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Abstract

We present an efficient method for classifying the morphology of the intersection
curve of two quadrics (QSIC) in PR3, 3D real projective space; here, the term
morphology is used in a broad sense to mean the shape, topological, and algebraic
properties of a QSIC, including singularity, reducibility, the number of connected
components, and the degree of each irreducible component, etc. There are in total
35 different QSIC morphologies with non-degenerate quadric pencils. For each of
these 35 QSIC morphologies, through a detailed study of the eigenvalue curve and
the index function jump we establish a characterizing algebraic condition expressed
in terms of the Segre characteristics and the signature sequence of a quadric pencil.
We show how to compute a signature sequence with rational arithmetic so as to
determine the morphology of the intersection curve of any two given quadrics. Two
immediate applications of our results are the robust topological classification of
QSIC in computing B-rep surface representation in solid modeling and the derivation
of algebraic conditions for collision detection of quadric primitives.
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1 Introduction

Quadric surface, being the simplest curved surfaces, are widely used in com-
putational science for shape representation. It is therefore often necessary to
compute the intersection or detect the interference of two quadrics. In com-
puter graphics and CAD/CAM, the intersection curve of two quadrics needs
to be found for computing a boundary representation of a 3D shape defined
by quadrics. In robotics (27) and computational physics (20; 28) one often
needs to perform interference analysis between ellipsoids modeling the shape
of various objects. There have recently been rising interests in computing the
arrangements of quadric surfaces in computational geometry (24; 3), a field
traditionally focused on linear primitives.

The intersection curve of two quadric surfaces will be abbreviated as QSIC.
Exact determination of the morphology of a QSIC is critical to the robust
computation of its parametric description. We study the problem of classifying
the morphology of a QSIC in PR3 (3D real projective space); here, we use
the term morphology in a broad sense to mean the shape, topological, and
algebraic properties of a QSIC, including singularity, the number of irreducible
or connected components, and the degree of each irreducible component, etc.
There are many types of QSIC in PR3 (32). A nonsingular QSIC can have zero,
one, or two components. When a QSIC is singular, it can be either irreducible
or reducible. A singular but irreducible QSIC may have three different types of
singular points, i.e., acnode, cusp, and crunode, while a reducible QSIC may
be planar or nonplanar. A planar QSIC consists of only lines or conics, which
are planar curves, while a reducible but non-planar QSIC always consists of a
real line and a real space cubic curve. Among planar QSICs, further distinction
can be made according to how many of the linear or conic components are
imaginary, i.e., not present in the real projective space.

There are mainly three basic problems in studying the morphology of a QSIC:
1) Enumeration: listing all possible morphologically different types of QSICs;
2) Classification: determining the morphology of the QSIC of two given quadrics;
3) Representation: determining the transformation which brings a given prob-
lem QSIC into a canonical representative of its class. We emphasize on the
second problem of classification, which is an algorithmic issue, while also hav-
ing the first problem solved as a by-product of our results. Specifically, we
enumerate all 35 different morphologies of QSIC, and characterize each of
these morphologies using a signature sequence that can exactly be computed
using rational arithmetic for the purpose of classification. The third problem,
not handled here, leads to a lengthy case by case study which depends a lot
on the application behind.

Consider the intersection curve of two quadrics given by A: XT AX = 0 and B:
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XT BX = 0, where X = (x, y, z, w)T ∈ PR3 and A, B are 4×4 real symmetric
matrices. The characteristic polynomial of A and B is defined as

f(λ) = det(λA − B), (1)

and f(λ) = 0 is called the characteristic equation of A and B.

The characteristic polynomial f(λ) is defined with a projective variable λ ∈
PR; thus it is either a quartic polynomial or vanishes identically. The latter
case of f(λ) vanishing identically occurs if and only if A and B are two singular
quadrics sharing a singular point; thus, all the quadrics in the pencil formed
by A and B are singular. In this case, the pencil of A and B is said to be
degenerate; otherwise, the pencil is non-degenerate. For example, if A and B
are two cones with their vertices at the same point, then they form a degenerate
pencil. When two quadrics form a degenerate pencil, by projecting the two
quadrics from one of their common singular points to a plane P not passing
through the center of projection, we reduce the problem of computing the
QSIC to one of computing the intersection of two conics in the plane P, which
is a separate and relatively simple problem. For this reason and the sake of
space, we will not cover this case in the present paper. Hence, we assume
throughout that f(λ) does not vanish identically.

Our contributions are as follows. We consider a new characterization of the
QSIC of a pencil, namely the signature sequence, and show how it can be
computed effectively and efficiently, using only rational arithmetic operations.
We establish a complete correspondence among the QSIC morphologies, the
Segre characterization over the real numbers, the Quadric Pair Canonical
Form (25; 49; 40) and the signature sequence, which allows us to derive a direct
algorithm based on exact arithmetic for the classification of QSIC. Based on
this correspondence, a simplified analysis of the morphology of different QSIC’s
is described. We obtain a complete table of all the possible morphologies of
QSIC, with their Segre characterizations, signature sequences and Quadric
Pair Canonical Forms. These results apply to any quadric pencil whose char-
acteristic polynomial f(λ) does not vanish identically. The case of f(λ) ≡ 0
leads to the classification of conics in PR2, which is not treated here. Tables
1, 2 and 3 give the complete list of all 35 different types of QSICs in PR3 with
non-degenerate quadric pencils. A detailed explanation of these tables is given
in Section 2.7.

We stress that this paper is not about affine classification of QSICs, although
the results of this paper can be used for an implementation of affine classi-
fication by further considering the intersection of a QSIC with the plane at
infinity.

A few words are in order about our approach. Since any pair of quadrics
can be put in the Quadric Pair Canonical Form, we obtain all possible QSIC
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morphologies by an exhaustive enumeration of all Quadric Pair Canonical
Forms, with distinct Jordan chains and sign combinations. For each pair of the
Quadric Pair Canonical Forms, on one hand, we obtain its index sequence, and
on the other hand, we determine its corresponding morphology. The derivation
of the index sequence necessitates the study on eigenvalue curves and index
jumps at real roots of a characteristics equation, while the determination of the
QSIC morphology is largely based on case-by-case geometric analysis of two
quadrics in their Quadric Pair Canonical Forms. Finally, we convert all index
sequences to their corresponding signature sequences for efficient and exact
computation. In this way we establish a complete correspondence among the
QSIC morphologies, Quadric Pair Canonical Forms and signature sequences.
Overall, the paper is mainly about an algorithm for determining the type of
an input QSIC. The algorithm itself is very simple, but it is based on a new
framework of using the signature sequences of different QSICs. Therefore, the
large portion of the paper is devoted to identifying the signature sequence
of each of the 35 QSICs, rather than to describing the flow of the simple
algorithm.

The remainder of the paper is organized as follows. We discuss related work
in the rest of this section. Uhlig’s method and other preliminaries, including
a careful study of the eigenvalue curves of a quadric pencil, are introduced
in Section 2. For an organized presentation, characterizing conditions for dif-
ferent QSIC morphologies are grouped into three sections: nonsingular QSIC
(Section 3), singular but non-planar QSIC (Section 4), and planar QSIC (Sec-
tion 5). In Section 6 we discuss how to use the obtained results for complete
classification of QSIC morphologies. We conclude the paper in Section 7.

For a better flow of discussion, in the main body of the paper we will include
only the proofs of theorems for the first few cases of QSICs, so as to give the
gist of the techniques employed. The proofs for the rest cases will be given in
the appendix.

1.1 Related work

Literature on quadrics abounds, including both classical results from algebraic
geometry and modern ones from computer graphics, computer-aided geomet-
ric design (CAGD) and computational geometry. Classifying the QSIC is a
classical problem in algebraic geometry, but the solutions found therein are
given in PC3 (3D complex projective space), and therefore provide only a
partial solution to our classification problem posed in PR3. Some methods
for computing the QSIC in the computer graphics and CAGD literature do
not classify the QSIC morphology completely, while others use a procedu-
ral approach to computing the QSIC morphology. The procedural approach
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is usually lengthy, therefore prone to erroneous classification if floating point
arithmetic is used or leading to exceedingly large integer values or complicated
algebraic numbers if exact arithmetic is used.

When the input quadrics are assumed to be the so-called natural quadrics, i.e.,
special quadrics including spheres, circular right cones and cylinders, there are
several methods that exploit geometric observations to yield robust methods
for computing the QSIC (21; 22; 30). However, we shall consider only methods
for computing the QSIC of two arbitrary quadrics, and focus on how these
methods classify the QSIC morphology.

In algebraic geometry the QSIC morphology is classified in PC3, the complex
projective space using the Segre characteristic (4). The Segre characteristic is
defined by the multiplicities of the roots of f(λ) = 0 with respect to f(λ) as
well as the sub-determinants of the matrix λA − B. The Segre characteristic
assumes the complex field, i.e., assuming that the input quadrics are defined
with complex coefficients, and therefore it does not distinguish whether a root
of f(λ) = 0 is real or imaginary. When applying the Segre characteristic in
PR3, several different types of QSICs in PR3 may correspond to the same Segre
characteristic, thus cannot be distinguished. An example is the case where four
morphologically different types of nonsingular QSICs correspond to the same
Segre characteristic [1111], meaning that f(λ) = 0 has four distinct roots; (see
cases 1 through 4 in Table 1).

QSICs in PR3, real projective space, are studied comprehensively in (15; 33),
but the algorithmic aspect of classification is not considered. In this paper we
obtain a complete classification by signature sequences of quadric pencils and
apply this result to efficient classification of QSICs in PR3.

A well-known method for computing QSIC in 3D real space is proposed by
Levin (18; 19), based on the observation that there exists a ruled surface in
the pencil of any two distinct quadrics in PR3. Levin’s method substitutes a
parameterization of this ruled quadric to the equation of one of the two input
quadrics to obtain a parameterization of the QSIC. However, this method does
not classify the morphology of the QSIC; consequently, it does not produce
a rational parameterization for a degenerate QSIC, which is known to be a
rational curve or consist of lower-degree rational components.

There have been proposed several methods that improve upon Levin’s method.
Sarraga (29) refines Levin’s method in several aspects but does not attempt to
completely classify the QSIC. Wilf and Manor (48) combine Levin’s method
with the Segre characteristic to devise a hybrid method, which, however, is
still not capable of completely classifying the QSIC in PR3; for example, the
four different types of nonsingular QSICs are not classified in PR3. Wang,
Goldman and Tu (46) show how to classify the QSICs within the framework
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of Levin’s method. DuPont et al (8) proposed a variant of Levin’s method
in exact arithmetic by selecting a special ruled quadric in the pencil of two
quadrics, in order to minimize the number of radicals used in representing the
QSIC; an implementation of this method is described in (17). The methods
in (46) and (8) both adopt a lengthy procedural approach, with no systematic
approach for a complete classification.

A different idea of computing the QSIC, again using a procedural approach,
is to project a QSIC into a planar algebraic curve and analyze this projection
curve to deduce the properties of the QSIC, including its morphology and
parameterization. Farouki, Neff and O’Connor (12) project a QSIC to a planar
quartic curve and factorize this quartic curve to determine the morphology of
the QSIC. (Note that only degenerate QSICs are considered in (12).) Wang,
Joe and Goldman (45) project a QSIC to a planar cubic curve using a point
of the QSIC as the center of projection; this cubic curve is then analyzed to
compute the morphology and parameterization of the QSIC. However, exact
computation is difficult with this method, since the center of projection is
computed with Levin’s method.

The work of Ocken et al (26), Dupont et al (6; 9), Tu et al (36) and (37) all use
simultaneous matrix diagonalization for computing or classifying the QSIC.
The diagonalization procedure used in (26) is not based on any established
canonical form, such as the Uhlig form (25; 49; 40), and the analysis in (26)
is incomplete – it leaves some cases of QSIC morphology missing and some
other cases classified incorrectly; for example, the case of a QSIC consisting
of a line and a space cubic curve is missing and the cases where f(λ) = 0 has
exactly two real roots or four real roots are not distinguished. The classification
by Dupont(6; 9) is based on the Quadric Pair Canonical Form and involves
criteria such as signature and sign of deflated polynomials at specific roots of
the characteristic polynomial, leading to a complete procedure to determine
the type of a QSIC, covering also the case where the characteristic polynomial
vanishes identically.

In the above methods some cases of different QSIC morphologies need to
be distinguished using procedures involving geometric computation, such as
extracting singular points or intersecting a line with a quadric. Application
of such procedural methods is not uniform and follows a case by case study,
which is very specific to the tridimensional problem.

It is therefore natural to ask if it is possible to determine the morphology of
a QSIC by checking some simple algebraic conditions, rather than invoking a
long computational procedure.

Several arguments are in favor of more algebra. First, a description of the
configurations of QSIC by algebraic conditions allows us to introduce easily
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new parameters in our problem. For instance, introducing the time, it has
direct application in collision detection problems. Secondly, it provides a com-
putational framework to analyse the space of configurations of QSIC and the
stratification induced by this classification, that is how the different families
are related and what happen when we move on the “border” of these fami-
lies. Moreover, the correlation between the canonical form of pencils and the
algebraic characterisation can be extended in higher dimension.

Algebraic conditions have recently been established for QSIC morphology or
configuration formed by two quadrics in some special cases. The goal here
is to characterize each possible morphology or configuration using a simple
algebraic condition, which can be tested or evaluated easily and exactly to
determine the type of an input morphology or configuration. In related topics,
a simple condition in terms of the number of positive real roots of the char-
acteristic equation f(λ) is given by Wang et al in (43) for the separation of
two ellipsoids in 3D affine space. Similar algebraic conditions are obtained by
Wang and Krasauskas in (47) for characterizing non-degenerate configurations
formed by two ellipses in 2D affine plane or ellipsoids in 3D affine space.

As for QSICs, the Quadric Pair Canonical Form form is used in (36) to derive
simple characterizing algebraic conditions for the four types of non-singular
QSICs in terms of the number of real roots of the characteristic polynomial;
however, two of the four types are not distinguished, i.e., they are covered by
the same condition. This pursuit of algebraic conditions is extended to cover
all 35 QSICs of non-degenerate pencils in the report (37), which again uses
the Quadric Pair Canonical Form to derive characterizing conditions in terms
of signature sequences. The present paper is based on (37).

Finally, we mention that Chionh, Goldman and Miller (5) uses multivariate
resultants to compute the intersection of three quadrics.

