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Rotation and shear flows are ubiquitous features of many astrophysical and geophysical
bodies. To understand the origin of large-scale shear flow and its effect on turbulent
transport in these systems, we consider a forced turbulence and investigate the combined
effect of rotation and shear flow on the turbulence properties. Specifically, we study how
rotation and flow shear influence the generation of shear flow (e.g. the direction of energy
cascade), turbulence level, transport of particles and momentum, and the anisotropy in
these quantities in the cases where the rotation and the shear are parallel or perpendic-
ular. In all the cases considered, turbulence amplitude is always quenched due to strong
shear (ξ = νk2

y/A ≪ 1, where A is the shearing rate, ν is the molecular viscosity and ky is
a characteristic wave-number), with stronger reduction in the direction of the shear than
those in the perpendicular directions. Specifically, in the large rotation limit (Ω ≫ A),
they scale as A−1 and A−1| ln ξ|, respectively, while in the weak rotation limit (Ω ≪ A),
they scale as A−1 and A−2/3, respectively. Thus, flow shear always leads to weak tur-
bulence with an effectively stronger turbulence in the plane perpendicular to shear than
in the shear direction, regardless of rotation rate. The anisotropy in turbulence ampli-
tude is however weaker by a factor of ξ1/3| ln ξ| (∝ A−1/3| ln ξ|) in the rapid rotation
limit (Ω ≫ A) than that in weak rotation limit (Ω ≪ A) since rotation favours almost-
isotropic turbulence. Compared to turbulence amplitude, particle transport is found to
crucially depend on whether rotation is stronger or weaker than flow shear. When rota-
tion is stronger than flow shear (Ω ≫ A), the transport is inhibited by inertial waves,
being quenched inversely proportional to the rotation rate (i.e. ∝ Ω−1) while in the op-
posite case, it is reduced by shearing as A−1. Furthermore, the anisotropy is found to be
very weak in the strong rotation limit (by a factor of 2) while significant in the strong
shear limit. The turbulent viscosity is found to be negative with inverse cascade of energy
as long as rotation is sufficiently strong compared to flow shear (Ω ≫ A) while positive
in the opposite limit of weak rotation (Ω ≪ A). Even if the eddy viscosity is negative
for strong rotation (Ω ≫ A), flow shear, which transfers energy to small scales, has an
interesting effect by slowing down the rate of inverse cascade with the value of negative
eddy viscosity decreasing as |νT | ∝ A−2 for strong shear. Furthermore, the interaction
between the shear and the rotation is shown to give rise to a novel non-diffusive flux of
angular momentum (Λ-effect), even in the absence of external sources of anisotropy. This
effect provides a mechanism alternative to negative turbulent viscosity for the existence
of shearing structures in astrophysical and geophysical systems.

1. Introduction

Rotating turbulent flows can be found in many areas such as engineering (turbo-
machinery, combustion engine), geophysics (oceans, Earth’s atmosphere) or astrophysics



2 Nicolas Leprovost and Eun-jin Kim

(gaseous planets, galactic and accretion disks). Large-scale fluid motions tend to appear
as a robust feature in these systems, often in the form of shear flows (such as circulations
on the surface of planets, differential rotation in stars and galaxies or flows in a rotating
machinery). There have been accumulating evidence that large-scale shear flows as well
as rotation play a crucial role in determining turbulence properties and transport, such as
energy transfer or mixing (see below for more details). The understanding of the physical
mechanism for the generation of large-scale shear flows and the complex interaction
among rotation, shear flows and turbulence thus lies at the heart of the predictive theory
of turbulent transport in many systems.

1.1. Summary of previous works

While both rotation and shear flow apparently have a similar effect on quenching turbu-
lent transport, the efficiency of their effects as well as the basic physical mechanisms are
totally different. It is thus useful to contrast these in detail.

1.1.1. Sheared turbulence

The main effect of shear flow is to advect turbulent eddies differentially, elongating and
distorting their shapes, thereby rapidly generating small scales which are ultimately dis-
rupted by molecular dissipation on small scales (see Fig. 1). That is, flow shear facilitates
the cascade of various quantities such as energy or mean square scalar density to small
scales (i.e. direct cascade) in the system, enhancing their dissipation rate. As a result,
turbulence level as well as turbulent transport of these quantities can be significantly
reduced compared to the case without shear. Another important consequence of shearing
is to induce anisotropic transport and turbulent level since flow shear directly influences
the component parallel to itself (i.e. x component in Fig. 1) via elongation while only
indirectly the other two components (i.e. y and z components in Fig. 1) through en-
hanced dissipation. This shearing effect of shear flow can be captured by time-dependent
Fourier transform where the wave number in the shearing direction (e.g. kx in Fig. 1)
increases linearly in time [see Eq. (2.4)] (Goldreich & Lynden-Bell 1964; Townsend 1976;
Kim 2005).

It is important to emphasise that the aforementioned shearing effect (due to differ-
ential advection) is via nonlocal interaction between large and small-scale modes, and
can dominate over nonlinear local interaction between small scales for sufficiently strong
flow shear (e.g. Waleffe 1993). Therefore, the evolution of small-scale quantities can be
treated as linear by neglecting local interactions compared to nonlocal interactions. This
formulation, also called the rapid distortion theory (RDT) by various previous authors
(Batchelor & Proudman 1954; Townsend 1976), was used to study the linear response
of turbulence to a mean flow with spatially uniform gradients. The linear treatment of
fluctuations by incorporating strong flow shear was also used in the astrophysical con-
text by Goldreich & Lynden-Bell (1964) by using shearing coordinates. The generation
of large-scale shear flows (the so-called zonal flows) through a similar nonlocal interac-
tion has been intensely studied in the magnetically confined plasmas, where turbulence
quenching by shear flow is believed to be one of the most promising mechanisms for
improving plasma confinement (Burrell 1997; Kim 2004).

