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Introduction

A Free Electron Laser (FEL) generates a tunable, coherent, high power radiation. A FEL differs from conventional lasers in using a relativistic electron beam as its lasing medium. The physical mechanism responsible of the light emission and amplification is the interaction between a relativistic electron beam and a magnetostatic periodic field generated in the undulator. Due to the effect of the magnetic field, the electrons are forced to follow sinusoidal trajectories, thus emitting synchrotron radiation. This initial seed, termed spontaneous emission, is then amplified along the undulator until the laser effect is reached.

Among different schemes, Single-Pass high-gain FELs are particularly attractive since they hold the promise of resulting in flexible light sources of broad theoretical and applied interests. The coupled evolution of the radiation field and the N particle beam in a Single-Pass FEL can be successfully modeled within the framework of a simplified Hamiltonian picture [START_REF] Bonifacio | Physics of the high-gain FEL and superradiance[END_REF]. The N + 1 degree of freedom Hamiltonian displays a kinetic contribution, associated with the particles, and a potential term accounting for the self-consistent coupling between the particles and the field. Hence, direct inter-particles interactions are neglected, even though an effective coupling is indirectly provided because of the interaction with the wave.

The theory predicts a linear exponential instability and a late oscillating saturation, for the amplitude of the radiation field. Inspection of the asymptotic phase-space suggests that a bunch of particles gets trapped in the resonance and forms a clump that evolves as a single macro-particle localized in space. The remaining particles are almost uniformly distributed between two oscillating boundaries, and populate the so called chaotic sea.

This observation allowed to derive a simplified Hamiltonian model to characterize the saturated evolution of the laser. Such reduced formulation consists in only four degrees of freedom, namely the wave, the macro-particle and the two boundaries, delimiting the portion of space occupied by the the uniform halo surrounding the inner bulk [START_REF] Tennyson | Self-Consistent Chaos in the Beam-Plasma Instability[END_REF][START_REF] Antoniazzi | Statistical mechanics and Vlasov equation allows for a simplified Hamiltonian description of Single-Pass Free Electron Laser saturated dynamics[END_REF]. Furthermore, the macro-particle rotates around a well defined fixed point and this microscopic dynamics is shown to be responsible for the macroscopic oscillations observed at the intensity level. It can be therefore hypothesized that a significant reduction in the intensity fluctuations can be gained by implementing a dedicated control strategy, aimed at confining the macro-particle in space. In addition, the size of the macro-particle is directly related to the bunching parameter, a quantity of paramount importance in FEL context [START_REF] Antoniazzi | Statistical mechanics and Vlasov equation allows for a simplified Hamiltonian description of Single-Pass Free Electron Laser saturated dynamics[END_REF].

Smith et al [START_REF] Smith | Phase-locked particle motion in a largeamplitude plasma wave[END_REF] showed that a test-wave, being characterized by a frequency close to the one of the wave, can effectively destroy the macro-particle and activate a consequent detrapping process. Dimonte et al [START_REF] Dimonte | Destruction of Trapped-Particle Ocillations[END_REF] implemented this approach on a Travelling Wave Tube and detected a significant reduction of the intensity oscillations, followed, however, by an undesired systematic collapse of its mean-value.

In this paper, we focus on the macro-particle, spontaneously established as a result of the wave-particle interaction process in the saturated regime. In par- ticular we develop a dedicated technique to influence and, possibly, control its evolution, thus opening up the perspective of defining innovative approaches aiming at stabilizing the laser signal. To this end, we consider a test-particle Hamiltonian in a mean-field approach and calculate a small but appropriate control term which acts as a perturbation. The latter is shown to induce an increase in size of the macro-particle. A regularization of the dynamics is also observed, as confirmed by the reconstruction of invariant tori around the massive core.
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The paper is organized as follows. In Sec. 1, we introduce the mean-field model and shortly outline its derivation from the original N-body Hamiltonian. In Sec. 2, a test-particle is "controlled", through the reconstruction of invariant tori of its dynamics. Finally, we draw our conclusion and discuss possible implication of the present analysis.