2 Preliminaries

2.1 Simplification techniques

There are two transformations that we will use frequently to simplify the
analysis of a QSIC. Based on Quadric Pair Canonical Form results (25; 49;
40) (see also Section 2.3), we sometimes apply a projective transformation
to both A and B to get a pair of quadrics A′ : XT (QT AQ)X = 0 and B′ :
XT (QT BQ)X = 0 in simpler forms. The transformed quadrics A′ and B′ are
projectively equivalent to A and B, therefore have the same QSIC morphology
in PR3 and the same characteristic equation as the pair A and B.
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Table 1
Classification of nonplanar QSIC in PR3

[Segre]r

r = the # Index Signature Sequence Illus- Representative

of real roots Sequence tration Quadric Pair

[1111]4

1

〈1|2|1|2|3〉 (1,(1,2),2,(1,2),1,(1,2),2,(2,1),3) A : x2 + y2 + z2 − w2 = 0
B : 2x2 + 4y2 − w2 = 0

2

〈0|1|2|3|4〉 (0,(0,3),1,(1,2),2,(2,1),3,(3,0),4) A : x2 + y2 + z2 − w2 = 0
B : 2x2 + 4y2 + 3z2 − w2 = 0

[1111]2

3

〈1|2|3〉 (1,(1,2),2,(2,1),3) A : 2xy + z2 + w2 = 0
B : −x2 + y2 + z2 + 2w2 = 0

[1111]0

4

〈2〉 (2)
A : xy + zw = 0
B : −x2 + y2 − 2z2 + zw+

2w2 = 0
5

〈2≀≀
−

2|3|2〉
〈2≀≀+2|3|2〉

(2,((2,1)),2,(2,1),3,(2,1),2)
(2,((1,2)),2,(2,1),3,(2,1),2)

A : x2 − y2 + z2 + 4yw = 0
B : −3x2 + y2 + z2 = 0

[211]3

6

〈1≀≀
−

1|2|3〉 (1,((1,2)),1,(1,2),2,(2,1),3) A : −x2 − z2 + 2yw = 0
B : −3x2 + y2 − z2 = 0

7

〈1≀≀+1|2|3〉 (1,((0,3)),1,(1,2),2,(2,1),3) A : x2 + z2 + 2yw = 0
B : 3x2 + y2 + z2 = 0

[211]1

8

〈2≀≀
−

2〉 (2,((2,1)),2) A : xy + zw = 0
B : 2xy + y2 − z2 + w2 = 0

[22]2

9
〈2≀≀

−
2≀≀

−
2〉

〈2≀≀
−

2≀≀+2〉
(2,((2,1)),2,((2,1)),2)
(2,((2,1)),2,((1,2)),2)

A : xy + zw = 0
B : y2 + 2zw + w2 = 0

[22]0

10

〈2〉 (2) A : xw + yz = 0
B : xz − yw = 0

[31]2

11

〈1≀≀≀+2|3〉 (1,(((1,2))),2,(2,1),3)
A : y2 + 2xz + w2 = 0
B : 2yz + w2 = 0

[4]1

12

〈2≀≀≀≀
−

2〉 (2,((((2,1)))),2)
A : xw + yz = 0
B : z2 + 2yw = 0

We sometimes also consider two simpler quadrics in the pencil spanned by A
and B. Note that any two distinct members of the pencil have the same QSIC
as that of A and B, and their characteristic polynomial is only different from
that of A and B by a projective (i.e., rational linear) variable substitution.

2.2 Open curve components

If a connected or an irreducible component C of a QSIC is intersected by
every plane in PR3, then C is called an open component; otherwise, C is called
a closed component. A closed component curve C is compact in some affine
realization of PR3; such an affine realization is obtained by designating the
plane at infinity to be a plane in PR3 that does not intersect C. For example,
a real non-degenerate conic C is closed in PR3. In contrast, an open component
curve is unbounded in any affine realization of PR3; a real line, for example, is
an open curve in PR3. Another familiar example in PR2, 2D projective plane,
is given by a nonsingular cubic curve with two connected components; it is
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Table 2
Classification of planar QSIC in PR3 - Part I

[Segre]r

r = the # Index Signature Sequence Illus- Representative

of real roots Sequence tration Quadric Pair

13

〈2||2|1|2〉 (2,((1,1)),2,(1,2),1,(1,2),2) A : x2 − y2 + z2 − w2 = 0
B : x2 − 2y2 = 0

[(11)11]3

14

〈1||3|2|3〉 (1,((1,1)),3,(2,1),2,(2,1),3) A : −x2 + y2 + z2 + w2 = 0
B : −x2 + 2y2 = 0

15

〈1||1|2|3〉 (1,((0,2)),1,(1,2),2,(2,1),3) A : x2 + y2 + z2 − w2 = 0
B : x2 + 2y2 = 0

16

〈0||2|3|4〉
〈1||3|4|3〉

(0,((0,2)),2,(2,1),3,(3,0),4)
(1,((1,1)),3,(3,0),4,(3,0),3)

A : x2 + y2 − z2 − w2 = 0
B : x2 + 2y2 = 0

[(11)11]1

17

〈1||3〉 (1,((1,1)),3) A : x2 + y2 + 2zw = 0
B : −z2 + w2 + 2zw = 0

18

〈2||2〉 (2,((1,1)),2) A : x2 − y2 − 2zw = 0
B : −z2 + w2 + 2zw = 0

[(111)1]2

19

〈1|||2|3〉 (1,(((0,1))),2,(2,1),3) A : y2 + z2 − w2 = 0
B : x2 = 0

20

〈0|||3|4〉 (0,(((0,1))),3,(3,0),4) A : y2 + z2 + w2 = 0
B : x2 = 0

[(21)1]2

21

〈1≀≀
−
|2|3〉 (1,(((1,1))),2,(2,1),3) A : y2 − z2 + 2zw = 0

B : −x2 + z2 = 0

22

〈1≀≀+|2|3〉 (1,(((0,2))),2,(2,1),3) A : y2 − z2 + 2zw = 0
B : x2 + z2 = 0

well known that one of the two components is open (i.e., intersected by every
line in PR2) and the other one is closed (i.e., not intersected by some line in
PR2). We will see that some higher order open curve components occur in
several QSIC morphologies.

We stress that whether a curve component is open or closed is a projective
property, i.e., this property is not changed by a projective transformation to
the curve. Therefore we need to consider it for classification of QSICs in PR3.
In fact, the name “open component” is used here due to the lack of a more
appropriate name, because any irreducible or connected component of a QISC
is always “closed” in the sense that it is homomorphic to a circle. However, in
this paper we consider the equivalence of two curve components PR3 from the
point of view of isotopy, i.e., homotopy of homomorphisms, as used in for knot
theory (31). In this sense, an open curve component (i.e., intersected by every
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Table 3
Classification of planar QSIC in PR3 - Part II

[Segre]r

r = the # Index Signature Sequence Illus- Representative

of real roots Sequence tration Quadric Pair

23

〈2≀≀
−

2||2〉 (2,((2,1)),2,((1,1)),2)
A : 2xy − y2 = 0
B : y2 + z2 − w2 = 0

[2(11)]2

24

〈1≀≀
−

1||3〉 (1,((1,2)),1,((1,1)),3)
A : 2xy − y2 = 0
B : y2 − z2 − w2 = 0

25

〈1≀≀+1||3〉 (1,((0,3)),1,((1,1)),3)
A : 2xy − y2 = 0
B : y2 + z2 + w2 = 0

[(31)]1

26

〈2≀≀≀
−
|2〉 (2,((((1,1)))),2)

A : y2 + 2xz − w2 = 0
B : yz = 0

27

〈1≀≀≀+|3〉 (1,((((1,1)))),3)
A : y2 + 2xz + w2 = 0
B : yz = 0

28

〈2||2||2〉 (2,((1,1)),2,((1,1)),2)
A : x2 − y2 = 0
B : z2 − w2 = 0

[(11)(11)]2

29

〈0||2||4〉 (0,((0,2)),2,((2,0)),4)
A : x2 + y2 = 0
B : z2 + w2 = 0

30

〈1||1||3〉 (1,((0,2)),1,((1,1)),3)
A : x2 + y2 = 0
B : z2 − w2 = 0

[(11)(11)]0

31

〈2〉 (2)
A : xy + zw = 0
B : −x2 + y2 − z2 + w2 = 0

[(211)]1

32

〈2≀≀
−
||2〉 (2,((((1,0)))),2)

A : x2 − y2 + 2zw = 0
B : z2 = 0

33

〈1≀≀
−
||3〉 (1,((((1,0)))),3)

A : x2 + y2 + 2zw = 0
B : z2 = 0

[(22)]1

34

〈2≀̂≀
−
≀̂≀
−

2〉 (2,((((2,0)))),2)
A : xy + zw = 0
B : y2 + w2 = 0

35

〈2≀̂≀
−
≀̂≀+2〉 (2,((((1,1)))),2)

A : xy − zw = 0
B : y2 − w2 = 0

plane in PR3) and a closed component (i.e., not intersected by some plane in
PR3) are not equivalent, because they cannot be mapped into each other by
an isotopy of PR3.
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2.3 Simultaneous block diagonalization

When given two arbitrary quadrics, we use a projective transformation to si-
multaneously map the two quadrics to some simpler quadrics having the same
QSIC morphology and the same root pattern of the characteristic equation.
Such a projective transformation is based on the standard results on simulta-
neous block diagonalization of two real symmetric matrices (25; 49; 40), which
will be reviewed below.

Definition 1: Let A and B be two real symmetric matrices with A being
nonsingular. Then A and B are called a nonsingular pair of real symmetric
(r.s.) matrices.

Definition 2: A square matrix of the form

M =




λ e

. .

. e

λ




k×k

is called a Jordan block of type I if λ ∈ R and e = 1 for k ≥ 2 or M = (λ)
with λ ∈ R for k = 1; M is called a Jordan block of type II if

λ =




a −b

b a


 a, b ∈ R, b 6= 0 and e =




1 0

0 1


 ,

for k ≥ 4 or

M =




a −b

b a




for k = 2, with a, b ∈ R, b 6= 0.

Definition 3: Let J1,...,Jk be all the Jordan blocks (of type I or type II)
associated with the same eigenvalue λ of a real matrix A. Then

C = C(λ) = diag(J1, ..., Jk),

where dim(Ji) ≥ dim(Ji+1), is called the full chain of Jordan blocks or full
Jordan chain of length k associated with λ.

Definition 4: If λ1,...,λk are all distinct eigenvalues of a real matrix A, with
only one being listed for each pair of complex conjugate eigenvalues, then the
real Jordan normal form of A is J=diag(C(λ1),...,C(λk)).
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Recall that two square matrices C and D are congruent if there exists a non-
singular matrix Q such that C = QT DQ; we also say that C and D are related
by a congruence transformation, which amounts to a change of projective co-
ordinates.

Theorem 1 (Quadric Pair Canonical Form)

Let A and B be a nonsingular pair of real symmetric matrices of size n. Sup-
pose that A−1B has real Jordan normal form diag(J1, ...Jr, Jr+1, ...Jm), where
J1, ...Jr are Jordan blocks of type I corresponding to the real eigenvalues of
A−1B and Jr+1, ...Jm are Jordan blocks of type II corresponding to the com-
plex eigenvalues of A−1B. Then the following properties hold:

(1) A and B are simultaneously congruent by a real congruence transforma-
tion to

diag(ε1E1, ...εrEr, Er+1, ...Em)

and
diag(ε1E1J1, ...εrErJr, Er+1Jr+1, ...EmJm),

respectively, where εi = ±1 and the Ei are of the form




0 . 0 1

. . . .

1 0 . 0




of the same size as Ji, i = 1, 2, .., m. The signs of εi are unique for each
set of indices i that are associated with a set of identical Jordan blocks Ji

of type I.
(2) The characteristic polynomial of A−1B and det(λA − B) have the same

roots λj with the same multiplicities γi.
(3) The sum of the sizes of the Jordan blocks corresponding to a real root λi

is the multiplicity γi if λi is real or twice this multiplicity if λi is complex.
The number of the corresponding blocks is ρi = n − rank(λiA − B), and
1 ≤ ρi ≤ γi.

As detailed in the review article (16), this result has a long story. It was proved
in (25) for non-degenerate pencils, and them further extended and rediscovered
several times. See (35; 49; 7; 38; 40; 34; 16).

In order to apply Theorem 1, we need to ensure that the matrix A is nonsin-
gular. Since we assume that f(λ) = det(λA − B) does not vanish identically,
λA − B is nonsingular for infinitely many values of λ. Therefore, given two
quadrics A : XT AX = 0 and B : XTBX = 0, we may assume that A is
nonsingular; for otherwise we may replace A by another nonsingular matrix
Ã such that Ã : XT ÃX = 0 and B have the same QSIC as that of A and B.

12



2.4 Index sequences

Signature and index: Any n × n real symmetric matrix D is congruent to
a unique diagonal form D′ = diag(Ii,−Ij , 0k). The signature, or inertia, of D
is (σ+, σ−, σ0) = (i, j, k). The index of D is defined as index(D) = i.

Index function: The index function of a quadric pencil λA−B is defined as

Id(λ) = index(λA − B), λ ∈ PR.

Since A and B are matrices of order 4 in our discussion, i.e., n = 4, we have
Id(λ) ∈ {0, 1, 2, 3, 4}. Note that Id(λ) has a constant value in the interval
between any two consecutive real roots of f(λ) = 0. The index function may
have a jump across a real root of f(λ) = 0, depending on the nature of
the root. The index function is also defined for λ = ∞ and −∞. We have
Id(−∞) + Id(+∞) = rank(A).

Eigenvalue Curve: We consider the real eigenvalues of the pencil λA − B,
defined by the equation

C(λ, u) = det(λA − B − u I) = 0.

We are going to see that the QSIC of a pencil (A, B) can be characterized
by the geometry of the planar curve C defined by the equation C(λ, u) = 0.
This curve C is defined by a polynomial whose total and partial degree in
either λ or u is 4. Since a 4 × 4 symmetric matrix has 4 real eigenvalues, for
any λ ∈ R, the number of real roots C(λ, u) = 0 in u is 4 (counted with
multiplicities). Consequently, there are 4 λ-monotone branches of C. For any
fixed λ ∈ R, the number of points of C not on the λ-axis, i.e., with u 6= 0, is
the rank of the quadratic form λA − B; the number of points of C above the
λ-axis and the number of points of C below the λ-axis determine the signature
of (λA − B). Figure 1 shows the eigenvalue curve of the pencil of quadrics
(y2 + 2 x z + 1, 2 y z + 1).

Index sequence: Let λj , j = 1, 2, . . . , r, be all distinct real roots of f(λ) = 0
in increasing order. Let µk, k = 1, 2, . . . , r−1, be any real numbers separating
the λj, i.e.,

−∞ < λ1 < µ1 < λ2 < . . . µr−1 < λr < ∞.

Denote sj = Id(µj), j = 1, 2, . . . , r − 1. Denote s0 = Id(−∞) and sr = Id(∞).
Then the index sequence of A and B is defined as

〈s0 ↑ s1 ↑ . . . ↑ sr−1 ↑ sr〉,

where ↑ stands for a real root, single or multiple, of f(λ) = 0.