In decaying sheared turbulence, Lee et al. (1990) have shown a surprisingly good
agreement between the RDT predictions and numerical simulations. In forced sheared
turbulence, theoretical predictions (using a quasi-linear theory) for the transport of pas-
sive scalar fields in 2D hydrodynamic turbulence by Kim & Diamond (2003) and Kim
et al. (2004) have been beautifully confirmed by recent numerical simulations (Leconte
et al. 2006). In particular, they have shown that turbulent transport of particles can be
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Figure 1. Sketch of the effect of shear on a turbulent eddy.

severely quenched inversely proportional to flow shear A while turbulence level is reduced
as A−5/3. Kim (2005) has shown that in 3D forced HD turbulence, strong flow shear can
quench turbulence level and transport of particles with strong anisotropy (much weaker
along the flow shear which is directly affected by shearing) and has emphasised the differ-
ence in turbulence level and transport, which is often used interchangeably in literature.
A similar weak anisotropic transport was shown for momentum transport by Leprovost
& Kim (2006) in forced 3D HD turbulence. Further investigations have been performed
on turbulent transport in forced turbulence by incorporating the interaction of sheared
turbulence with different types of waves that can be excited due to magnetic fields (Kim
& Dubrulle 2001; Kim 2006; Leprovost & Kim 2007), stratification (Kim & Leprovost
2007b) or both magnetic fields and stratification (Kim & Leprovost 2007a).

1.1.2. Rotating turbulence

Rotation has both similar and different effects on turbulent transport. First, rotation
can reduce transport in the limit of rapid rotation (similarly to flow shear), but through
a physical mechanism that is different from that of shear, namely by phase mixing of
inertial waves (Cally 1991). It also induces only slight anisotropy in the transport (by
a factor of two), much less significant than the strong anisotropy due to shear. Further,
since phase mixing affects turbulent transport without necessarily quenching turbulence
level, turbulence level may not be affected by rotation. This reduction in transport with-
out much effect on turbulence level is a common feature of turbulence strongly affected by
waves, and is also found in MHD turbulence where magnetic fields support Alfven waves
(Kim & Dubrulle 2001; Cattaneo et al. 2002; Kim 2006) and stratified turbulence (Kim
& Leprovost 2007b) where stable stratification excites internal gravity waves. A more
striking difference between flow shear and rotation is that rotation facilitates the cascade
energy to large scale, generating large-scale flows. For instance, in the extreme limit of
very rapid rotation, the fluid motion becomes independent of the coordinate along the ro-
tation axis [the so-called Taylor-Proudman theorem (Proudman 1916; Taylor 1921)]. The
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generation of large-scale flow has been shown by various numerical simulations including
Cambon et al. (1997) and Smith & Waleffe (1999). In particular, Smith & Waleffe (1999)
have shown that the inverse cascade of energy is more pronounced in forced turbulence
due to statistical triadic transfer through nonlocal interaction.

It is important to note that this nonlocal interaction leading to inverse cascade can
be successfully captured by inhomogeneous RDT theory which permits the feedback of
the nonlinear local interaction between small scales onto the large scales via Reynolds
stress (constituting the other part of quasi-linear analysis) while neglecting nonlinear
local interaction between small scales for fluctuations compared to nonlocal interactions.
As must be obvious by comparing the Coriolis force with nonlinear advection terms, the
RDT works well for sufficiently strong rotation (small Rossby number) even in the absence
of shear flow. For instance, the agreement of the RDT prediction with numerical results
has been shown by various previous authors including Cambon et al. (1997), but mostly
in decaying turbulence. However, in this case, the RDT cannot accurately capture the
turbulence structure in the plane perpendicular to rotation axis where nonlinear local
interactions between inertial waves seem important (see, e.g. Smith & Waleffe 1999).
The validity and weakness of the RDT together with comparison with various numerical
simulation (without an external forcing) with/without shear flows and stratification can
be found in excellent review by Salhi & Cambon (2006) and Cambon and Salhi & Cambon
(2007), to which readers are referred for more details.

In comparison, far much less is understood in the case of forced turbulence. In par-
ticular, the main interest in forced turbulence is a long-term time behaviour where the
dissipation, enhanced by shear distortion, is balanced by energy input, thereby playing
a crucial role in leading to a steady equilibrium state. The computational study of this
long time behaviour is however not only expensive but also difficult because of the limit
on numerical accuracy, as noted by Salhi & Cambon (1997). Therefore, analytical theory
by capturing shearing effect (such as quasi-linear theory with time-dependent wavenum-
ber) would be extremely useful in obtaining physical insights into the problem as well as
guiding future computational investigations. We note that the previous works by Kichati-
nov and Rudiger and collaborators (Rüdiger 1980; Kichatinov 1986, 1987; Rüdiger 1989;
Kichatinov et al. 1994) using quasi-linear theory are valid only in the limit of weak shear.
We further note that physically, the local nonlinear interactions in Navier-Stokes equation
can be captured by an external forcing (Moffatt 1967; Cambon & Scott 1999).

