is cohomologous to J and Qγ0 = 1. Since

γ0(Qc) = Qγ0γ0(Qc) = Qγ0c = Qcγ0 = Qcc(Qγ0) = Qc

it follows that γ0(Qc) = Qc, i.e. Qc ∈ PGLN (K)γ0 = PGLN (Kγ0), and
that Qγ0c = Qc. In other words, Q belongs to the image of the inflation
map Z1(Gal(Kγ0/Q),PGLN (Kγ0)) → Z1(Γ, PGLN (K)). Since the infla-
tion map between Brauer groups is injective this map is also injective and
we are again reduced to a cyclic case, hence to a norm equation solvable
with MAGMA.

Using CHEVIE we get all such morphisms. The list obtained does not
depend on whether ρ has dimension 4 or 6. If N = 4, the morphisms j such
that J is cohomologous to 0 all satisfy j(c) = j(s7) = ι(s7) and j(s13) = ι(1).
Some of these morphisms j are injective.

In case N = 6, the morphisms j such that J is cohomologically trivial
are all injective, and again send s13 to an inner automorphism. Moreover
j(c) ∈ {ι(c), ι(s7)} and the two possibilities occur.

The choice of any morphism such that J is cohomologically trivial leads to
a globally invariant model for the representations. One of these morphisms,
such that J is cohomologically trivial for both representations, has the fol-
lowing simple form : j(s13) = Ad(t) and j(c) sends (s, t, u) to (utu, t, stst).

Remark 7.6.
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Using the results proved here, one gets a simpler proof of the theorem
of Benard and Bessis. First consider non-dihedral G(de, e, r). Since all ir-
reducible representations of the groups G(de, e, r) appear as multiplicity 1
component of some representation of G(de, 1, r), we are reduced by lemma
7.1 to the case of G(d, 1, r), then to its reflection representation by propo-
sition 7.3, and we know that this representation is defined over K by the
very definition of these groups. The case of the dihedral groups is classical.
Finally, the algorithm used here for exceptional groups completes the proof,
and is more efficient than the one used in [Bes].

8. Invariants

We prove corollary 1.6, whose statement we recall. We denote by V ∗ the
dual of a vector space V .

Proposition 8.1. Let G ⊂ GL(V ) be any complex reflection group where
V is a K-vector space, where K is the field K ′′ of theorem 1.5. There is
a Q-form V = V0 ⊗Q K such that the fundamental invariants of G can be
taken rational, i.e. in the symmetric algebra S(V ∗

0 ).

Proof. The question can clearly be reduced to the case of an irreducible
complex reflection group.

By theorem 1.5 we may assume that G ⊂ GL(V0⊗QK) is globally invari-
ant by Γ = Gal(K/Q). Let f1, . . . , fr (where r = dim V ) be fundamental
invariants, i.e. algebraically independent polynomials such that S(V ∗)G =
K[f1, . . . , fn]. We want to find algebraically independent g1, . . . , gr ∈ S(V ∗

0 )
such that we still have S(V ∗)G = K[g1, . . . , gn]. Our strategy will be as
follows: we will set gi =

∑

γ∈Γ γ(λfi) where λ ∈ K. Then the gi are still in-

variant since for g ∈ G we have g(gi) =
∑

γ∈Γ γ(λγ−1(g)fi) =
∑

γ∈Γ γ(λfi),

the last equality since γ−1(g) ∈ G.
It is thus sufficient to show that we may choose λ such that gi are still

algebraically independent. By the Jacobian criterion, it is enough to show
that we may choose λ such that, if x1, . . . , xr is a basis of V ∗

0 , so that

S(V ∗) ≃ K[x1, . . . , xr], we have det
(

∂gi

∂xj

)

i,j
6= 0.

We use the following version of the algebraic independence of automor-
phisms:

Proposition 8.2. [Bbk, Chap. V, §10, Théorème 4]. Let Q be an infinite
field, let K be a finite Galois extension of Q with Galois group Γ, let Ω be an
arbitrary extension of K and let {Xγ}γ∈Γ be indeterminates indexed by the
elements of Γ. Let F ∈ Ω[Xγ ]γ∈Γ be a polynomial such that F ((γ(x))γ∈Γ) =
0 for any x ∈ K. Then F = 0.

We apply the proposition with Q = Q, Ω = K and F = det
(
∑

γ∈Γ Xγγ( ∂fi

∂xj
)
)

i,j
.

The polynomial F evaluated at X1 = 1 and Xγ = 0 for γ 6= 1 is equal to
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det
(

∂fi

∂xj

)

i,j
which is non-zero, so F is non-zero. By the theorem, there

exists λ ∈ K such that F ((γ(λ))γ) 6= 0. But F ((γ(λ))γ ) = det
(

∂gi

∂xj

)

i,j
�

We now prove 1.7 whose statement we recall.

Proposition 8.3. The variety V reg/G is defined over Q.

Proof. We use the notations of the previous proof, in particular we denote
by K the field K ′′ of 1.5, and we assume that G ⊂ GL(V0⊗QK) is globally
invariant by Γ = Gal(K/Q).

LetH be the set of reflecting hyperplanes for G and for each H ∈ H, let lH
be a linear form defining H. For H ∈ H let eH be the order of the subgroup
of G fixing H, and let ∆ =

∏

H∈H leH

H . It is well known that ∆ ∈ S(V ∗)G

(see e.g. [OT, 6.44]). Thus the variety V reg/G is the open subvariety of
Spec(K[f1, . . . , fn]) whose function ring is the localization by the principal
ideal ∆. It is thus enough to show that we may choose the fi such that a
multiple of ∆ belongs to Q[f1, . . . , fn]. If, as in the previous proposition, we
choose fi ∈ S(V ∗

0 )G, it will be enough to show that we have a multiple of
∆ in S(V ∗

0 ) since S(V ∗
0 ) ∩ S(V ∗)G = S(V ∗

0 )G. Since H is globally invariant
by Γ, for any γ ∈ Γ there exists λγ ∈ K such that γ(∆) = λγ∆, and it
is clear that {γ 7→ λγ} ∈ Z1(Γ,K×). By Hilbert’s theorem 90 we have
that H1(Γ,K×) is trivial, thus {γ 7→ λγ} is a coboundary, i.e. there exists
λ ∈ K× such that λγ = λ−1γ(λ). We get then that γ(λ−1∆) = λ−1∆ for
any γ, thus λ−1∆ ∈ S(V ∗

0 ). �
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