13



Fig. 1. The eigenvalue curve of the pencil of the quadrics (y2 + 2x z + 1, 2 y z + 1).

To distinguish different types of multiplicity of a real root, we use | to denote
a real root associated with a 1 × 1 Jordan block, and use ≀ for p consecutive
times to denote a real root associated with a p×p Jordan block. For example,
a real root with Segre characteristic [11] will be denoted by || in place of an ↑
in the index sequence, and a real root with the Segre characteristic [21] will be
denoted by ≀≀| in place of an ↑. When the Segre characteristic is (22), we use
≀̂≀≀̂≀ to distinguish it from ≀≀≀≀, which has the Segre characteristic [4]. Supposing
that λ0 is a real zero of f(λ) with a Jordan block of size k×k, we use ≀ · · · ≀+ or
≀ · · · ≀− to indicate that the corresponding sign εi of the block in the Quadric
Pair Canonical Form is + or −.

Since λ is a projective parameter, a projective transformation λ′ = (aλ +
b)/(cλ + d) does not change the pencil but may change the index sequence
of the pencil. On the other hand, thinking of the projective real line of λ
as a circle topologically, such a transformation induces either a rotation or
a reversal of order of the index sequence of the pencil. Therefore we need
to define an equivalence relation of all index sequences of a quadric pencil
under projective transformations of λ. In addition, replacing A and B by −A
and −B changes each index si to rank(λA − B) − si but essentially does not
change the pencil λA − B. Note that the above replacement changes of the
sign associated with a Jordan block of a root; for instance, if the quadrics A
and B have the index sequence 〈2≀≀−2|3|2〉, then −A and −B have the index
sequence 〈2≀≀+2|1|2〉.

We choose a representative in an equivalence class such that A is nonsingular;
therefore, ∞ is not a root of f(λ) = 0 and s0 + sr = 4. Taking these observa-
tions and conventions into consideration and denoting the equivalence relation
by ∼, this equivalence of index sequences is then defined by the following three
rules:

1) Rotation equivalence:

14



〈s0 ↑ s1 ↑ . . . ↑ sr−1 ↑ sr〉∼ 〈4 − sr−1 ↑ s0 ↑ s1 ↑ . . . ↑ sr−1〉, (2)

〈s0 ↑ s1 ↑ . . . ↑ sr−1 ↑ sr〉∼ 〈s1 ↑ s2 ↑ . . . ↑ sr ↑ 4 − s1〉.

2) Reversal equivalence:

〈s0 ↑ s1 ↑ . . . ↑ sr−1 ↑ sr〉 ∼ 〈sr ↑ sr−1 ↑ . . . ↑ s1 ↑ s0〉. (3)

3) Complement equivalence:

〈s0 ↑ s1 ↑ . . . ↑ sr−1 ↑ sr〉 ∼ 〈4 − s0 ↑ 4 − s1 ↑ . . . ↑ 4 − sr−1 ↑ 4 − sr〉. (4)

2.5 Signature variation

In this section we analyze the behavior of the eigenvalues of the pencil H(λ) =
λA − B, near the roots of f(λ) = det(H(λ)) = 0. This analysis amounts
to analyzing the eigenvalue curves at a real root of f(λ), and is needed for
computing the jump of the index function at the real root.

Consider a transformation H ′(λ) = P TH(λ)P of H(λ), where P is an invert-
ible matrix. First, we compare the behavior of the eigenvalues of H ′(λ) and
H(λ). For any real symmetric matrix Q of size n, we denote by ρk(Q) the
kth real eigenvalue of Q, so that ρ1(Q) 6 ρ2(Q) 6 · · · 6 ρn(Q). Using the
Courant-Fischer Maximin Theorem (see (14) p. 403), we have the following
result:

ρk(Q)σ1(P )2
6 ρk(P

TQP ) 6 ρk(Q)σn(P )2, (5)

where σ1(P ) (resp. σn(P )) is the smallest (resp. largest) singular value of P .

Proposition 1 Let P be an invertible matrix and H ′(λ) = P TH(λ)P . If
ρk(H(λ)) = aλµ(1 + o(λ)) with a 6= 0, then ρk(H

′(λ)) = a′λµ(1 + o(λ)) with
sign(a) = sign(a′).

Proof As the eigenvalue ρk(H
′(λ)) has a Puiseux expansion (1; 42) near

λ = 0 of the form ρk(H
′(λ)) = ρ′ + a′λµ′

(1 + o(λ)) with ρ′, a′ ∈ R and µ′ ∈ Q,
we deduce from the inequalities (5) that ρ′ = 0, µ′ = µ and sign(a′) = sign(a).

Proposition 1 allows us to deduce the behavior of the eigenvalues of the pencil
H(λ), from its normal form. Indeed, by Theorem 1, H(λ) is equivalent to

D(λ) = diag(ε1E1(λI1−J1(λ1)), ε2E2(λI2−J2(λ2)), . . . , εrEr(λIr−Jr(λr)), D
′(λ)),

(6)
where Ii is the identity matrix of the same size as that of the Jordan block
Ji(λi) of eigenvalue λi, and det(D′(λ)) has no real roots. Let us denote by
Nk(λ, ρ, ε) = εEk(λIk − Jk(ρ)) a block of the preceding form, where k is the
size of the corresponding matrices. Then we have the following property:
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Proposition 2 The eigenvalue branch ρ(λ) corresponding to Nk(λ, ρ0, ε) which
vanishes at λ = ρ0 is of the form

ρ = ενk(1 + o(ν))

where λ = ρ0 + ν.

Proof By an explicit expansion of the determinant N (λ, u) = det(Nk(λ, ρ0, ε)−
uIk) and denoting ν = λ − ρ0, we obtain

N (λ, u) = Ñ (ν, u) = (−1)kuk+· · ·+(−ε)k−1(−1)
(k−1)(k−2)

2
+1u+εk(−1)

k(k−1)
2 νk.

The vertices of the lower envelop of the Newton polygon of Ñ (ν, u) in the
(u, ν)-monomial space are the points (k, 0), (1, 0), (0, k). By Newton’s theorem
(see (1) p. 89), the Puiseux expansion of the root branch which vanishes near
ρ0 is of the form

ρ = ενk(1 + o(ν)),

which completes the proof.

According to Proposition 1, if the pencil H(λ) is equivalent to (6), then near
each root λi, the eigenvalue branches approaching 0 are of the form εi(λ −
λi)

ki(1+o(λ−λi)), where ki is the size of a block of the Quadric Pair Canonical
Form (6) of the eigenvalue λi and εi is the corresponding sign.

Index Jump: The preceding analysis explains how the index function can
change around the real roots of f(λ) = 0. Let α be a real root of f(λ) = 0.
Let α− and α+ be values sufficiently close to α, with α− < α and α+ > α.
Then the index jumps of Id(λ) at α are denoted as

∆−(α) = Id(α) − Id(α−), ∆+(α) = Id(α+) − Id(α),

∆(α) = Id(α+) − Id(α−) = ∆−(α) + ∆+(α).

We denote by ∆±
i (α) the changes of signature functions of the blocks Nki

(λ, λi, εi)
at α. Clearly, we have

∆±(α) =
k∑

i=1

∆±
i (α), ∆(α) =

k∑

i=1

∆i(α). (7)

Let us describe each ∆±
i (α) separately. For any a ∈ R, we denote a+ =

max(a, 0) and a− = min(a, 0). Note that a+ + a− = a.

(1) Jordan block of size 1 × 1: In this case, clearly, we have the following
signature sequence (ε−i , (0, 0), ε+

i ) and the jumps are ∆−(λi) = ε−i , ∆+(λi) =
ε+

i and ∆(λi) = εi.
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(2) Jordan block of size 2 × 2:

Nki
(λ, λi, εi) = εi




0 λ − λi

λ − λi −1


 .

In this case the corresponding eigenvalue branch vanishing at λi is equivalent
to εi(λ − λi)

2; therefore its sign is the same before and after λi. There is one
positive eigenvalue and one negative eigenvalue before and after λi. If εi > 0,
we have a positive eigenvalue branch which goes to 0 at λi; otherwise, we have
a negative one. Thus, the signature sequence of Nki

(λ, λi, εi) is (1, (1− ε+
i , 1+

ε−i ), 1) and the jumps are ∆−(λi) = −ε+
i , ∆+(λi) = ε+

i and ∆(λi) = 0.

(3) Jordan block of size 3 × 3: Since

Nki
(λ, λi, εi) = εi




0 0 λ − λi

0 λ − λi −1

λ − λi −1 0




.

The corresponding eigenvalue branch is equivalent to εi(λ − λi)
3, whose sign

changes before and after λi. If εi > 0, the signature of Nki
(λ, λi, εi) is (1, 2)

before λi and (2, 1) after. If εi < 0, we exchange the order of the two signatures.
Thus, we have the signature sequence (ε+

i − 2ε−i , (1, 1), 2ε+
i − ε−i ) = (1 −

ε−i , (1, 1), 1 + ε+
i ) and ∆−(λi) = ε−i , ∆+(λi) = ε+

i and ∆(λi) = εi.

(4) Jordan block of size 4×4: Using a similar argument, we can show that
there are two positive eigenvalues and two negative eigenvalues before and
after λi and the eigenvalue curve approaching zero has the form εi(λ − λi)

4.
Thus, the signature sequence of Nki

(λ, λi, εi) is (2, (2 − ε+
i , 2 + ε−i ), 2) and

∆−(λi) = −ε+
i , ∆+(λi) = ε+

i , ∆(λi) = 0.

To summarize, taking into account the sign εi = ±1, we have ∆i(α) = εi if Ji

has the size 1× 1 or 3× 3, and ∆i(α) = 0 if Ji has the size 2× 2 or 4× 4. The
rank of H(λ) drops by 1 at λ = λi for each block of the form Nki

(λ, λi, εi).
Thus, the signature of H(λi) can be deduced directly from its index Id(λi)
and the number of Jordan blocks with eigenvalue λi.

The above rules can be used to decide the permissible index jumps of Id(λ)
at a real root of f(λ) = 0, through Eqn. (7) and the signature of H(λi). In
particular, in the case of a simple root λi of f(λ) = 0, the sign εi in the Quadric
Pair Canonical Form can be deduced directly from the index before and after
the root. For instance, an index sequence of the form 〈1|2|1|2|3〉 corresponds
to a sequence of signs ε1 = +1, ε2 = −1, ε3 = +1, ε4 = +1, and the signatures
at the roots are (1, 2), (1, 2), (1, 2), (2, 1), respectively.
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Signature sequence: The previous analysis allows us to completely deter-
mine the signature sequence of the pencil H(λ) = λA − B, from its Quadric
Pair Canonical Form. For most of the cases, this signature sequence is, as we
will see, a characterization of the QSIC. A signature sequence is defined as

〈s0, (· · · (p1, n1) · · · ), s1, · · · sr−1, (· · · (pr, nr) · · · ), sr〉,

where si is the index of H(λ) between two consecutive real roots of f(λ) = 0,
(pi, ni) is the signature of H(λi) at a root λi and the number of parentheses
is the multiplicity of λi. Note that pi + ni = rank(λiA − B).

The advantage of using the signature sequence over using the index sequence
is that we just need to compute the multiplicity of a real root and determine
the signature of λA − B at the root; this is a far simpler computation than
computing the Jordan block size, which is the information required by the
index sequence. Conversion from an index sequence to the corresponding sig-
nature sequence is straightforward. For a given pair of quadrics, the signature
sequence can be computed easily using only rational arithmetic as described in
Section 2.6. Similar equivalence rules to those for index sequences apply to sig-
nature sequences as well. The signature sequences of all 35 QSIC morphologies
are listed in the third column of Tables 1, 2 and 3.

2.6 Effective issues

Now we discuss how to use rational arithmetic to compute the signature se-
quence for classifying the QISC morphology of a given pair of quadrics. Con-
sider the polynomial

C(λ, u) = det(λA − B − uI) = u4 + c3(λ)u3 + c2(λ)u2 + c1(λ)u + c0(λ).

The values where the signature changes are defined by C(λ, 0) = c0(λ) =
f(λ) = 0. For a fixed λ, the rank of the corresponding quadratic form is
the number of non-zero roots of C(λ, u) = 0. For any fixed λ, the number
of real roots in u, counted with multiplicity, is 4. The signature of λA − B
is determined by the rank of λA − B and the number of positive roots of
C(λ, u) = 0 in u. In the case where the number of real roots equals the degree
of the polynomial, the Descartes rule gives an exact counting of the number
of positive roots (2), and we have the following property:

Theorem 2 For any λ ∈ R,

• the number of positive eigenvalues of λA−B is the number of sign variations
of [1, c3(λ), c2(λ), c1(λ), c0(λ)].

• the number of negative eigenvalues of λA−B is the number of sign variations
of [1,−c3(λ), c2(λ),−c1(λ), c0(λ)].
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Computing the signature λA−B for λ ∈ Q is straightforward. Computing its
signature at a root of C(λ, 0) = f(λ) = 0 can also be performed using only
rational arithmetic. According to the previous propositions, this reduces to
evaluating the sign of ci(λ), i = 1 . . . 3. This problem can be transformed into
rational computation as follows. First, we represent a root α of f(λ) = 0 by

• the square-free part p(λ) of f(λ) = 0 and
• an isolating interval [a, b] with a, b ∈ Q such that α is the only root of p(λ)

in [a, b].

Isolating intervals can be obtained efficiently in several ways (see, for instance,
(23)). They can even be pre-computed in the case of polynomials of degree 4
(10). In order to compute the sign of a polynomial g at a root α of f(λ) =
0, we use subresultant (or Sturm-Habicht) sequences. We recall briefly the
construction here and refer to (2) for more details.

Given two polynomials f(λ) and g(λ) ∈ A[λ], where A is the ring of coeffi-
cients, we compute the sub-resultant sequence in λ, defined in terms of the
minors of the Sylvester resultant matrix of f(λ) and f ′(λ)g(λ). This yields a
sequence of polynomials R(λ) = [R0(λ), R1(λ), . . . , RN(λ)] with Ri(λ) ∈ A[λ],
whose coefficients are in the same ring A.

In our case, we take A = Z. For any a ∈ R, we denote by Vf,g(a) the number
of sign variation of R(a). Then we have the following property (2):

Theorem 3

Vf,g(a) − Vf,g(b) =#{α ∈ [a, b] root of f(λ) = 0 where g(α) > 0} −
#{α ∈ [a, b] root of f(λ) = 0 where g(α) < 0}.