The mean-field model

As previously anticipated, the dynamics of a Single-Pass FEL is successfully captured by the following Hamiltonian [START_REF] Bonifacio | Physics of the high-gain FEL and superradiance[END_REF] :

H N = N i=1 [ p 2 i 2 -2 I N cos (θ i + φ)], (1) 
where (θ i , p i ) are the position and momentum of the i-th particle and (φ, I) stand respectively for the phase and intensity of the radiation. In the meanfield model, the conjugated variables (φ, I) are replaced by two functions of time φ(t) and I(t), obtained from direct simultations of the self-consistent dynamics. In other words, this amounts to formally neglecting the action of the electrons on the field.

The N-body Hamiltonian (1) can therefore be mapped into

HN = N i=1 H 1p (θ i , p i , t),
where

H 1p (θ, p, t) = p 2 2 -2 I(t) N cos (θ + φ(t)). (2) 
Hence, the dynamics of a FEL can be adressed by studying the evolution of a test particle, obeying Hamiltonian (2). The functions I(t) and φ(t) act as external fields and are here imposed by assuming their simplified asymptotic behaviour as obtained by a frequency analysis [START_REF] Laskar | Introduction to Frequency Map Analysis[END_REF] :

2 I(t) N e iφ(t) ≈ F -ǫ K k=1 W k e iω k t ,
in the reference frame of the wave.

Hamiltonian control of a test-particle

The Hamiltonian control addresses systems which are close to integrable, i.e. whose Hamiltonian can be written as H = H 0 + V , where H 0 is integrable and V a perturbation of order ǫ (compared to H 0 ). The results we use here have been proven rigorously [START_REF] Vittot | Perturbation theory and control in classical or quantum mechanics by an inversion formula[END_REF][START_REF] Chandre | Control of stochasticity in magnetic field lines[END_REF]. In practice, it can be shown that a suitable control term f of order ǫ 2 exists such that H 0 + V + f has an invariant torus at a given frequency ω 0 . In our case, the perturbation corresponds to the oscillating part of the intensity. The interaction term of Hamiltonian (2) reads 2

I(t) N cos (θ -φ(t)) = F cos θ -ǫRe(e iθ W(t)).
Thus, our integrable Hamiltonian can be cast in the form

H 0 = p 2 2 -F cos θ, (3) 
whereas the time-dependent perturbation V is identified as

V (t, θ) = ǫRe(e iθ W(t)). ( 4 
)
First, we express Hamiltonian (3) into action-angle variables (ϕ, J) [START_REF] Lichtenberg | Regular and Stochastic Motion[END_REF]. Then, we expand H 0 around J = J 0 , which in turn identifies the region where the invariant torus is reconstructed in :

H 0 (J) = E 0 + ω 0 (J -J 0 ) + δ(J -J 0 ) 2 + O((J -J 0 ) 3 ).
Likewise, the θ-component of perturbation ( 4) is expanded as

e iθ = M m=0 L n=-L α m,n (J -J 0 ) m e inϕ + O((J -J 0 ) M +1 )
The control term reads [START_REF] Chandre | Control of stochasticity in magnetic field lines[END_REF] f

(ϕ, t) = V (J 0 , ϕ, t) -V (J 0 -Γ∂ ϕ V (J 0 , ϕ, t), ϕ, t),
where Γ is a linear operator acting on an element of the Fourier basis as :

Γe i(ωt+nϕ) = e i(ωt+nϕ) i(ω + nω 0 )
.