1.2. Main objectives and methodology

Our main motivation is to understand the origin of large-scale shear flow and its effect on
turbulent transport in rotating systems. To this end, we consider a forced turbulence and
investigate the combined effect of rotation and shear flow on the turbulence properties
including transport of momentum and particles. Specifically, we are interested in how
rotation and flow shear influence the generation of shear flow (e.g. the direction of energy
cascade), turbulence level, transport of particles and momentum, and the anisotropy in
these quantities. Given the differences/similarities in the effects of flow shear and rotation
(as discussed in Sec. 1.1), of particular interest is to identify the relative strength of flow
shear to rotation rate for the cross-over between inverse and direct cascades and isotropic
and almost-isotropic turbulence/transport. Recalling that flow shear of strength A acts
over the time-scale A−1 while rotation induces inertial waves of frequency ∼ Ω, one could
naively think that flow shear would dominate the effect of rotation for sufficiently strong
shear with A ≫ Ω while the effect of flow shear may be neglected in the opposite limit
A ≪ Ω. This will however be shown to be true only in the case of the transport of
passive scalar fields and for the sign of eddy viscosity. That is, even in the case of weak
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shear compared to rotation A ≪ Ω, the shear has yet a crucial effect on determining the
overall amplitude of turbulence level and momentum transport since its shearing process
(generating small scales) works coherently over more than one oscillation of the waves. To
complement this, we are also interested in how shear-dominated turbulence is influenced
by rotation. As will be shown later, when the system is linearly stable, weak rotation
tends to make turbulence/transport more ‘isotropic’.

Concerning momentum transport, another important question is the possibility of non-
diffusive transport. In rotating turbulence, the inverse cascade can occur not only due
to a (diffusive) negative viscosity, but also due to non-diffusive momentum transport.
The latter is known as the anisotropic kinetic α-effect (AKA) (Frisch et al. 1987) or as
the Λ-effect in the astrophysical community. The appearance of non-diffusive term in the
transport of angular momentum prevents a solid body rotation from being a solution of
the Reynolds equation (Lebedinsky 1941; Kippenhahn 1963), and thus act as a source
for the generation of large-scale shear flows. For instance, this effect has been advocated
as a robust mechanism to explain the differential rotation in the solar convective zone.
Starting from Navier-Stokes equation, it is possible to show that these fluxes arise when
there is a cause of anisotropy in the system, either due to an anisotropic background
turbulence (see Rüdiger 1989, and references therein) or else due to inhomogeneities
such as an underlying stratification. We will show that non trivial Λ-effect can result
from an anisotropy induced by shear flow on the turbulence even when the driving force
is isotropic, in contrast to the case without shear flow where this effect exists only for
anisotropic forcing (Kichatinov 1987).

We note that although much less attention has been paid to the effect of rotation and
shear on mixing and transport of scalars (such as pollutants, heat or reacting species)
compared to momentum transport, this is an important problem in understanding the
distribution and mixing of a variety of physical quantities in different systems. For in-
stance, observations show that the concentration of light elements at the surface of the
Sun is smaller than what is expected by comparison with Earth’s or meteorites abun-
dance. As these light elements can only be destroyed below a strong shear layer (the
so-called solar tachocline), their transport is subject to the effects of strong shear and
rotation. The study of transport of passive scalar has been mostly limited to the purely
rotating case (Kaneda 2000; Cambon et al. 2004) or non-rotating sheared turbulence
(Tavoularis & Corrsin 1981; Rogers et al. 1989). For purely rotating turbulence, linear
theory has shown a strong suppression of particle diffusion by rotation, confirmed by
numerical simulations (Cambon et al. 2004). In comparison, the study of particle diffu-
sion in sheared rotating turbulence was done only by Brethouwer (2005), who found that
numerical simulation results agree fairly well with his linear theory.

The purpose of this paper is to provide theoretical prediction on these issues by con-
sidering a 3D incompressible fluid, forced by a small-scale external forcing. As we are
interested in the effect of flow shear, we capture this effect non-perturbatively by using
time-dependent wavenumber [see Eq. (2.4)]. By assuming either sufficiently strong shear
or rotation rate, we employ a quasi-linear analysis to compute turbulence level, eddy
viscosity, and particle transport for temporally short-correlated, homogeneous forcing.
As the computation of these quantities involve too complex integrals to be analytically
tractable, they are analytically computed by assuming an ordering in time scales. In our
problem, there are three important (inverse) time-scales: the shearing rate A, the rotation
rate Ω and the diffusion rate D = νk2

y where ν is the (molecular) viscosity of the fluid
and k−1

y is a characteristic small scale of the system. We first distinguish the two cases of
strong rotation (Ω ≫ A) and weak rotation (Ω ≪ A). The first regime of strong rotation
will be studied in the strong shear (A ≫ D) and weak shear (A ≪ D) regime. On the
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other hand, the second regime of weak rotation will be considered only in the strong shear
(A ≫ D) case, as the effects of both shear and rotation disappear in the opposite limit
(A ≪ D). To elucidate how robust shearing effect is on rotating turbulence, we consider
the two configurations where the shear direction and the rotation are perpendicular or
parallel to each other. We believe that our results would provide not only useful physical
insights in understanding the complex dynamics of rotating sheared turbulence, but also
serve as a guide for further theoretical/computational works, especially considering the
difficulty of numerical study of this system.

The remainder of the paper is organised as follows: in §2, we formulate our problem.
Theoretical results of turbulent intensity and turbulent transport are provided in §3 and
§4 in the cases where shear and rotation are perpendicular and parallel to each other,
respectively. Some of the detailed analyses are provided only in §3. We then discuss our
findings in the strong shear limit in §5 and provide concluding remarks in §6. The effect
of rotation on linear stability of shear flows and some of the detailed algebra are provided
in Appendices. Since analytical analyses performed in the paper are quite involved, some
of the readers who are mainly interested in the results might wish to go to §5 and §6
after reading §2.

2. Model

We consider an incompressible fluid in a rotating frame with average rotation rate Ω̃,
which are governed by

∂tu + u · ∇u = −∇P + ν∇2u + F− 2Ω̃× u , (2.1)

∇ · u = 0 .