In particular, if the interval [a, b] is an isolating interval for a root α of c0(λ) =
0, then Vf,g(a)−Vf,g(b) gives the sign of g(α). Taking g(λ) to be the coefficients
ci(λ) in Theorem 2, this method allows us to exactly compute the signature
of αA − B, using only rational arithmetic.

Efficient implementations of the algorithms presented here are available in the
library synaps 1 and have been applied to classifying QSIC morphologies,
based on the signature sequences derived in this paper.

1 http://www-sop.inria.fr/galaad/software/synaps/
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2.7 List of QSIC morphologies

All 35 different morphologies of QSIC are listed in Tables 1 through 3. In the
first column are the Segre characteristics with the subscript indicating the
number of real roots, not counting multiplicities. The index sequences and
signature sequences are given in the second column and the third column,
respectively. Here, only one representative is given for each equivalence class
associated with the corresponding QSIC morphology; in several cases, there
are two equivalence classes associated with one QSIC morphology. The nu-
meral label for each case, from 1 to 35, is given at the left upper corner of
each entry in the second column. These labels are referred to in subsequent
theorems establishing the relation between the index sequence and the QSIC
morphology. Cases 4, 10 and 31 share the same index sequence 〈2〉, thus also
the same signature sequence (2). Additional simple conditions based on mini-
mal polynomials for distinguishing these three cases are presented in Section 6.
Two different index sequences in cases 26 and 34 correspond to the same sig-
nature sequences; the discrimination of these two cases is also discussed in
Section 6. In the illustration of each QSIC morphology in column four, a solid
line or curve stands for a real component and a dashed one depicts an imag-
inary component. A solid dot indicates a real singular point, which in many
cases is a real intersection point of two or more components of a QSIC. An
open or closed component is drawn as such in the illustration. Note that,
in addition to topological properties, we also take algebraic properties into
consideration in defining morphologically different types. For example, a non-
singular QSIC may be vacuous in PR3, so is a QSIC consisting two imaginary
conics; these two QSICs are defined to be morphologically different since the
former is irreducible algebraically but the latter is not.

3 Classifications of nonsingular QSIC

3.1 [1111]4: f(λ) = 0 has four distinct real roots

Theorem 4 Given two quadrics A: XT AX = 0 and B: XT BX = 0, if their
characteristic equation f(λ) = 0 has four distinct real roots, then the only
possible index sequences are 〈1|2|1|2|3〉 and 〈0|1|2|3|4〉. Furthermore,

(1) (Case 1, Table 1) when the index sequence is 〈1|2|1|2|3〉, the QSIC has
two closed components;

(2) (Case 2, Table 1) when the index sequence is 〈0|1|2|3|4〉, the QSIC is
vacuous in PR3.
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Proof Let λi, i = 1, 2, 3, 4, be the four distinct real roots of f(λ) = 0. By
Theorem 1, A and B are simultaneously congruent to

Ā = diag(ε1, ε2, ε3, ε4), and B̄ = diag(ε1λ1, ε2λ2, ε3λ3, ε4λ4),

where εi = ±1, i = 1, 2, 3, 4. Without loss of generality, we suppose that
λ1 < λ2 < λ3 < λ4; this permutation of the diagonal elements can be achieved
by a further congruence transformation to Ā and B̄.

Clearly, the only possible index sequences are (up to the equivalence rules of
Section 2.4) 〈1|2|1|2|3〉 and 〈0|1|2|3|4〉. Since a pencil with the second index
sequence 〈0|1|2|3|4〉 contains a positive definite or negative definite quadric,
i.e., with the index being 4 or 0, we deduce that the intersection curve is empty
in that case.

For the first index sequence 〈1|2|1|2|3〉, according to Section 2.5, the sign
sequence in the corresponding Quadric Pair Canonical Form is (ε1 = 1, ε2 =
−1, ε3 = 1, ε4 = 1). Setting Ā to A′ and B̄ − λ4Ā to B′, we obtain

A′ = diag(1,−1, 1, 1),

B′ = diag ((λ1 − λ4),−(λ2 − λ4), (λ3 − λ4), 0 ) .

Consider the affine realization of PR3 by making y = 0 the plane at infinity.
Then A′ is a sphere, which intersects the x-z plane in a unit circle, while the
quadric B′ is an elliptic cylinder with the w-axis being its central direction,
which intersects the x-z plane in an ellipse, since λi < λ4, i = 1, 2, 3. Clearly, if
one of the ellipse’s semi-axes is smaller than 1 or both are smaller than 1, the
QSIC of A′ and B′ has two oval branches (see the left and middle configurations
in Figure 2). If both of the ellipse’s semi-axes are greater than 1, A′ and B′

have no real intersection points (see the right configuration in Figure 2). We
recall the following result from (11; 39): Two quadrics A : XT AX = 0 and
B : XT BX = 0 in PR3 has no real points if and only if λ0A − B is positive
definite or negative definite for some real number λ0. It implies that the index
sequence of the pencil cannot be 〈1|2|1|2|3〉. This is a contradiction. Hence,
the QSIC has two ovals.

Note that none of the semi-axes can be of length 1, since f(λ) = 0 is assumed to
have no multiple roots. We deduce that the QSIC has two closed components
when the index sequence is 〈1|2|1|2|3〉 and is empty when the index sequence
is 〈0|1|2|3|4〉. This completes the proof of Theorem 4.
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Fig. 2. Three cases of an elliptic cylinder intersecting with a unit sphere and their
corresponding cross sections in the x-z plane.

3.2 [1111]2: f(λ) = 0 has two distinct real roots and a pair of complex
conjugate roots

Theorem 5 (Case 3, Table 1) If f(λ) = 0 has two distinct real roots and one
pair of complex conjugate roots, then the index sequence of the pencil λA−B
is 〈1|2|3〉, and the QSIC comprises exactly one closed component in PR3.

Proof Wlog, we assume A is nonsingular. Suppose that f(λ) = 0 has two real
roots λ1 6= λ2 and two complex conjugate roots λ3,4 = a ± bi. First, it is easy
to see that the only index sequence possible is 〈1|2|3〉. We may suppose that
λ3,4 = ±i; this can be done by setting (B−aA)/b to B. By Theorem 1, A and
B are congruent to

A′ = (a′
ij) = diag(E1, ε1, ε2) = diag







0 1

1 0


 , ε1, ε2


 ,

B′ = (b′ij) = diag(E1J1, ε1λ1, ε2λ2) = diag(−1, 1, ε1λ1, ε2λ2).

As the index sequence is 〈1|2|3〉, we have ε1 = 1, ε2 = 1. Next we need consider
two cases: (1) λ1λ2 6= 0 and (2) λ1λ2 = 0.

Case 1 (λ1λ2 6= 0): By a variable transformation λ′ = −λ if necessary, we
may assume that at least one of λ1 and λ2 is positive. Then we denote λ1 > 0
and λ2 < 0 if only one of them is positive or denote λ2 > λ1 > 0 if both are
positive. It follows that λ1

λ2
< 1. We then set λ1A

′ −B′ to A′ and use a further
simultaneous congruence transformation to scale the diagonal elements of B′

into ±1. For simplicity of notation, we use the same symbols A′ and B′ for
the resulting matrices and obtain

A′ = (a′
ij) =




1 λ1

λ1 −1

0

β2(
λ1

λ2
− 1)




, B′ = (b′ij) =




−1

1

1

β2




.

where β2 = λ2/|λ2| = ±1.
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If β2 = 1, we swap b′4,4 and b′1,1, as well as a′
4,4 and a′

1,1, to obtain

A′ =




(λ1

λ2
− 1)

−1 λ1

0

λ1 1




, B′ =




1

1

1

−1




.

Or, if β2 = −1, we swap b′4,4 and b′2,2, as well as a′
4,4 and a′

2,2, to obtain

A′ =




1 λ1

(1 − λ1

λ2
)

0

λ1 −1




, B′ =




−1

−1

1

1




.

Note that permuting diagonal elements can be achieved by a congruence trans-
formation. Hence, whether β2 = 1 or β2 = −1, after a proper simultaneous
congruence transformation, B′ is the unit sphere or a one-sheet hyperboloid
with the z-axis as its central axis. Since λ1

λ2
< 1, a′

1,1 and a′
2,2 have the same

sign. Therefore, A′ is an elliptic cylinder parallel to the z-axis. Due to the
symmetry of B′ and A′ about the x-y plane, we just need to analyze the rela-
tionship between the two conic sections in which A′ and B′ intersect with the
x-y plane.

The quadric B′ intersects the x-y plane in the unit circle x2 + y2 = w2, and
A′ intersects the x-y plane in the ellipse

x2

a2
+

(y − cw)2

b2
= w2

when β2 = 1, or in the ellipse

(x + cw)2

b2
+

y2

a2
= w2

when β2 = −1. Here a =

√
λ2(1+λ2

1)

(λ2−λ1)
, b =

√
1 + λ2

1, and c = λ1.

In both cases of β2 = ±1, the center of the ellipse shifts from the origin
(along the x direction or y direction) by the distance |λ1|, and the length

of the ellipse’s semi-axis in the shift direction is b =
√

1 + λ2
1. Then it is

straightforward to verify that one of the ellipse’s extreme points of this axis
is inside the unit circle, while the other is outside the unit circle. (See Figure
3 for the case of β2 = −1.) In this case the QSIC of A′ and B′ has one closed
component in PR3 (see Figure 4).
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Fig. 3. The cross-sections of an elliptic
cylinder and a hyperboloid with one sheet
in the x-y plane.

Fig. 4. The intersection curve referred to
in Figure 3

.

Case 2 (λ1λ2 = 0): Wlog, we may suppose that λ1 = 0 and λ2 6= 0. Then, by
Theorem 1, noting that ε1 = ε2 = 1, A and B are congruent to

A′ =




0 1

1 0

1

1




, B′ =




−1 0

0 1

0

λ2




.

First set A′ − (1/λ2)B
′ to be A′. Then we use a congruence transformation

to make the diagonal elements of B′ become ±1 and apply the same trans-
formation to A′. Denoting the resulting matrices again using A′ and B′, we
obtain

A′ = (a′
ij) =




1
λ2

1

1 − 1
λ2

1

0




, B′ = (b′ij) =




−1 0

0 1

0

1




.

We swap b′4,4 and b′1,1, as well as a′
4,4 and a′

1,1, by a simultaneous congruence
transformation to obtain

A′ =




0

− 1
λ2

1

1

1 1
λ2




, B′ =




1

1

0

−1




.

Thus, B′ is a cylinder with the z-axis as its central axis, and A′ is either an
elliptic cylinder or a hyperbolic cylinder, depending on the sign of λ2, and A′
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is parallel to the y-axis. The equation of A′ is

(y − cw)2

a2
± z2

b2
= w2,

where a =
√

1 + λ2
2, b =

√
1+λ2

2

|λ2|
, c = λ2. The cylinder A′ shifts from the origin

by the distance |λ2| along the x-axis or the y-axis, and the length of its semi-

axis in the shift direction is
√

1 + λ2
2. Clearly, in this case, the QSIC of the

cylinders A′ and B′ has exactly one closed component in PR3. (See Figure 5.)
This completes the proof.

Fig. 5. The intersection of a circular cylinder with a hyperbolic cylinder or an elliptic
cylinder.

3.3 [1111]0: f(λ) = 0 has two distinct pairs of complex conjugate roots

Theorem 6 (Case 4, Table 1) If f(λ) = 0 has two distinct pairs of complex
conjugate roots, then the Segre characteristic is [1111] and the index sequence
is 〈2〉. In this case the QSIC comprises two open components in PR3.

Proof Suppose that f(λ) = 0 has the roots a ± bi and c ± di. First, it is
easy to see that the index sequence is 〈2〉. By setting (B − cA)/d to be B, we
transform conjugate roots c ± di to ±i. Therefore, we suppose that f(λ) = 0
has the roots a± bi and ±i. Furthermore, we may suppose that A and B form
a nonsingular pair of real symmetric matrices. Then, by Theorem 1, A and B
have the following canonical forms

A′ = diag







0 1

1 0


 ,




0 1

1 0





 and B′ = diag






−1

1


 ,




−b a

a b





 .

Here, a 6= 0 or b 6= ±1, since the roots a± bi are distinct from ±i. Also, b 6= 0
since a±bi are imaginary. Wlog, we may assume b > 0. In the following we will
derive a parameterization of the QSIC from which the topological information
about the QSIC can be deduced. The quadric A′ : XT A′X = 0 is a hyperbolic
paraboloid and can therefore be parameterized by r(u, v) = g(u) + h(u)v
where

g(u) = (−u, 0, 0, 1)T and h(u) = (0, 1, u, 0)T .
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Substituting r(u, v) into XT B′X = 0 yields

v =
−g(u)T B′h(u) ±

√
s(u)

h(u)T B′h(u)
, (8)

where

s(u) = [g(u)TB′h(u)]2 − [(g(u)TB′g(u))(h(u)TB′h(u))]

= −bu4 + (a2 + b2 + 1)u2 − b.

Substituting (8) into r(u, v) yields the following parameterization of the QSIC,

p(u) =
[
bu3 − u,−

(
au ±

√
s(u)

)
,−u

(
au ±

√
s(u)

)
, 1 − bu2

]T
. (9)

Since p(u) is a real point only when s(u) ≥ 0, we are going to identify the
intervals in which s(u) ≥ 0 holds. We will first show that s(u) = 0 always has
four distinct real roots. The equation

s(u) = −bu4 + (a2 + b2 + 1)u2 − b = 0

is a quadratic equation in u2 with discriminant

∆ = (a2 + b2 + 1)2 − 4b2 = a2(a2 + 2b2 + 2) + (b2 − 1)2 > 0,

since a 6= 0 or b 6= ±1. Therefore the two real solutions of u2 are

u2 =
(a2 + b2 + 1) ±

√
∆

2b
. (10)

Since ∆ = (a2 + b2 + 1)2 − 4b2 and b 6= 0, we have (a2 + b2 + 1) >
√

∆. It
follows that the numerator and denominator in (10) are positive; recall that
b > 0 is assumed. Then we get the four real solutions for s(u) = 0 from (10),
denoted by ±u+ and ±u−, with u+ > u− > 0.

Fig. 6. The graph of s(u). Fig. 7. The case of the QSIC has two
affinely infinite components.

Define two intervals I1 = [u−, u+], I2 = [−u+,−u−]. Since s(0) = −b < 0,
we have s(u) ≥ 0 for u ∈ I1

⋃
I2 and s(u) < 0 for the other values of u. (See

Figure 6 for the graph of s(u).) This implies that the QSIC, given by p(u),
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has two connected components, denoted by V1 and V2, corresponding to the
intervals I1 and I2: P1 is defined by p(u) over the interval I1, and V2 is defined
by p(u) over the interval I2.