At the second order in ǫ (which is the main term), the control term reads

f (ϕ, t) = ǫ 2 w(ϕ, t)Γ∂ ϕ v(ϕ, t) -ǫ 2 δ(Γ∂ ϕ v(ϕ, t)) 2 ,
where v and w are the first terms in the expansion of V :

V (J, ϕ, t) = v(ϕ, t) + (J -J 0 )w(ϕ, t) + +O((J -J 0 ) 2 ), which gives Γ∂ ϕ v(ϕ, t) = K k=0 L n=-L nα 0,n W k ω 0 n + ω k e i(nϕ+ω k t) , and 
w(ϕ, t) = K k=0 L n=-L α 1,n W k e i(nϕ+ω k t) ,
where W k are the Fourier coefficients of W :

W (t) = K k=0 W k e iω k t .
Numerically, two Fourier modes are considered for W (t) (K = 2), and eleven for the θ-dependent part of the perturbation (4) (L = 5). The perturbation is of amplitude ǫ = 1/5. The expansion is performed around J 0 ≈ 1.33 (which corresponds to the energy E 0 = 0).

In action-angle variables, the regularization of the dynamics (see Fig. 2) is clearly seen. Rather than a single torus, the control term generates a continuous set of invariant tori, thus expanding the regular domain in phase space.

Unfortunately, the exact change of variables from (ϕ, J) to (θ, p) [START_REF] Lichtenberg | Regular and Stochastic Motion[END_REF] has a singularity at the pendulum separatrices. In order to implement our control on the whole space, we use a simplified, but regular, change of variables which mimics the exact one in the region of the invariant torus predicted by the control (the error in this region is less than 4%) (see Fig. 3) :

tan ϕ = θ p .
In terms of the (θ, p) variables, our control term now reads :

f(θ, p, t) = f (arctan θ p , t),
and its regularity is now the one of the function (θ, p) → arctan θ p . Therefore, the controlled dynamics of a test-particle is given by Hamiltonian : In the (θ, p) variables (see Fig. 4), the control is successful in reconstructing some invariant tori around the macro-particle. In other words, it enlarges this regular structure.

H c (θ, p, t) = H 1p (θ, p, t) + f (θ, p, t).

Conclusion

In this paper, we considered a simplified mean-field approach to investigate the saturated dynamics of a Single Pass FEL. In particular, we showed that the size of the macro-particle can be increased by adding a small pertubation to the system, thus resulting in a low cost correction in term of energy. The main idea is to build invariant tori localized at specific positions : this method is utterly general and could be succesfully used to adjust the size of the macroparticle, thus possibly enhancing the bunching factor. Analogously, by limiting the portion of phase-space spanned by the macro-particle, one could aim at stabilizing the laser signal. Two future lines of investigation are foreseen. First, we intend to implement the computed control term in the framework of the original N-body self-consistent picture and explore possible beneficial effects for the evolution of the radiation field. Further, it is planned to apply the above technique to the case of the reduced Hamiltonian of [START_REF] Tennyson | Self-Consistent Chaos in the Beam-Plasma Instability[END_REF][START_REF] Antoniazzi | Statistical mechanics and Vlasov equation allows for a simplified Hamiltonian description of Single-Pass Free Electron Laser saturated dynamics[END_REF]. We point out that an experimental test of the control method on a modified Travelling Wave Tube has been done [START_REF] Chandre | Channeling chaos by building barriers[END_REF] in absence of self-consistency.
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 1 Figure 1. Left : Normalized intensity of the FEL's radiation simulated from Hamiltonian (1). Right : N = 10000 electrons in phase space, at t = 400, 401.25, 402.5 and 403.75.
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 23 Figure 2. Poincaré sections of a test-particle of Hamiltonian H 0 (J)+ V (J, ϕ, t) (left) and H 0 (J) + V (J, ϕ, t) + f (ϕ, t) (right), in the pendulum action-angle variables.
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 4 Figure 4. Poincaré sections of a test-particle of Hamiltonian H 1p (θ, p, t) (left) and H 1p (θ, p, t) + f (θ, p, t) (right).