In the following, we simplify notation by using Ω = 2Ω̃. In Cartesian coordinates, the
Coriolis force can be written as:

Ω× u = Ω
[

−uy sin θ i + (ux sin θ − uz cos θ) j + uy cos θk
]

, (2.2)

where i, j and k are the unit vectors associated with the Cartesian coordinates. Ω is
chosen to lie in the plane y = 0 and to make an angle θ with the z direction. Following
Kim (2005), we study the effect of a large-scale shear U0 = U0(x)ĵ on the transport
properties of turbulence by writing the velocity as a sum of a shear (chosen in the x-
direction) and fluctuations: u = U0 + v = U0(x)ĵ + v = −xAĵ + v. Without loss of
generality, we assume A > 0. Note that our x − y coordinates are not conventional in
that our x and y directions correspond to y and x in previous works (see Salhi & Cambon
1997, for instance). Therefore, the shearing, the stream-wise and the span-wise direction
correspond to the x, y and z direction, respectively.

To calculate turbulence amplitude (or kinetic energy) and turbulent transport, we
need to solve the equation for the fluctuating velocity field. To this end, we employ the
quasi-linear theory (Moffatt 1978) where the nonlinear local interactions between small
scales are neglected compared to nonlocal interactions between large and small scales
and obtain:

∂tv + U0 · ∇v + v · ∇U0 = −∇p+ ν∇2v + f − Ω × v , (2.3)

∇ · v = 0 ,

where p and f are respectively the small-scale components of the pressure and forcing. As
noted in the introduction, this approximation, also known as the RDT (Townsend 1976),
is justified in the case of strong shear as the latter induces a weak turbulence, leading
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to weak interaction between small scales which is negligible compared to the (non-local)
interaction between the shear and small scales. This has in fact been confirmed by direct
numerical simulations, proving the validity of the predictions of quasi-linear theory with
a constant-rate shear both in the non-rotating (Lee et al. 1990) and rotating unforced
(Salhi & Cambon 1997) turbulence and also for forced turbulence (Leconte et al 2006).
Further, note that the quasi-linear analysis is also valid in the limit of rapid rotation
(Cambon & Scott 1999).

To solve equation (2.3), we introduce a Fourier transform with a wave number in the
x direction evolving in time in order to incorporate non-perturbatively the effect of the
advection by the mean shear flow (Goldreich & Lynden-Bell 1964; Townsend 1976; Kim
2005):

v(x, t) =
1

(2π)2

∫

d3k ei[kx(t)x+kyy+kzz]ṽ(k, t) , (2.4)

where kx(t) = kx(0) + kyAt. From equations (2.3) and (2.4), we obtain the following set
of equations for the fluctuating velocity:

A∂τ v̂x = −ikyτ p̂+ f̂x + Ωv̂y sin θ , (2.5)

A∂τ v̂y −Av̂x = −ikyp̂+ f̂y + Ω(v̂z cos θ − v̂x sin θ) ,

A∂τ v̂z = −ikz p̂+ f̂z − Ωv̂y cos θ ,

0 = τ v̂x + v̂y + βv̂z .

Here, the new variables v̂ = ṽ exp[ν(k2
H t + k3

x/3kyA)] and similarly for f̂ and p̂ have
been used to absorb the diffusive term, and the time variable has been changed to τ =
kx(t)/ky. In the remainder of the paper, we solve equation (2.5) for the fluctuating
velocity (with a vanishing velocity as initial condition) in the case where the shear and
the average rotation are perpendicular (§3) or parallel (§4). We then use these results
and the correlation of the forcing (defined in §2.3) to compute the turbulence intensity
and transport (defined in §2.2).

2.1. Transport of angular momentum

As the large-scale velocity is in the y direction, we are mostly interested in the transport
in that direction. The large-scale equation for the y component of velocity U0 is given
by equation (2.1) with a supplementary term ∇·R where R is the Reynolds stress given
by:

R = 〈vvy〉 . (2.6)

To understand the effect of R on the transport of angular momentum, one can formally
Taylor expand it with respect to the gradient of the large-scale flow:

Ri = ΛiU0 − νT ∂xU0δi1 + · · · = ΛiU0 + νTAδi1 + . . . . (2.7)

Here, Λi and νT are the two turbulent transport coefficients from non-diffusive and
diffusive momentum flux, respectively. Note that the first term in the expansion is due
to the small-scale driving and the Coriolis force in Eq. (2.1) which break the Galilean
invariance (Dubrulle & Frisch 1991). First, νT is the turbulent (eddy) viscosity, which
simply changes the viscosity from the molecular value ν to the effective value ν + νT .
Note that the sign of eddy viscosity represents the direction of energy cascade, with
positive (negative) value for direct (inverse) cascade. Second, the first term involving Λi in
equation (2.7) is proportional to the rotation rate rather than the velocity gradient. This
means that it does not vanish for a constant velocity field and thus permits the creation
of gradient in the large-scale velocity field. This term bears some similarity with the α
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effect in dynamo theory (Parker 1955; Steenbeck & Krause 1966) and has been known as
the Λ-effect (Lebedinsky 1941; Rüdiger 1980) or anisotropic kinetic alpha (AKA)-effect
(Frisch et al. 1987). Similarly to the α effect, this effect exists only if the small-scale flow
lacks parity invariance (going from right-handed to left handed coordinates). However, in
contrast to the α effect, the Λ effect requires anisotropy for its existence (Rüdiger 1980;
Frisch et al. 1987).

2.2. Particle (or heat) transport

To study the influence of rotation and shear on the particle and heat transport, we have
to supplement equation (2.1) with an advection-diffusion equation for these quantities.
We here focus on the transport of particles since a similar result also holds for the heat
transport. The density of particles N(x, t) is governed by the following equation:

∂tN + U · ∇N = D∇2N , (2.8)

where D is the molecular diffusivity of particle. Note that, in the case of heat equation,
D should be replaced by the molecular heat conductivity χ. Writing the density as the
sum of a large-scale component N0 and small-scale fluctuations n (N = N0 + n), we can
express the evolution of the transport of chemicals on large scales by:

∂tN0 + U0 · ∇N0 = (Dδij +Dij
T )∂i∂jN0 , (2.9)

where the turbulent diffusivity is defined as 〈vin〉 = −Dij
T ∂jN0. D

ij
T will analytically be

computed to see the effect of rotation and flow shear on turbulent transport of chemicals
which can be highly anisotropic.