Next we are going to show that the two components V1 and V2 are open curves
in PR3. Since V1 and V2 have the same parametric expression p(u) but over
different intervals, we will only analyze the component V1; the analysis for
V2 is similar. The key idea of the proof is to show that V1 has exactly one
intersection point with the plane w = 0; it will then follows that V1 has an
intersection with every plane in PR3.

Consider the affine realization AR3 of PR3 by making the plane w = 0 the
plane at infinity. The w-coordinate component of p(u) is w(u) = 1 − bu2,
which has two zeros u1 = 1/

√
b and u2 = −1/

√
b, and it is straightforward

to verify that u1 = 1/
√

b ∈ I1 and u2 = −1/
√

b ∈ I2. Therefore we will only
consider the two points p(u1) (i.e., with ± in Eqn. (9)) on the component V1.
Let q0(u) and q1(u) denote the two “branches” of p(u) corresponding to ± in

front of
√

s(u) in Eqn. (9). Then

q0(u)=
(
bu3 − u,−

(
au +

√
s(u)

)
,−u

(
au +

√
s(u)

)
, 1 − bu2

)T

q1(u)=
(
bu3 − u,−

(
au −

√
s(u)

)
,−u

(
au −

√
s(u)

)
, 1 − bu2

)T

. (11)

There are now three cases to consider: (i) a = 0; (ii) a > 0; and (iii) a < 0.
First consider the case (i) a = 0. In this case,

s(u) = −bu4 + (b2 + 1)u2 − b = (u2 − b)(1 − bu2).

It follows from Eqn. (11), after dropping a common factor
√
|1 − bu2|, that

q0(u)=
(
−u

√
|1 − bu2|,−

√
|u2 − b|,−u

√
|u2 − b|,

√
|1 − bu2|

)T

,

q1(u)=
(
−u

√
|1 − bu2|,

√
|u2 − b|, u

√
|u2 − b|,

√
|1 − bu2|

)T

.

Note that the two ends of I1 are 1/
√

b and
√

b when a = 0. It is easy to verify
that, when u =

√
b, the two branches q0(u) and q1(u) are joined together at

the finite point

q0(
√

b) = q1(
√

b) = (−
√

b|1 − b2|, 0, 0,
√
|1 − b2|)T .
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Next consider the behavior of q0(u) and q1(u) when u → u1 = 1/
√

b, which
is the other end of I1. Since

q0(u1) = (0,−
√
|b−1 − b|,−

√
|b−1 − b|/b, 0)T

and
q1(u1) = (0,

√
|b−1 − b|,

√
|b−1 − b|/b, 0)T ,

q0(u1) and q1(u1) represent the same point at infinity.

Denote qi(u) = (xi, yi, zi, wi)
T , i = 0, 1. To study the asymptotic behavior of

the QSIC, let us consider the limit of the affine coordinates of q0(u) and q1(u),
i.e., (x0/w0, y0/w0, z0/w0)

T and (x1/w1, y1/w1, z1/w1)
T , as u → u1 = 1/

√
b.

Clearly,

lim
u→u1

x0(u)

w0(u)
= lim

u→u1

x1(u)

w1(u)
= − 1√

b
,

lim
u→u1

y0(u)

w0(u)
= − lim

u→u1

y1(u)

w1(u)
= −∞,

and

lim
u→u1

z0(u)

w0(u)
= − lim

u→u1

z1(u)

w1(u)
= −∞.

Therefore, the component curve V1 comprises one connected component and
its two ends extend to infinity in opposite directions in AR3, with its asymptote
line being the intersection line of the two planes x+u1w = 0 and −u1y+z = 0.
Clearly, V1 is intersected by every plane in PR3. Hence, V1 is open in PR3.

Now we consider case (ii): a > 0. In this case, u1 = 1/
√

b ∈ I1 = (u−, u+).
Clearly, the two parts of V1 defined by q0(u) and q1(u) are joined at the two
finite points q0(u−) = q1(u−) and q0(u+) = q1(u+) We will show that, when
u = u1 = 1/

√
b, q0(u1) gives the only infinite point on V1. Since, from Eqn.

(11),

q0(u1) = (0,−2a/
√

b,−2a/b, 0)T ,

q0(u1) is a point at infinity. To study how q0(u) approach the infinite point
q0(u1), let us consider the limu→u1− q0(u) and limu→u1+ q0(u) when u ap-
proaches u1 from different sides. Using the affine coordinates of q0(u), we
have

lim
u→u1−

x0(u)

w0(u)
= − lim

u→u1+

x0(u)

w0(u)
= −1/

√
b,

lim
u→u1−

y0(u)

w0(u)
= − lim

u→u1+

y0(u)

w0(u)
= +∞,

and

lim
u→u1−

z0(u)

w0(u)
= − lim

u→u1+

z0(u)

w0(u)
= +∞.

Thus, the component V1 extends to infinity in opposite directions, with its
asymptote being the intersection line of the two planes x + u1w = 0 and
−u1y + z = 0.
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Note that all other points of V1 are obviously finite, except for the point q1(u1)
whose w component is zero. But we will show that q1(u1) is, in fact, also a

finite point. Denote g(u) =
√

s(u). Expanding g(u) at u = u1 by the Taylor
formula yields

g(u) =
a√
b

+ g′(u1)(u − u1) + o(u − u1),

where o(u − u1) is a term whose order is higher than u − u1 when u → u1.
Plugging the above g(u) in q1(u) yields

q1(u)=
(
bu3 − u,−(au − g(u)),−u(au− g(u)), 1− bu2

)T

=




bu(u + 1/
√

b)(u − 1/
√

b)

−
(
au − a/

√
b − g′(u1)(u − 1/

√
b)
)

−u
(
au − q/

√
b − g′(u1)(u − 1/

√
b)
)

−b(u + 1/
√

b)(u − 1/
√

b)




+ o(u − u1)

=




bu(u + 1/
√

b)(u − 1/
√

b)

(g′(u1) − a)(u − 1/
√

b)

u(g′(u1) − a)(u − 1/
√

b)

−b(u + 1/
√

b)(u − 1/
√

b)




+ o(u − u1).

Dividing a common factor u−u1 = u−1/
√

b to these homogeneous coordinates,
we have

q1(u) =
(
bu(u + 1/

√
b), g′(u1) − a, u(g′(u1) − a),−b(u + 1/

√
b)
)T

+ o(1)

Therefore,

lim
u→u1

q1(u) =
(
2, g′(u1) − a, (g′(u1) − a)/

√
b, −2

√
b
)T

.

It follows that q1(u1) is a finite point in AR3. Hence, V1 is an open curve
in PR3, since it is a continuous curve that extends to infinity in opposite
directions with an asymptote line.

In the third case of a < 0, it can be proved similarly that q0(u1) is a finite
point in AR3 and q1(u1) is the only infinite point on V1. Therefore, in this
case V1 is also an open curve. Finally, in all the three subcases (i.e., a = 0,
a > 0 and a < 0), we can show similarly that the other component V2 of the
QSIC of A and B is also open in PR3. Hence, the QSIC of A and B has two
open components in PR3. An example of such a QSIC is shown in Figure 7.
This completes the proof of Theorem 6.
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4 Classification of singular but non-planar QSIC

4.1 [211]: f(λ) = 0 has one real double root and two other distinct roots

Theorem 7 ([211]3) Given two quadrics A:XTAX = 0 and B:XT BX = 0,
if f(λ) = 0 has one double real root and two distinct real roots with the Segre
characteristic [211], then the only possible index sequences of the pencil λA−B
are 〈2≀≀−2|3|2〉, 〈2≀≀+2|3|2〉, 〈1≀≀−1|2|3〉 and 〈1≀≀+1|2|3〉. Furthermore,

(1) (Case 5, Table 1) when the index sequence is 〈2≀≀−2|3|2〉 or 〈2≀≀+2|3|2〉,
the QSIC has one closed component with a crunode;

(2) (Case 6, Table 1) when the index sequence is 〈1≀≀−1|2|3〉, the QSIC has a
closed component plus an acnode;

(3) (Case 7, Table 1) when the index sequence is 〈1≀≀+1|2|3〉, the QSIC has
only one real point, which is an acnode.

Proof Suppose that f(λ) = 0 has one double real root λ0 and two distinct real
roots λ1 and λ2 with the Segre characteristic [211]. First, it is easy to check
that the only possible index sequences are 〈2≀≀−2|3|2〉, 〈2≀≀+2|3|2〉, 〈1≀≀−1|2|3〉
and 〈1≀≀+1|2|3〉.

By setting B − λ0A to be B, we can transform the double root λ0 into 0.
With a further projective transform to λ, we may assume that 0 < λ1 < λ2.
According to Theorem 1, and wlog, assuming ε0 = 1, the two quadrics can be
reduced simultaneously to the following forms:

A′ = (a′
ij) =




0 1 0 0

1 0 0 0

0 0 ε1 0

0 0 0 ε2




, B′ = (b′ij) =




0 0 0 0

0 1 0 0

0 0 ε1λ1 0

0 0 0 ε2λ2




,

where ε1,2 = ±1. By swapping the position a′
1,1 and a′

4,4, as well as b′1,1 and
b′4,4, we obtain

A′ =




ε2 0 0 0

0 0 0 1

0 0 ε1 0

0 1 0 0




, B′ =




ε2λ2 0 0 0

0 1 0 0

0 0 ε1λ1 0

0 0 0 0




.

There are now two cases to consider: (i) det(A′) > 0 and (ii) det(A′) < 0. In
case (i) (det(A′) > 0), we have ε1ε2 = −1. Because Id(∞)= index(A′)= 2 and
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the index jump of index function at λ0 = 0 is 0, the associated index sequence
is 〈2≀≀−2|3|2〉 or 〈2≀≀+2|3|2〉. Note that 〈2≀≀−2|3|2〉 is equivalent to 〈2≀≀+2|1|2〉,
and 〈2≀≀+2|3|2〉 is equivalent to 〈2≀≀−2|1|2〉.

By setting λ1+λ2

2
A′ − B′ to be A′, we obtain

A′ =




ε2
λ1−λ2

2
0 0 0

0 −1 0 ε1
λ1+λ2

2

0 0 λ2−λ1

2
0

0 ε1
λ1+λ2

2
0 0




, B′ =




ε2λ2 0 0 0

0 1 0 0

0 0 ε1λ1 0

0 0 0 0




(12)

Clearly, the quadric B′ is a cone passing through the point (0, 0, 0, 1)T . Since
λ2 − λ1 > 0, A′ is an ellipsoid if ε1 = −1 and ε2 = 1, and is a two-sheet
hyperboloid if ε1 = 1 and ε2 = −1. In both cases A′ passes through the
point (0, 0, 0, 1)T . According to Eqn. (12), A′ and B′ are in one of the two
cases shown in Figure 8. Thus, the QSIC is a singular quartic having one
component with a crunode. Because the QSIC is contained in the ellipsoid or
two-sheet hyperboloid A′, it is a closed curve in PR3. This proves the first
item of Theorem 7.

Fig. 8. Two cases of the QSIC having a
crunode.

Fig. 9. The case of the QSIC having an
acnode.

In case (ii) (det(A′) < 0): ε1 and ε2 have the same sign and Id(∞) = Id(A′)=
1 or 3. Also, the index jump at λ0 = 0 is 0 because the size of its Jordan block
associated with λ0 is 2. Therefore, the associated index sequence is 〈1≀≀−1|2|3〉
or 〈1≀≀+1|2|3〉.

If ε1 = ε2 = −1, the index of λ0A
′ − B′ = −B′ is 2. Thus the index sequence

is 〈3≀≀+3|2|1〉, which is equivalent to 〈1≀≀−1|2|3〉. In this case the quadric B′

is a cone with the y-axis as its central axis, and the quadric A′ is an elliptic
paraboloid also with y-axis as its central axis. It is then easy to verify that
the the QSIC has a closed component plus an acnode, as shown in Figure 9.
This proves the second item of Theorem 7.

If ε1 = ε2 = 1, the index of λ0A
′ − B′ = −B′ is 0. Thus the index sequence

〈1≀≀1|2|3〉 specializes to 〈1≀≀+1|2|3〉. In this case, B′ is a positive semi-definite;
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thus, the QSIC of A′ : XT A′X = 0 and B′ : XT B′X = 0 has only one real
point (0, 0, 0, 1), which can be verified to be an acnode. This proves the last
item of Theorem 7.

Theorem 8 ([211]1: Case 8, Table 1) If f(λ) = 0 has one double root and
a pair of complex conjugate roots, then the only possible index sequence is
〈2≀≀−2〉 (or its equivalent 〈2≀≀+2〉) and in this case the QSIC comprises one
open component with a crunode.

Proof Suppose that the pair of complex conjugate roots are a ± bi and the
double root is λ0. Setting B to be (B − aA)/b, we transform the roots a ± bi
to ±i. By Theorem 1, the two quadrics can be reduced to the following forms:

A′ =




0 ε 0 0

ε 0 0 0

0 0 0 1

0 0 1 0




, B′ =




0 ελ0 0 0

ελ0 ε 0 0

0 0 −1 0

0 0 0 1




, (13)

where ε = ±1. Setting B′ − λ0A to be B′, and then swapping A′
1,1, A′

4,4, as
well as B′

1,1, B′
4,4, A′ and B′ are transformed to

A′ =




0 0 1 0

0 0 0 ε

1 0 0 0

0 ε 0 0




, B′ =




1 0 −λ0 0

0 ε 0 0

−λ0 0 −1 0

0 0 0 0




.

Denote k = 1/
√

1 + λ2
0. Applying the congruence transformation C = P T DP

with

P =




1 0 kλ0 0

0 1 0 0

0 0 k 0

0 0 0 1




.

simultaneously to A′ and B′, we obtain the transformed A′ and B′ as

A′ =




0 0 k 0

0 0 0 ε

k 0 2k2λ0 0

0 ε 0 0




, B′ =




1 0 0 0

0 ε 0 0

0 0 −1 0

0 0 0 0




.
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The quadric B′ is a cone and therefore can be parameterized by

r(u, v) = g(u) + vh(u),

where g(u) = (1− εu2, 2u, 1 + εu2, 0)T and h(u) = (0, 0, 0, 1)T . Substituting
r(u, v) into XT A′X = 0, we obtain a quadratic equation whose two solutions
are v = ∞, which is trivial, and v = −c0(u)/(2c1(u)). Substituting the latter
solution of v into r(u, v) yields the parameterization of the QSIC,

p(u) =
(
2εu(1 − εu2), 4u2, 2εu(1 + εu2), k(1 − u4) + k2λ0(1 + εu2)2

)T

(14)
From p(u), we see that the QSIC passes through the point p0 = (0, 0, 0, 1)T

twice, with u = 0 or u = ∞. Hence, p0 is a singular point of the QSIC.
Furthermore, it is easy to verify that p0 is a crunode.

In the following we will show that the QSIC has two open branches intersecting
at the crunode. Consider the intersection of the QSIC with the plane w = 0.
The last component w(u) of p(u) in Eqn. (14) is a quadratic polynomial in
u2, whose two zeros are

u2 = (−εkλ0 + 1)/(kλ0 − 1)

and
u2 = (−εkλ0 − 1)/(kλ0 − 1).

Recall that k = 1/
√

1 + λ2
0, it is straightforward to verify that w(u) has two

real zeros in u. These two real zeros are u1,2 = ±(λ0 +
√

1 + λ2
0) when ε = 1 or

u1,2 = ±1 when ε = −1. We observe that u1 and u2 have opposite signs and
p(u1) and p(u2) are two distinct points.

Now we are going to show by contradiction that the QSIC cannot be closed.
Assume that the QSIC is closed, i.e., there is an affine realization of PR3 in
which the QSIC is compact. Note that the plane w = 0 is not necessarily
the plane at infinity in this affine realization. Then the QSIC has a topology
shown in Figure 10, having two closed loops joining at the crunode, i.e., like
the figure of “8”. Since the crunode corresponds to two parameter values 0 and
∞ of u under the parameterization p(u) in Eqn. (14), the two loops must be
parameterized over the positive interval u ∈ (0, +∞) and the negative interval
u ∈ (−∞, 0), respectively. Now consider again the intersection of the QSIC
with the plane w = 0. If the plane w = 0 intersects any loop of the QSIC,
say the loop defined over the positive interval, there must be at least two
intersection points, which should be given by two positive values of u through
p(u). However, from the preceding discussions we know that there are only two
intersections between the QSIC: p(u) and the plane w = 0, which correspond
to one positive value and one negative value of u. This is a contradiction.
Hence, there is no finite loop of the QSIC in any affine realization of the
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projective space. That is, the QSIC has one open component with a crunode.
(An example of such a QSIC is shown in Figure 11.) This completes the proof
of Theorem 8.

Fig. 10. The hypothetical topological
shape of a QSIC.

Fig. 11. A QSIC having one open compo-
nent with a crunode.

4.2 [22]: f(λ) = 0 has two double roots

Theorem 9 ([22]2: Case 9, Table 1) If f(λ) = 0 has two real double roots
with the Segre characteristic [22], then the only possible index sequences are
〈2≀≀−2≀≀−2〉 and 〈2≀≀−2≀≀+2〉, the QSIC comprises a real line and a space cubic
curve intersecting at two distinct real points for both sequences.

Theorem 10 ([22]0: Case 10, Table 1) If f(λ) = 0 has two pairs of identical
complex conjugate roots with the Segre characteristic [22], then the index se-
quences are 〈2〉 and the QSIC comprises a real line and a space cubic curve
that do not intersect at any real point.

4.3 [31]: f(λ) = 0 has one real triple root and one real simple root

Theorem 11 (Case 11, Table 1) If f(λ) = 0 has one triple root and one
simple real root with the Segre characteristic [31], then the index sequence is
〈1≀≀≀+2|3〉 and the QSIC comprises a closed component with a real cusp.

4.4 [4]: f(λ) = 0 has one real quadruple root

Theorem 12 (Case 12, Table 1) If f(λ) = 0 has one quadruple root with the
Segre characteristic [4], then the index sequence is 〈2≀≀≀≀−2〉 or its equivalent
form 〈2≀≀≀≀+2〉, and the QSIC comprises a real line and a real space cubic curve
tangent to each other at a real point in this case.
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5 Classification of planar QSIC

5.1 [(11)11]: f(λ) = 0 has one real double root and two other distinct roots

Theorem 13 ([(11)11]3) If f(λ) = 0 has one double real root and two distinct
real roots with the Segre characteristic [(11)11], then there are only five dif-
ferent possible index sequences and these index sequences correspond to four
different QSIC morphologies as follows:

(1) (Case 13, Table 2) 〈2||2|1|2〉 - two real closed conics intersecting at two
distinct real points;

(2) (Case 14, Table 2) 〈1||3|2|3〉 - two real conics not intersecting at any real
points;

(3) (Case 15, Table 2) 〈1||1|2|3〉 - two imaginary conics intersecting at two
distinct real points;

(4) (Case 16, Table 2) 〈0||2|3|4〉 or 〈1||3|4|3〉 - two imaginary conics not
intersecting at any real points.

Theorem 14 ([(11)11]1) If f(λ) = 0 has a real double root λ0 and a pair of
complex conjugate roots with the Segre characteristic [(11)11], then the possible
index sequences of the pencil λA − B are 〈1||3〉 and 〈2||2〉. Furthermore,

(1) (Case 17, Table 2) when the index sequence is 〈1||3〉, the QSIC comprises
of two conics, one real and one imaginary;

(2) (Case 18, Table 2) when the index sequence is 〈2||2〉, the QSIC comprises
of two real conics which cannot both be ellipses simultaneously in any
affine realization of PR3.

5.2 [(111)1]2: f(λ) = 0 has one real triple root and a real simple root

Theorem 15 ([(111)1]2) If f(λ) = 0 has one triple root and a simple root
with the Segre characteristic [(111)1], then the only possible index sequences
are 〈1|||2|3〉 and 〈0|||3|4〉. Furthermore,

(1) (Case 19, Table 2) when the index sequence is 〈1|||2|3〉, the QSIC is a
real conic counted twice;

(2) (Case 20, Table 2) when the index sequence is 〈0|||3|4〉, the QSIC is an
imaginary conic counted twice.
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5.3 [(21)1]2: f(λ) = 0 has one real triple root and a real simple root

Theorem 16 ([(21)1]2) If f(λ) = 0 has one triple root and a simple root
with the Segre characteristic [(21)1], then the only possible index sequences
are 〈1≀≀−|2|3〉 and 〈1≀≀+|2|3〉. Furthermore,

(1) (Case 21, Table 2) when the index sequence is 〈1≀≀−|2|3〉, the QSIC com-
prises two real conics tangent to each other at one real point;

(2) (Case 22, Table 2) when the index sequence is 〈1≀≀+|2|3〉, the QSIC com-
prises two imaginary conics tangent to each other at one real point.

5.4 [2(11)]2: f(λ) = 0 has two real double roots

Theorem 17 If f(λ) = 0 has two double roots with the Segre characteristic
[2(11)], then the only possible index sequences are 〈2≀≀−2||2〉 (or its equivalent
form 〈2≀≀+2||2〉), 〈1≀≀+1||3〉 and 〈1≀≀−1||3〉. Furthermore,

(1) (Case 23, Table 3) when the index sequence is 〈2≀≀−2||2〉, the QSIC con-
sists of a real conic and two real lines which intersect pairwise at three
distinct real points;

(2) (Case 24, Table 3) when the index sequence is 〈1≀≀−1||3〉, the QSIC con-
sists of a real conic and a pair of complex conjugate lines. The conic and
the pair of lines do not intersect;

(3) (Case 25, Table 3) when the index sequence is 〈1≀≀+1||3〉, the QSIC con-
sists of an imaginary conic and a pair of complex conjugate lines. The
conic and the pair of lines do not intersect.

5.5 [(31)]1: f(λ) = 0 has one real quadruple root

Theorem 18 If f(λ) = 0 has one quadruple root with the Segre character-
istic [(31)], then the only possible index sequences are 〈2≀≀≀−|2〉 and 〈1≀≀≀+|3〉.
Furthermore,

(1) (Case 26, Table 3) when the index sequence is 〈2≀≀≀−|2〉, the QSIC consists
of a real conic and two real lines, and these three components intersect at
a common real point;

(2) (Case 27, Table 3) when the index sequence is 〈1≀≀≀+|3〉, the QSIC consists
of a real conic and a pair of complex conjugate lines, and these three
components intersect at a common real point.
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5.6 [(11)(11)]: f(λ) = 0 has two double roots

Theorem 19 ([(11)(11)]2) If f(λ) = 0 has two real double roots with the Segre
characteristic [(11)(11)], then the only possible index sequences are 〈2||2||2〉,
〈0||2||4〉 and 〈1||1||3〉. Furthermore,

(1) (Case 28, Table 3) when the index sequence is 〈2||2||2〉, the QSIC consists
of four real lines, and these four lines form a quadrangle in PR3;

(2) (Case 29, Table 3) when the index sequence is 〈0||2||4〉, the QSIC consists
of four imaginary lines and has no real point;

(3) (Case 30, Table 3) when the index sequence is 〈1||1||3〉, the QSIC consists
of two pair of complex conjugate lines, with each pair intersecting at a
real point.

Theorem 20 ([(11)(11)]0: Case 31, Table 3) If f(λ) = 0 has two identical
pairs of complex conjugate roots with the Segre characteristic [(11)(11)], the
only possible index sequences are 〈2〉, and in this case the QSIC comprises two
non-intersecting real lines and two non-intersecting imaginary lines.

5.7 [(211)]: f(λ) = 0 has one real quadruple root

Theorem 21 If f(λ) = 0 has a quadruple root with the Segre characteris-
tic [(211)], then the only possible index sequences are 〈2≀≀−||2〉 and 〈1≀≀−||3〉.
Furthermore,

(1) (Case 32, Table 3) when the index sequence is 〈2≀≀−||2〉, the QSIC consists
of a pair of intersecting real lines, counted twice;

(2) (Case 33, Table 3) when the index sequence is 〈1≀≀−||3〉, the QSIC consists
of a pair of conjugate lines, counted twice.

5.8 [(22)]: f(λ) = 0 has one real quadruple root

Theorem 22 If f(λ) = 0 has a quadruple root with the Segre characteris-
tic [(22)], then the only possible index sequences are 〈2≀≀−≀≀−2〉 and 〈2≀≀−≀≀+2〉
Furthermore,

(1) (Case 34, Table 3) when the index sequence is 〈2≀≀−≀≀−2〉, the QSIC con-
sists a real double line and two other non-intersecting imaginary lines.
The two imaginary lines do not form a complex conjugate pair.

(2) (Case 35, Table 3) when the index sequence is 〈2≀≀−≀≀+2〉, the QSIC con-
sists a real double line and two other non-intersecting real lines. Each of

37



the latter two lines intersects the real double line.

6 Classification by signature sequences

Through the above analysis, we have put different QSIC morphologies in cor-
respondence to different characterizing conditions, given by conditions in The-
orem 4 through Theorem 22. Hence, we conclude that all these conditions are
necessary and sufficient for the corresponding QSIC morphologies. We may
then check these conditions to classify the QSIC of a given pair of quadrics in
PR3. Based on these conditions one could compute the index sequence of two
given quadrics for QSIC classification; however, this would involve the diffi-
cult task of computing Jordan blocks. To avoid computing Jordan blocks, we
convert all index sequences to their corresponding signature sequences. The
advantage of using the signature sequence over using the index sequence is
that we just need to compute the multiplicity of a real root and determine the
signature of λA − B at the root; this is a far simpler than computing Jordan
blocks.

There are some cases which cannot be distinguished by using signature se-
quences alone. We will show in this section that these cases can easily be
distinguished by the fact that their corresponding minimal polynomials have
different degrees.

Not all the signature sequences of the 35 different QSIC morphologies are
distinct: the three different QSIC morphologies with the Segre characteristics
[1111]0, [22]0 and [(11)(11)]0 (i.e., cases 4, 10 and 31) share the same index
sequence 〈2〉, thus leading to the same signature sequence (2). Furthermore,
two different index sequences 〈2≀≀≀−|2〉 and 〈2≀≀−≀≀+2〉 (i.e., cases 26 and 35) are
mapped to the same signature sequence 〈2((((1, 1))))2〉. Thus, in total, there
are only 32 distinct signature sequences. In the following we explain how these
cases can be distinguished.

The signature sequence (2) can be given by the different Segre characteristics
[1111]0, [22]0 and [(11)(11)]0. Suppose that the signature sequence (2) has
been detected, i.e., f(λ) = 0 has been found to have no real root. The case of
[1111]0 is distinguished from the other two cases by the fact that f(λ) = 0 has
no multiple roots; this can be detected by whether the discriminant of f(λ)
vanishes, i.e., whether Disc(f) ≡ Resλ(f, fλ) = 0.

Then the case of [22]0 and the case of [(11)(11)]0 can be distinguished by the
fact that they have different minimal polynomials. Suppose that the input
quadrics are given in the real symmetric matrices A and B; and, wlog, assume
that A is nonsingular. Since in the case of [22]0 or [(11)(11)]0, f(λ) is a squared
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polynomial, we suppose

f(λ) = (aλ2 + bλ + c)2,

whose square-free part is

g(λ) = aλ2 + bλ + c,

where a, b, c ∈ R and b2 − 4ac < 0. Then, by Theorem 1 and the Cauchy-
Cayley Theorem, the case of [(11)(11)]0 occurs if g(λ) annihilates A−1B, i.e.,
g(A−1B) = 0; otherwise, the case of [22]0 occurs. Note that g(λ) can be
obtained as the GCD of f(λ) and f ′(λ).

The remaining problem is that the two index sequences 〈2≀≀≀−|2〉 and 〈2≀≀−≀≀+2〉
are mapped to the same signature sequence 〈2((((1, 1))))2〉. For either of the
two cases, f(λ) = (λ − a)4 for some a ∈ R, but the minimal polynomial for
the case of 〈2≀≀−≀≀+2〉 is g(λ) = (λ− a)2, while the minimal polynomial for the
case of 〈2≀≀≀−|2〉 is h(λ) = (λ − a)3. Therefore, the case of 〈2≀≀−≀≀+2〉 occurs if
A−1B is annihilated by g(λ), i.e., g(A−1B) = 0; otherwise, the case of 〈2≀≀≀−|2〉
occurs. Note that g(λ) = (λ−a)2 can be obtained without solving for the root
a.

Combining the preceding methods based on minimal polynomials with the
methods described in Section 2.6 for exact computation of the signature se-
quences, we have a complete algorithm for exact classification of QSIC mor-
phologies.

Example 1: Now we use a running example to show the procedure of using the
signature sequence for QSIC morphology classification. Consider two quadrics

A : 20 x2 − 12 xy + 48 xz + 76 x + 16 y2

−16 yz − 12 y + 42 z2 + 72 z + 58 = 0,

B : 28 x2 + 16 xy + 80 xz + 56 x + 2 y2

+24 yz + 20 y + 56 z2 + 72 z + 14 = 0.

The equation of the eigenvalue curve C is

u4 + (−136 λ + 100)u3 +
(
−1048 − 3612 λ + 2904 λ2

)
u2

+
(
−10000 λ3 + 22616 λ2 + 28416 λ

)
u

− 170528 λ2 + 170528 λ3 − 85264 λ4 = 0.