For simplicity, we assume a unit Prandtl number D = ν and apply the transformation
introduced in equation (2.4) to the density fluctuation n to obtain the following equation:

∂τ n̂ =
(−∂jN0)

A v̂j . (2.10)

Equation (2.10) simply shows that the fluctuating density of particles can be obtained
by integrating the fluctuating velocity in time.

2.3. External forcing

As mentioned in introduction, we consider a turbulence driven by an external forcing
f . To calculate the turbulence amplitude and transport defined in §2.1 and §2.2 (which
involve quadratic functions of velocity and/or density), we prescribe this forcing to be
short correlated in time (modelled by a δ-function) and homogeneous in space with power
spectrum ψij in the Fourier space. Specifically, we assume:

〈f̃i(k1, t1)f̃j(k2, t2)〉 = τf (2π)3δ(k1 + k2) δ(t1 − t2)ψij(k2) , (2.11)

for i and j = 1, 2 or 3. The angular brackets stand for an average over realisations of the
forcing, and τf is the (short) correlation time of the forcing. Note that the δ correlation
is valid as long as the correction time τf is the shortest time-scale in the system [i.e.
τf ≪ Ω−1,A−2, 1/(νk2)].

For most results that will be derived later, we assume an incompressible and isotropic
forcing where the spectrum of the forcing is given by:

ψij(k) = F (k)(δij − kikj/k
2) . (2.12)

It is easy to check that in the absence of rotation and shear, this forcing leads to an
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Figure 2. Sketch of the configuration in the perpendicular case

isotropic turbulence with intensity:

〈v2
0〉 =

2τf
(2π)2

∫ ∞

0

F (k)

ν
dk , (2.13)

where the subscript 0 stands for a turbulence without shear and rotation.

In addition to an isotropic forcing, we will also consider an anisotropic forcing in §3.1.2
to examine the combined effect of rotation and anisotropy, which can lead to non-diffusive
fluxes of angular momentum. Specifically, we consider an extremely anisotropic forcing
with motion restricted to a plane perpendicular to a given direction g. The motion in this
perpendicular plane is however assumed to be isotropic. Such a forcing can be modelled
by the following power spectrum (Rüdiger 1989):

ψij(k) = G(k)

[

δij −
kikj

k2
− (g · k)2

k2
δij − gigj +

g · k
k2

(gikj + gjki)

]

. (2.14)

In that case, the turbulence without rotation or shear would have the following properties:

〈(v0 · g)2〉 = 0 , (2.15)

〈(v0 × g)2〉 =
2τf

3(2π)2

∫ ∞

0

G(k)

ν
dk .

3. The perpendicular case (θ = π/2)

In this section, we study the combined effect on turbulence of global rotation and shear
which are perpendicular to each other (see figure 2).
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For θ = π/2, the system (2.5) can be simplified to:

∂2
τ

[

(γ + τ2)v̂x

]

+ β2Ω̄(Ω̄ − 1)v̂x = ∂τ

[h1(τ)

A
]

− Ω̄β
h2(τ)

A , (3.1)

∂τ v̂z = −β
γ
∂τ

[

τ v̂x

]

+ β
Ω̄ − 1

γ
v̂x +

h2(τ)

γA ,

v̂y = −(τ v̂x + βv̂z) .

Here:

Ω̄ = Ω/A , β = kz/ky , γ = 1 + β2 = k2
H/k

2
y (k2

H = k2
y + k2

z) , (3.2)

h1(τ) = γf̂x − τ f̂y − βτf̂z , h2(τ) = f̂z − βf̂y .

To solve the first of equation (3.1) which is a non-homogeneous second order differen-
tial equation, we need two boundary conditions. We impose a vanishing initial velocity
v(τ0) = 0 which implies v̂x(τ0) = 0 and ∂τ v̂x|τ=τ0

= h1(τ0)/(γ + τ2
0 )A. The second

boundary condition can be shown to be obtained in the intermediate steps of deriving
equation (3.1).

The exact solution to (3.1) is obtained in the appendix A.1, where we address the
stability of the homogeneous solution of system (with f = 0). Computations of corre-
lation functions, by using this exact solution, however turns out to be too complex to
be analytically tractable. To gain a physical insight into the role of inertial waves and
flow shear in turbulent transport, we consider the two limits – (i) the strong rotation
where the effect of waves dominates shearing (Ω ≫ A) and (ii) the weak rotation where
shearing dominates the effects of waves (Ω ≪ A). Approximate solutions can be derived
in these two regimes which can then be used for deriving analytic form of correlation
functions for turbulence intensity and transport.

3.1. Rapid rotation limit: Ω ≫ A
When the rotation rate is much larger than the shearing rate (Ω0 = |Ω|/A ≫ 1), the
oscillation of inertial waves is roughly coherent without being damped over shearing time
of A−1. Therefore, these waves can play a dominant role in determining the direction
of energy cascade (sign of eddy viscosity) and transport of particles via phase mixing
(i.e. by affecting the phase relation). However, as shown below, flow shear can still have
a non-trivial effect on turbulence by enhanced dissipation so long as it is stronger than
molecular dissipation. To characterise the latter, we introduce a parameter ξ = νk2

y/A,
the ratio of typical molecular dissipation rate to shearing rate. Here, ky is the charac-
teristic wavenumber of the forcing in the stream-wise direction. We can, for instance,
envision the forcing to have a spectrum peaked around this characteristic wave-number
ky. In the following, we examine the changes in turbulence characteristics in weak (ξ ≫ 1)
and strong (ξ ≪ 1) shear limits to elucidate the effects of flow shear in inertial wave-
dominated turbulence.