Substituting u = 0 in this polynomial yields

−85264 λ4 + 170528 λ3 − 170528 λ2 = 0,
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whose only real root is the double root λ = 0. Substituting λ = −1 in the
equation of C yields

u4 + 236 u3 + 5468 u2 + 4200 u − 426320,

which has one sign change in its coefficients; therefore, by the Descartes
rule, it has only one positive root. It follows that the signature sequence is
(1, ((1, 1)), 3). By Theorem 14, the corresponding QSIC is the union of a real
conic and an imaginary one, which is case 17 in Table 2.

7 Conclusions

To summarize, we have obtained the following result:

Theorem 23 There are in total 35 different QSIC morphologies with non-
degenerate pencils (see Tables 1, 2 and 3). The morphology of the QSIC of a
pencil (A, B) is entirely classified by its signature sequence and the degree of
its minimal polynomial, using only rational arithmetic computation.

Besides used for determining the QSIC morphology for enhancing robust com-
putation of QSIC in surface boundary evaluation, another application of our
results is to derive simple algebraic conditions for interference analysis of
quadrics. For arrangement computation, it is an interesting problem to clas-
sify all possible partitions of R3 that can be formed by two ellipsoids. It is
also possible to apply the results here to derive efficient algebraic conditions
for collision detection between various types of quadric surfaces, such as cones
and cylinders, following the framework in (47).

One could also use the idea developed here to study the classification of a
pencil of conics in PR2, which would lead to a classification of QSIC with
degenerate pencils in PR3. A more challenging problem is to use the signature
sequence to classify the intersection of two quadrics in higher dimensions, PR4

say. Here the difficult issue is to deduce the geometry of the QSIC associated
with each possible Quadric Quadric Pair Canonical Form, while it is should
be straightforward to obtain the signature sequence of the normal form, based
on the results presented in the present paper.

Another direction of investigation would be the classification of the net of
three quadrics in PRn. In this case, given three quadratic forms A, B and
C, the question is how to use the invariants of the planar curve f(α, β, γ) ≡
det(αA + βB + γC) = 0 to characterize the geometric properties of the net
XT (αA + βB + γC)X = 0 or the intersection of the quadrics XT AX = 0,
XT BX = 0 and XT CX = 0.
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[24] B. Mourrain, J.P. Técourt and M. Teillaud 2005. On the com-
putation of an arrangement of quadrics in 3D. Computational Geometry 30,
145–164.
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dringungskurven, Encyklopädie der Mathematischen Wissenschaften, Vol-
ume III.C.2 , eds. W. F. Meyer and H. Mohrmann, Published by B. G.

42



Teubner, Leipzig, 161-256.
[34] R. C. Thompson. Pencils of complex and real symmetric and skew ma-

trices. Linear Algebra Appl., 147:323–371, 1991.
[35] G. R. Trott. On the canonical form of a non-singular pencil of hermitian

matrices. Amer. J. Math., 56:359–371, 1934.
[36] C. Tu, W. Wang and J.Y. Wang 2002. Classifying the morphology

of the nonsingular intersection curves of two quadric surfaces. Proceedings
of Geometric Modeling and Processing, Tokyo, 23–32.

[37] C. Tu, W. Wang, B. Mourrain and J.Y. Wang 2002. Signature
Sequence of Intersection Curve of Two Quadrics for Exact Morphological
Classification. Technical Report of Department of Computer Science at The
University of Hong Kong, TR-2005-09, 2005.

[38] F. Uhlig 1973a. Simultaneous block diagonalization of two real sym-
metric matrices. Linear Algebra and Its Applications 7, 281–289.

[39] F. Uhlig 1973b. Definite and semidefinite matrices in a real symmetric
matrix pencil. Pacific Journal of Mathematics 2, 561–568.

[40] F. Uhlig 1976. A canonical form for a pair of real symmetric matrices
that generate a nonsingular pencil. Linear Algebra and Its Application 14,
189–209.

[41] J.V. Uspensky 1948. Theory of Equations, McGraw-Hill Inc., New York.
[42] R. Walker 1962. Algebraic Curves. Dover, 1962.
[43] W. Wang, J.Y. Wang and M.S. Kim 2001. An algebraic condition

on the separation of two ellipsoids. Computer Aided Geometric Design 18,
531–539.

[44] W. Wang 2002. Modelling and processing with quadric surfaces, (Chap-
ter 31). Handbook of Computer Aided Geometric Design, eds. J. Hoschek,
G. Farin and M.S. Kim, North Holland, Elsevier, The Netherlands, 777–795.

[45] W. Wang, B. Joe, and R. Goldman 2002. Computing quadric surface
intersections based on an analysis of plane cubic curves. Graphical Models 6,
335–367.

[46] W. Wang, R. Goldman and C. Tu 2003. Enhancing Levin’s method
for computing quadric- surface intersections. Computer Aided Geometric
Design 7, 401–422.

[47] W. Wang and R. Krasauskas 2004. Interference analysis of conics
and quadrics. Topics in Algebraic Geometry and Geometric Modeling , eds.
R. Goldman and R. Krasauska, AMS Contemporary Mathematics 334, 25–
36.

[48] I. Wilf and Y. Manor 1993. Quadrics-surface intersection curves:
shape and structure. Computer-aided Design 10, 633–643.

[49] J. Williamson. The equivalence of non-singular pencils of hermitian matri-
ces in an arbitrary field. American Journal of Mathematics, 57(3):475–490,
1935.

Appendix: Proofs of Theorems 9 Through 22

43



Proof of Theorem 9 Suppose that the two real double roots are λ0 and λ1.
By setting (B−λ1A) to be B, we transform the root λ1 to 0; the other root is
still denoted by λ0. By Theorem 1, the two quadrics have the canonical forms

A′ = (a′
ij) =




0 1 0 0

1 0 0 0

0 0 0 ε

0 0 ε 0




, B′ = (b′ij) =




0 0 0 0

0 1 0 0

0 0 0 ελ0

0 0 ελ0 ε




,

where ε = ±1. Clearly, Id(A′) = Id(∞) = 2 and the index jumps at both
roots λ0 and λ1 are 0. Therefore the only possible index sequence takes the
form 〈2≀≀2≀≀2〉, covering the two nonequivalent index sequences 〈2≀≀−2≀≀−2〉 and
〈2≀≀−2≀≀+2〉. Note that 〈2≀≀−2≀≀−2〉 is equivalent to 〈2≀≀+2≀≀+2〉, and 〈2≀≀−2≀≀+2〉
is equivalent to 〈2≀≀+2≀≀−2〉.

Swapping a′
4,4 and a′

1,1, as well as b′4,4 and b′1,1, we obtain

A′ =




0 0 ε 0

0 0 0 1

ε 0 0 0

0 1 0 0




, B′ =




ε 0 ελ0 0

0 1 0 0

ελ0 0 0 0

0 0 0 0




.

Obviously, the QSIC contains the line x = y = 0. From the classification of
QSIC by Segre characteristic in PC3, we know that the remaining component
is a cubic curve, whose equation is found to be

q(u) =
(
2ελ0u/(ε + u2), 2λ0u

2/(ε + u2), −u, 1
)T

.

It is easy to verify that the line and the cubic curve intersect at two distinct
real points (0, 0, 0, 1)T and (0, 0, 1, 0)T . This completes the proof of Theorem 9.

Proof of Theorem 10 Suppose that the two identical pairs of conjugate
roots of f(λ) = 0 are a ± bi. In this case the only possible index sequence
is 〈2〉. Setting (B − aA)/b to be B, we transform the roots a ± bi to ±i. By
Theorem 1, the two quadrics can be transformed to the following forms,

A′ =




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0




, B′ =




0 0 1 0

0 0 0 −1

1 0 0 1

0 −1 1 0




.
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Clearly, the QSIC contains the line z = w = 0, and the remaining component
is a cubic curve parameterized by

q(u) =
(
−u2, u, −u(1 + u2), −(1 + u2)

)T
.

Since the last component function −(1+u2) does not vanish for any real value
of u, the space cubic curve has no real intersection with the line z = w = 0.
This completes the proof of Theorem 10.

Proof of Theorem 11 According to the discussion about the index sequences
in Section 2.4, the index jump is 1 across the real root with a 3 × 3 Jordan
block. Thus it is easy to see the only possible index sequence is 〈1≀≀≀2|3〉.

That the QSIC comprises a closed component with a real cusp follows from
the classification of QSIC in PC3 by the Segre characteristics. By complex
conjugation it is easy to see that the cusp is real. Since the QSIC is contained
in a projective ellipsoid in the quadric pencil (i.e., with the index being 1 or
3), it is closed in PR3. This completes the proof of Theorem 11.

Proof of Theorem 12 According to the discussion about index sequences
in Section 2.4, the index jump is 0 across the real root with a 4 × 4 Jordan
block. Thus, the only possible index sequence is 〈2≀≀≀≀−2〉 or its equivalent form
〈2≀≀≀≀+2〉.

That the QSIC comprises a line and a space cubic curve tangent to each
other at a point follows from the classification of QSIC in PC3 by the Segre
characteristics. By complex conjugation it is easy to see that the line and the
cubic are both real and their tangent point is also real. This completes the
proof of Theorem 12.

Proof of Theorem 13 Let the double zero be λ0. By setting B − λ0A to B,
we transform the double root λ0 to 0. Let λ1 6= λ2 denote the other two roots.
Wlog, we may assume 0 < λ1 < λ2. By Theorem 1, the matrices A and B of
two given quadrics have the following canonical forms,

A′ = diag(ε1, ε2, ε3, ε4 ), B′ = diag(ε1λ1, ε2λ2, 0, 0 ).

Now we consider two cases: (i) det(A′) > 0; and (ii) det(A′) < 0. In case (i),
the following two subcases need to be further distinguished: (i-a) ε1ε2 > 0 and
ε3ε4 > 0; and (i-b) ε1ε2 < 0 and ε3ε4 < 0.

In subcase (i-a), since ε1ε2 > 0, B′ consists of a pair of complex conjugate
planes; thus B′ intersects A′ in two imaginary conics. Since ε3ε4 > 0, the index
jump of Id(λ) at λ0 = 0 is ±2. Since det(A′) > 0, Id(−∞)=index(−A′) = 0, 2,
or 4. Therefore, all possible index sequences are 〈2||4|3|2〉, 〈2||0|1|2〉, 〈0||2|3|4〉,
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or 〈4||2|1|0〉. Clearly, these sequences are equivalent; so we use 〈0||2|3|4〉 as
the representative. Since there is a virtual quadric (i.e., one whose index is 0
or 4), the QSIC has no real point. This completes the first part of item 4 of
the theorem.

In subcase (i-b), since ε3ε4 < 0, the index jump of Id(λ) at λ0 = 0 is 0. Since
det(A′) > 0, Id(−∞)= index(−A′) = 0, 2, or 4. Thus, by a similar argument
to case (i-a), the only possible index sequence is 〈2||2|1|2〉. By swapping ε3

and ε4 in the matrix A′ if necessary, we may suppose that the quadric A′ :
XT A′X = 0 is a one-sheet hyperboloid with the y-axis being its symmetric
axis, i.e., x2 − y2 + z2 − w2 = 0. Recall that 0 < λ1 < λ2. The two planes
y = ±(λ1/λ2)

1/2x given by the quadric B′ : XTB′X = 0 intersect A′ in two
ellipses intersecting at two real points, as shown in Figures .1 and .2. This
completes the proof of item 1.

Fig. .1. Cross section of a one-sheet hyper-
boloid and a pair of planes.

Fig. .2. A QSIC comprising two closed
conics intersecting at two real points.

Below we consider case (ii) of det(A′) < 0. Again we need to distinguish two
subcases: (ii-a) ε1ε2 < 0 and ε3ε4 > 0; and (ii-b) ε1ε2 > 0 and ε3ε4 < 0.

In subcase (ii-a), since ε3ε4 > 0, the index jump of Id(λ) at λ0 = 0 is ±2.
Since det(A′) < 0, Id(−∞)= index(−A′) = 1 or 3. Therefore, the only possible
index sequences are 〈1||3|2|3〉 and 〈1||3|4|3〉. Recall that ε1ε2 < 0. It is then
easy to verify that the index sequence is 〈1||3|2|3〉 if ε1 = −1 and ε2 = 1, and
is 〈1||3|4|3〉 if ε1 = 1 and ε2 = −1.

When ε1 = −1 and ε2 = 1 (i.e., when the index sequence is 〈1||3|2|3〉), by a
projective transformation, we may transform A′ to the unit sphere x2 + y2 +
z2−w2 = 0 and B′ to two parallel planes z = ±(λ1/λ2)

1/2w. Since 0 < λ1 < λ2,
the QSIC consists of two real conics not intersecting each other in real points.
This completes the proof of item 2.

When ε1 = 1 and ε2 = −1 (i.e., when the index sequence is 〈1||3|4|3〉), there is
a virtual quadric in the pencil. Therefore the QSIC has no real points. Hence,
the QSIC consists of two imaginary conics not having common real points.
This proves the second part of item 4.

In subcase (ii-b), using a similar argument, we know that the only possible
index sequence is 〈1||1|2|3〉. The quadric A′ is either two-sheet hyperboloid
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with the z-axis being its centered axis (if ε1, ε2, and ε4 have the same sign )
or the unit sphere centered at the origin (if ε1, ε2 and ε3 have the same sign).
The quadric B′ comprises of a pair of imaginary conjugate planes intersecting
in a real line — the z-axis, which intersects A′ at two real points. Hence, the
QSIC consists of two complex conjugate conics intersecting at two real points.
This completes the proof of item 3. Hence, Theorem 13 is proved.

Proof of Theorem 14 Wlog, by setting B − λ0A to be B, we may assume
the real double root λ0 to be 0. Let the other two roots be a ± bi, b 6= 0. By
Theorem 1, the two matrices A and B have the following canonical forms

A′ = diag


ε1, ε2,




0 1

1 0





 , B′ = diag


0, 0,



−b a

a b





 .

In the following we consider two subcases: (i) a 6= 0; and (ii) a = 0.

In case (i) of a 6= 0, by setting aA′ − B′ to be A′, we obtain

A′ = diag


 ε1a, ε2a,




b 0

0 −b





 ,

which is the quadric,

ε1a

b
x2 +

ε2a

b
y2 + z2 − w2 = 0.

The quadric B′ consists of the following two planes

z =

(
a ±

√
a2 + b2

b

)
w.

When ε1 and ε2 have the same sign, the index sequence is 〈1||3〉 (or its equiva-
lent form 〈3||1〉). In this case, the quadric A′ is either an ellipsoid or a two-sheet
hyperboloid with two of its tangent planes being z ± w = 0. The quadric B′

comprises two parallel planes perpendicular to z-axis. Wlog, we assume that
b > 0. Then it is easy to verify that

a +
√

a2 + b2

b
> 1 and − 1 <

a −
√

a2 + b2

b
< 0 if a > 0,

or

0 <
a +

√
a2 + b2

b
< 1 and

a −
√

a2 + b2

b
< −1 if a < 0.