In the rapid rotation limit (|Ω| ≫ A), the solution of equation (3.1) can be found by
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using WKB approximation (Bender & Orszag 1975) as:

v̂x(τ) =
1

A(γ + τ2)3/4

∫ τ

τ0

dt

{

ĥ1(t)

(γ + t2)1/4
cos[v(t, τ)] + ĥ2(t)(γ + t2)1/4θ sin[v(t, τ)]

}

,

v̂y(τ) =
1

Aγ(γ + τ2)3/4

∫ τ

τ0

dt
{ ĥ1(t)

(γ + t2)1/4

(

−τ cos[v(t, τ)] + βθ
√

γ + τ2 sin[v(t, τ)]
)

+ĥ2(t)(γ + t2)1/4
(

−θτ sin[v(t, τ)] − β
√

γ + τ2 cos[v(t, τ)]
)}

, (3.3)

v̂z(τ) =
1

Aγ(γ + τ2)3/4

∫ τ

τ0

dt
{ ĥ1(t)

(γ + t2)1/4

(

−βτ cos[v(t, τ)] − θ
√

γ + τ2 sin[v(t, τ)]
)

+ĥ2(t)(γ + t2)1/4
(

−θβτ sin[v(t, τ)] +
√

γ + τ2 cos[v(t, τ)]
)}

.

Here,

Ω0 = |Ω̄| , ω0 = |β|Ω0 , θ = sign(βΩ̄) , (3.4)

s(t) =

(

1 − 1

2Ω̄

)

arcsinh

(

t√
γ

)

+O

(

1

Ω2
0

)

,

v(t, τ) = ω0 [s(t) − s(τ)] .

In the following subsections, we compute the various correlation functions by assuming
a homogeneous and short-correlated forcing [see equation (2.11)]. As the system (3.1)

involves the forcing in terms of ĥ1 and ĥ2 only [see equation (3.2)], it is convenient to
use the power spectrum φij as:

〈h̃i(k1, t1)h̃j(k2, t2)〉 = τf (2π)3δ(k1 + k2) δ(t1 − t2)φij(k2) , (3.5)

for i and j = 1 or 2. In the case of an isotropic and incompressible forcing [equation
(2.12)], φij in equation (3.5) can be written:

φ11(k) = γ(γ + a2)F (k) , φ12(k) = 0 , φ22(k) = γF (k) . (3.6)

3.1.1. Turbulence intensity

We begin by examining the effects of rotation and flow shear on turbulence level in
wave-dominated turbulence due to strong rotation (|Ω| ≫ A). The effect of shear will
further be clarified by comparing results in weak shear limit (ξ ≫ 1) with those in the
strong shear limit (ξ ≪ 1). First, turbulence intensity in the shear direction can be
obtained by using equations (3.3) and (3.5) as:

〈v2
x〉 =

τf
(2π)3A

∫

d3k

∫ +∞

a

dτ
e−2ξ[Q(τ)−Q(a)]

(γ + τ2)3/2

{ φ11(k)
√

γ + a2
cos2[v(a, τ)] (3.7)

+θφ12(k) sin[2v(a, τ)] + φ22(k)
√

γ + a2 sin2[v(a, τ)]
}

.

Here, a = kx/ky, β = kz/ky, γ = 1 + β2, ξ = (νk2
y)/A and Q(x) = x3/3 + γx. In the

case of an isotropic forcing [equation (3.6)], equation (3.7) and the turbulence intensity
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in the two other directions can then be derived as:

〈v2
x〉 =

τf
(2π)3A

∫

d3k γ
√

γ + a2F (k) I0(k) , (3.8)

〈v2
y〉 =

τf
(2π)3A

∫

d3k
√

γ + a2F (k)
{

β2I0k) + I2(k)
}

,

〈v2
z〉 =

τf
(2π)3A

∫

d3k
√

γ + a2F (k)
{

I0(k) + I2(k)
}

.

Here:

Ip(k) =

∫ +∞

a

τp e−2ξ[Q(τ)−Q(a)]

(γ + τ2)3/2
dτ . (3.9)

In order to understand the effect of shearing on turbulence intensity in this wave-
dominated turbulence, we first examine (3.8) in the weak shear limit (ξ ≫ 1) where
the shear is negligible. In this case, the integral Ip in equation (3.9) takes the approxi-
mate value:

Ip(k) ∼ ap

2ξ(γ + a2)5/2
=

Aap

2νk2(γ + a2)3/2
. (3.10)

By using equation (3.10) in equation (3.8), we can then obtain the following result for
the turbulent intensity:

〈v2
x〉 =

τf
(2π)3

∫

d3k
F (k)

2νk2

γ

γ + a2
, (3.11)

〈v2
y〉 =

τf
(2π)3

∫

d3k
F (k)

2νk2

β2 + a2

γ + a2
,

〈v2
z〉 =

τf
(2π)3

∫

d3k
F (k)

2νk2

1 + a2

γ + a2
.

Performing the integration over the angular variable, we obtain:

〈v2
x〉 =

τf
(2π)3

∫

dk
F (k)

2ν

∫ 2π

0

dφ

∫ π

0

dθ sin θ
(

cos2 θ + sin2 θ sin2 φ
)

=
2τf

3(2π)2

∫

dk
F (k)

ν
=

1

3
〈v2

0〉 , (3.12)

〈v2
y〉 = 〈v2

z〉 =
1

3
〈v2

0〉 .

Here, 〈v2
0〉 is the turbulence amplitude in the absence of rotation and shear [see Eq.

(2.13)]. These results thus show that, in the large rotation limit, the turbulence intensity
is isotropic and equals to the one without rotation [see equation (2.13)] for sufficiently
weak shear with ξ ≫ 1. Furthermore, in this limit of a sufficiently weak shear where
(Ω,D) ≫ A, turbulence intensity is independent of rotation since waves do not necessarily
quench turbulence level. A similar result was also obtained in MHD turbulence and
stratified turbulence where magnetic fields and gravity waves mainly affect transport
without much effect on turbulence level (Kim 2006; Kim & Leprovost 2007a,b). We shall
show below that a strong anisotropy can be induced when shearing effect is not negligible
(ξ ≪ 1) even in the rapid rotation limit (Ω ≫ A).

In order to understand the effect of flow shear, we now consider the strong shear limit
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(ξ ≪ 1). In this limit, the integral (3.9) is simplified as:

I0(k) =
1

γ

(

1 − a
√

γ + a2

)

, (3.13)

I2(k) =
− ln ξ

3
.

By plugging equation (3.13) in equation (3.8), we obtain:

〈v2
x〉 =

τf
(2π)3A

∫

d3k
√

γ + a2F (k) ∝ ξ〈v2
0〉 , (3.14)

〈v2
y〉 =

τf
(2π)3A

∫

d3k
√

γ + a2F (k)
− ln ξ

3
∝ ξ| ln ξ|〈v2

0〉 ,

〈v2
z〉 =

τf
(2π)3A

∫

d3k
√

γ + a2F (k)
− ln ξ

3
∝ ξ| ln ξ|〈v2

0〉 ,

to leading order in ξ ≪ 1. Note that in the calculation of 〈v2
x〉, we neglected the com-

ponent proportional to a = kx/ky as it is odd in both kx and ky and thus vanishes
after integration over the angular variables for an isotropic forcing. The last terms in Eq.
(3.14), expressed in terms of the turbulence amplitude in the absence of rotation and
shear 〈v2

0〉 [see Eq. (2.13)], explicitly show the dependence of turbulence level on rotation
and shear. That is, all the components of turbulence intensity is reduced for strong shear
ξ ≪ 1. Further, the x component along shear is reduced as ξ ∝ A−1 while the other
two components as ξ| ln ξ|, with an effectively weaker turbulence in the shear direction
than in the perpendicular one, by a factor of ln ξ. This shows that shear flow can induce
anisotropic turbulence (unlike rotation) even when the forcing is isotropic. This result is
similar to that obtained in the simulation of a Couette flow at high rotation rate (Bech
& Andersson 1997) where the velocity fluctuations perpendicular to the wall exceed that
in the stream-wise direction. Nevertheless, Eq. (3.14) shows that a strong rapid rotation
yet insures an isotropy in velocity fluctuations in y − z directions (〈v2

y〉 = 〈v2
z〉).

3.1.2. Transport of angular momentum

As noted in the Introduction, rotation tends to cascade energy to large scales while
shear flow to small scales. Would thus the inverse cascade be a robust feature for rapid
rotation (Ω ≫ A)? If yes, what would the effect of flow shear? Would there be a
non-diffusive momentum transport? We answer these questions by first considering an
isotropic forcing and then anisotropic forcing. The effect of shear will be elucidated by
looking at the two limits of weak shear (ξ ≫ 1) and strong shear (ξ ≪ 1), as done in
§3.1.1.

First, in the case of an isotropic forcing, we obtain the following Reynolds stress from
equations (3.3) and (3.5):

〈vxvy〉 = − τf
(2π)3A

∫

d3k
√

γ + a2F (k) I1(k) , (3.15)

where I1 was defined in equation (3.9). Equation (3.15) is computed in the weak and
strong shear limits, below.

First, in the weak shear limit (ξ ≫ 1), there is no contribution to leading order in Ω̄−1

as the function I1 is odd in a and thus vanishes after integration over the wave vector.
We thus include one higher order in Ω̄−1 in the expansion and obtain the following result:
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〈vxvy〉 = − τf
(2π)3A

∫

d3k
aF (k)

2ω0
J(k) . (3.16)

Here, we defined a function J(k), which has the following asymptotic behaviour in the
weak shear limit:

J(k) =

∫ +∞

a

τe−2ξ[Q(τ)−Q(a)]

(γ + τ2)3/2
sin [2ω0 {s(a) − s(τ)}] dτ (3.17)

∼ − aω0A
2(γ + a2)3/2[ν2k4 + ω0

2]
,

where ω0 = ω0A/
√

γ + a2. Plugging equation (3.17) in equation (3.16) and performing
the integration over the azimuthal angle variable φ, we obtain:

〈vxvy〉 =
τfA

32(3π)2

∫

dk k2F (k)

∫ π

0

dθ sin5 θ
1

ν2k4 + ω0
2 . (3.18)

Finally, we change the integration variable from θ to ω0 = Ω cos θ, obtaining the following
formula:

〈vxvy〉 =
τfA

16(2π)2|Ω|

∫ +∞

0

dk k2F (k)

∫ |Ω|

0

dω0

(

1 − ω0
2/Ω2

)2

ν2k4 + ω0
2 . (3.19)

Therefore, in the large rotation and weak shear limit, the Reynolds stress becomes purely
diffusive (with no Λ-effect) with the turbulent viscosity:

νT ∼ πτf
32(2π)2|Ω|

∫ +∞

0

dk
F (k)

ν
. (3.20)

This result shows that the turbulent viscosity is positive and proportional to Ω−1 for
large Ω. It is worth comparing equation (3.20) with equation (22) in Kichatinov (1986).
To this end, we use equation (2.13), which gives the turbulence amplitude without ro-
tation (the original turbulence of Kichatinov) in equation (3.20) to obtain the turbulent
viscosity νT ∼ π〈v2

0〉/64|Ω|. Thus νT in equation (3.20) is the same as equation (22) in
Kichatinov (1986) for |Ω| ≫ 1 and θ = π/2, but has an opposite sign. This is due to
the τ -approximation used by Kichatinov which gave an unphysical result. Later, Kichati-
nov (1988) showed that the viscosity is also positive at any rotation rate when derived
consistently with quasi-linear approximation in the weak shear limit.