It follows that one of the planes of B′ intersects A′ in an ellipse and the other
plane does not intersect A′ at any real point, as shown by the two cases in
Figure .3.
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Fig. .3. The two cases in the proof of Theorem 14 where the QSIC has one real
conic and one imaginary conic.

When ε1 and ε2 have opposite signs, the index sequence is 〈2||2〉. In this
case the quadric A′ is a one-sheet hyperboloid and B′ comprises two planes
intersecting A′ in an ellipse and a hyperbola in the affine realization shown in
Figure .4. Since the ellipse intersects the hyperbola at its two branches, any
real plane in PR3 intersects at least one of the two conics.

Fig. .4. The case of QSIC having two real conics intersecting in two real points.

Now consider case (ii) of a = 0. We transform the matrices A′ and B′ into the
following forms,

A′ = diag







0 1

1 0


 , ε1, ε2


 , and B′ = diag(−b, b, 0, 0 ).

The quadric B′ comprises of two planes. When ε1ε2 > 0, the only possible
index sequence is 〈1||3〉 (or its equivalent form 〈3||1〉), the quadric A′ is a
two-sheet hyperboloid, and the QSIC has one real and one imaginary conic,
as shown in Figure .5.

When ε1ε2 < 0, the only possible index sequence is 〈2||2〉, the quadric A′ is a
one-sheet hyperboloid, and the QSIC has two real conics intersecting in two
real points as shown in Figure .6. Again, as in case (i) where the index sequence
is 〈2||2〉, the two conic components of the QSIC cannot be both ellipses in any
affine realization of PR3. This completes the proof of Theorem 14.

Proof of Theorem 15 Clearly, all the roots of f(λ) = 0 are necessarily real
in this case. Wlog, we may assume the triple root λ0 to be zero. Then, by
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Fig. .5. The case of the QSIC having two
conics, one real and one imaginary.

Fig. .6. The case of the QSIC having two
real conics intersecting in two real points.

Theorem 1, the canonical matrix forms of the given quadrics are

A′ = diag(ε1, ε2, ε3, ε4 ), B′ = diag(ε1λ1, 0, 0, 0 ).

Setting λ1A
′ − B′ to be A′ and then ε1B

′ to be B′, we obtain

A′ = diag(0, ε2λ1, ε3λ1, ε4λ1 ), B′ = diag(λ1, 0, 0, 0 ).

The quadric A′ is a cylinder (real or imaginary) with the x-axis being its
central axis, while the quadric B′ is a plane counted twice. Thus the QSIC is
a conic counted twice, real or imaginary.

When ε2, ε3 and ε4 have different signs, the only possible index sequence is
〈1|||2|3〉 (or its equivalent form 〈3|||2|1〉). In this case A′ is real, and the QSIC
is a real conic counted twice. When ε2, ε3 ad ε4 have the same sign, the only
possible index sequence is 〈0|||3|4〉 (or its equivalent form 〈3|||0|1〉). In this
case A′ is imaginary, and the QSIC is an imaginary conic counted twice. This
completes the proof of Theorem 15.

Proof of Theorem 16 The two roots of f(λ) = 0 are necessarily real. Let λ0

denote the triple root and λ1 denote the simple root. Wlog, we assume λ0 = 0
and λ1 > 0. By Theorem 1, the canonical matrices of the two given quadric
are

A′ =




0 ε1

ε1 0

ε2

ε3




, B′ =




0

ε1

0

ε3λ1




.

Since the index jump at a root of Jordan block of size 2 × 2 is 0, the index
jump at the triple root is ±1. It is then easy to see that the only possible
index sequence is 〈1≀≀|2|3〉 (or its equivalents). Thus, we have ε2 = 1, ε3 = 1.

The quadric A′, as 2 ε1 y + z2 + w2 = 0, passes through the origin (1, 0, 0, 0)T

and its tangent plane at this point is y = 0. The quadric B′: ε1 y2 +λ1 w2 = 0,
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comprises two planes intersecting at the line (y = 0, w = 0), which touches
the quadric A′ at the point (1, 0, 0, 0)T . Since the tangent plane y = 0 of A
at (1, 0, 0, 0)T is different from either of these two planes, the QSIC comprises
two conics that are tangent to each other at the real point (1, 0, 0, 0)T .

If the ε1 = 1, B′ consists of two imaginary planes, so the QSIC consists of two
imaginary conics. In this case, the number of positive eigenvalues of −B′ is 0,
and the index sequence therefore becomes 〈1≀≀+|2|3〉. If ε1 = −1, B′ consists
of two real planes, so the QSIC consists of two real conics. In this case, the
number of positive eigenvalues of −B′ is 1, and the index sequence therefore
becomes 〈1≀≀−|2|3〉. This completes the proof of Theorem 16.

Proof of Theorem 17 The two double roots of f(λ) = 0 are necessarily
real. Up to equivalence relations, the only possibilities for the index sequences
are 〈2≀≀−2||2〉, 〈1≀≀−1||3〉 and 〈1≀≀+1||3〉. Note that 〈2≀≀−2||2〉 is equivalent to
〈2≀≀+2||2〉. Let λ1 denote the root associated with the 2× 2 Jordan block, and
let λ2 denote the other root. By setting B−λ1 A to B, we may assume λ1 = 0.
Let λ2 denote the other double root; wlog, assume λ2 > 0.

Then the canonical forms of the two quadrics are

A′ = diag







0 ε1

ε1 0


 , ε2, ε3


 , B′ = diag







0 0

0 ε1


 , ε2λ2, ε3λ2


 . (.1)

Due to the sign change rules (see Section 2.5), for the index sequence 〈2≀≀−2||2〉,
we have ε2ε3 < 0. For the index sequences 〈1≀≀−1||3〉 and 〈1≀≀+1||3〉, we have
ε2 = ε3 = 1. Below we discuss these two cases: (i) ε2ε3 < 0; and (ii) ε2 = ε3 =
1.

In case (i) of ε2ε3 < 0, setting ε1λ2A
′ − ε1B

′ to Ā and setting B′ to B̄, we
obtain

Ā = diag







0 λ2

λ2 −1


 , 0, 0


 , B̄ = diag







0 0

0 ε1


 , ε2λ2, ε3λ2


 ,

Then the quadric Ā consists of two planes y = 0 and y = 2λ2x. The quadric
B̄ is a real cylinder with the x-axis as its central axis. Clearly, B̄ intersects
y = 0 in two real lines, denoted by ℓ1 and ℓ2, on the planes z = ±1. These two
lines intersect at the point (1, 0, 0, 0)T . The quadric B̄ also intersects the plane
y = 2λ2x in a real conic, which intersects the two lines ℓ1,2 in two distinct real
points. This completes the proof of item 1.

In case (ii) of ε2 = ε3 = 1, Id(A′) = 3, and the index jump at the root λ2 is 2.
Below we distinguish two subcases: (ii-a) ε1 < 0; and (ii-b) ε1 > 0.
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In subcase (ii-a) of ε1 < 0, the index sequence is 〈1≀≀−1||3〉. The quadric B′ is
a real hyperbolic cylinder with x-axis as central axis and symmetric with the
plane y = 0. Therefore it intersects the plane y = 0 in two imaginary lines
and intersects the plane y = 2λ2x in a real conic. The two lines intersect at
the point (1, 0, 0, 0)T . This completes the proof of item 2.

In subcase (ii-b) of ε1 > 0, the index sequence is 〈1≀≀+1||3〉. The quadric B′ is
an imaginary cylinder; thus it intersects the quadric A′ in an imaginary conic
and two complex conjugate lines; these two lines intersect at the real point
(1, 0, 0, 0)T . This completes the proof of item 3, and hence, Theorem 17.

Proof of Theorem 18 Wlog, we may assume the quadruple root, denoted
by λ1, to be 0. Then, by Theorem 1, the canonical form of the two quadrics
are

A′ =




0 ε1

ε1

ε1 0

ε2




, B′ =




0

0 ε1

ε1 0

0




. (.2)

The quadric B′ comprises two planes y = 0 and z = 0. The plane y = 0
intersects the quadric A′ along a real conic xz = −ε2/ε1w

2, denoted as C. The
plane z = 0 intersects A′ in two lines, defined by the intersection of z = 0 and
y2 = −ε2/ε1w

2. If ε2/ε1 = −1, the two lines are real; if ε2/ε1 = 1, the two
lines are imaginary. In both cases, the two lines intersect the conic C at the
real point (1, 0, 0, 0)T .

On the other hand, when ε2/ε1 = −1, we have index(A′)= 2 and the index
jump of Id(λA − B) at the root λ1 = 0 is 0. Therefore, the index sequence is
〈2≀≀≀−|2〉 or its equivalent form 〈2≀≀≀+|2〉. When ε2/ε1 = 1, we have index(A′) =
1 or 3, and the index jump of Id(λA−B) at λ1 = 0 is ±2. Therefore, the index
sequence of the pencil is 〈1≀≀≀|3〉. This completes the proof of Theorem 18.

Proof of Theorem 19 Let the two roots be λ1 and λ2. By setting B′ =
B − λ1A, we may assume λ1 = 0. By Theorem 1, the canonical form of the
two quadrics are

A′ = diag(ε1, ε2, ε3, ε4), B′ = diag(0, 0, ε3λ2, ε4λ2 ). (.3)

Setting λ2A
′ − B′ to be A′, we obtain

A′ = diag(ε1λ2, ε2λ2, 0 0), B′ = diag(0, 0, ε3λ2, ε4λ2 ). (.4)

We consider the following three cases: (i) ε1ε2 < 0 and ε3ε4 < 0; (ii) ε1ε2 > 0
and ε3ε4 > 0; and (iii) (ε1ε2)(ε3ε4) < 0.
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In case (i), the index jumps at λ1 and λ2 are both 0. Hence, the only possible
index sequence is 〈2||2||2〉. In this case, each of A′ and B′ consists of a pair of
real planes intersecting at a real line. Since the two real lines on A′ and B′ do
not intersect, the QSIC consists of four real lines forming a quadrangle. This
quadrangle can be obtained from a tetrahedron (defined by the four planes of
A′ and B′) by removing two of the six sides; the two removed sides are the
intersecting line of the plane pair A′ and the intersecting line of the plane pair
B′. This completes the proof of item 1.

In case (ii), the index jumps at λ1 and λ2 are both ±2. Hence, the only possible
index sequence is 〈0||2||4〉. In this case, each of A′ and B′ consists of a pair of
complex conjugate planes intersecting at a real line. Since the two real lines
on A′ and B′ do not intersect, the QSIC consists of four imaginary lines and
has no real point. This completes the proof of item 2.

In case (iii), either ε1ε2 > 0 and ε3ε4 < 0 or ε1ε2 < 0 and ε3ε4 > 0. Thus
the only possible index sequence is 〈1||1||3〉 or its equivalent forms. At the
same time, one of A′ and B′ is a pair of real planes and the other is pair of
conjugate planes. Therefore, the QSIC consists two pairs of conjugate lines
with each pair intersecting at a real point. This completes item 3, and hence,
Theorem 19.

Proof of Theorem 20 By Theorem 1,

A′ = diag







0 1

1 0


 ,




0 1

1 0





 , B′ = diag(−1, 1, −1, 1).

Then A′ is a hyperbolic paraboloid xy + zw = 0 and B′ is a hyperboloid
−x2 + y2 − z2 + w2 = 0. It is easy to verify that the QSIC consists of the two
non-intersecting real lines defined by (x + w = 0, y − z = 0) and (x − w = 0,
y + z = 0), and two non-intersecting imaginary lines defined (x − iz = 0,
y − iw = 0) and (x + iz = 0, y + iw = 0). In this case, since f(λ) = 0 has no
real root, the index sequence is 〈2〉. This completes the proof of Theorem 20.

Proof of Theorem 21 The quadruple root, denoted by λ1, of f(λ) = 0 is
necessarily real. Wlog, we may assume λ1 = 0. By Theorem 1, the canonical
form of the two given quadrics are

A′ = diag







ε1

ε1


 , ε2, ε3


 , B′ = diag(0, ε1, 0, 0 ).

The quadric B′ is a pair of the identical real plane y = 0. Substituting y2 = 0
in the the quadric A′, we find that the QSIC is the intersection between
y2 = 0 and the pair of planes z2 = −ε3/ε2w

2. Clearly, the QSIC comprises
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two intersecting real lines, counted twice, if ε2ε3 = −1, or a pair of conjugate
lines, counted twice, if ε2ε3 = 1.

Clearly, the index jump of Id(λA′−B′) at λ1 = 0 is 0 or ±2. When ε3/ε2 = −1,
det(A) = −ε2ε3 > 0, therefore index(A′) is 0, 2 or 4. It follows that the
index sequence is 〈2≀≀−||2〉 or its equivalent form 〈2≀≀+||2〉. When ε3/ε2 = 1,
det(A) = −ε2ε3 < 0, therefore index(A′) is 1 or 3. It follows that the index
sequence is 〈1≀≀−||3〉 or its equivalent form 〈1≀≀+||3〉. This completes the proof
of Theorem 21.

Proof of Theorem 22 The quadruple root of f(λ) = 0 is necessarily real,
and may be assume to be 0. Since the index jump at a real root with a 2 × 2
Jordan block is 0, the index sequence is of the form 〈2≀̂≀≀̂≀2〉. By Theorem 1,
the canonical form of the two quadrics are

A′ = diag







0 ε1

ε1 0


 ,




ε2

ε2





 , B′ = diag(0, ε1, 0, ε2 ).

The quadric A′ is the hyperbolic paraboloid

ε1xy + ε2zw = 0,

and B′ is a pair of planes
ε1y

2 + ε2w
2 = 0.

When ε1ε2 = 1, the index sequence is 〈2≀≀−≀≀−2〉 or its equivalent form 〈2≀≀+≀≀+2〉.
In this case B′ comprises two conjugate planes y+iw = 0 and y−iw = 0, which
intersects A′ in the real double line (y = 0, w = 0) and two non-intersecting
imaginary lines (x − iz = 0, y − iw = 0) and (x + iz = 0, y + iw = 0).

When ε1ε2 = −1, the index sequence is 〈2≀≀−≀≀+2〉 or its equivalent form
〈2≀≀+≀≀−2〉. In this case B′ comprises two real planes y −w = 0 and y + w = 0,
which intersects A′ in the real double line (y = 0, w = 0) and two non-
intersecting real lines (x − z = 0, y − w = 0) and (x + z = 0, y + w = 0).

This completes the proof of Theorem 22.
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