In comparison, in the strong shear limit (ξ ≪ 1), the function I1 in equation (3.9) has
the following asymptotic behaviour:

I1(k) =
1

√

γ + a2
. (3.21)

Plugging equation (3.21) in equation (3.15), we obtain the turbulent viscosity in the
strong shear limit as:

νT =
〈vxvy〉
A = − τf

(2π)3A2

∫

d3k F (k) . (3.22)

Equation (3.22) shows that the turbulent viscosity is negative (as F (k) > 0) in the strong
shear limit, in sharp contrast to the weak shear limit where νT > 0 [see equation (3.20)].
Furthermore, the magnitude of νT is reduced by the shear (∝ A−2) and is independent of
rotation, which should also be compared with the weak shear limit [see equation (3.20)
where νT ∝ Ω−1]. Therefore, the turbulent viscosity changes from positive (for weak
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shear) to negative (for large shear) as the ratio of shear to dissipation increases. This
result can be understood if we assume that, as in most rapidly rotating fluid, the inverse
cascade is associated with the conservation of a potential vorticity (Pedlovsky 1987). In
the presence of strong shear (compared to dissipation), the potential vorticity is strictly
conserved giving rise to an inverse cascade (negative viscosity). When the dissipation
increases, the potential vorticity is less and less conserved and thus the inverse cascade
is quenched. Our results show that there is a transition from inverse to direct cascade
as the dissipation is increased. A similar behaviour is also found in two-dimensional
hydrodynamics (HD) where an inverse cascade can be shown to be present only for
sufficient weak dissipation (Kim & Dubrulle 2001).

It is important to note that the negative viscosity νT < 0 obtained here for strong
rotation/strong shear (Ω ≫ A ≫ νT k

2
y) signifies the amplification of shear flow as the

effect of rotation favouring inverse cascade dominates shearing (generating small scales).
However, the magnitude of νT is reduced by shear as |νT | ∝ A−2 since flow shear inhibits
the inverse cascade. This can be viewed as ‘self-regulation’ – that is, self-amplification of
shear flow is slowed down as the latter becomes stronger.

The preceding results [equation (3.20) and (3.22)] indicate that in the large rotation
limit where rotation dominates over shear, the momentum transport is purely diffusive
for isotropic forcing, with opposite sign of turbulent viscosity for weak (ξ ≫ 1) and strong
shear (ξ ≪ 1) for a fixed value of |Ω|/A (≫ 1). In the case of anisotropic forcing, there is
however a possibility of the appearance of non-diffusive momentum transport (Λ-effect).
To examine this possibility, we now consider an extremely anisotropic forcing (introduced
in §2.3) where the forcing is restricted to horizontal plane (y-z), perpendicular to the
direction of the shear. Using equation (2.14) with gij = δi1, we obtain the following
Reynolds stress:

〈vxvy〉 = − τf
(2π)3A

∫

d3k
γG(k)

2
√

γ + a2

[{

I1(k) − J ′(k)
}

+ βθK(k)
]

. (3.23)

Here, I1 was defined previously in equation (3.9) and:

J ′(k) =

∫ +∞

a

τe−2ξ[Q(τ)−Q(a)]

(γ + τ2)3/2
cos [2ω0 {s(a) − s(τ)}] dτ , (3.24)

K(k) =

∫ +∞

a

e−2ξ[Q(τ)−Q(a)]

(γ + τ2)
sin [2ω0 {s(a) − s(τ)}] dτ .

We again consider the weak and strong shear limits in the following. First, in the weak
shear limit (ξ ≫ 1), equation (3.23) is simplified to:

〈vxvy〉 =
τf

(2π)3A

∫

d3k
γG(k)βθ

4(γ + a2)3/2

ω0

ν2k4 + ω0
2 . (3.25)

Performing the angular integration in equation (3.25) and taking the large rotation limit,
we obtain the following:

〈vxvy〉 =
τf

3(2π)3ΩA

∫

d3k
G(k)

ν
. (3.26)

Equation (3.26) is odd in the rotation and thus represents the Λ-effect. Again, the latter
favours the creation of velocity gradient rather than smoothing it out and can thus
provide a mechanism for the occurrence of differential rotation (e.g., in the sun). By
using equation (2.15), one can see that the Λ-effect is proportional to the anisotropy in
the turbulence without shear and rotation. This result shows that, in the large rotation
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limit, one needs anisotropic forcing to generate non-diffusive fluxes of angular momentum
(as in the case without shear as shown Kichatinov 1986). This should be contrasted to
the case of weak rotation (see §3.2) where the shear can alone give rise to an anisotropic
turbulence, thereby leading to a Λ-effect even with an isotropic forcing.

Finally, in the opposite, strong shear limit (ξ ≪ 1), Equation (3.23) becomes:

〈vxvy〉 = − τf
(2π)3A

∫

d3k
γG(k)

2(γ + a2)
, (3.27)

which is even in the rotation. Thus, the turbulent viscosity νT is obviously negative.
Thus, in the large shear limit (but still negligible compared to the rotation), anisotropic
forcing does not induce any non-diffusive fluxes but just increases the magnitude of the
negative turbulent viscosity.

3.1.3. Transport of particles

In the large rotation limit (|Ω|/A ≫ 1), inertial waves might play a crucial role in
transport of particle as waves can alter the phase relation between particle density and
velocity, as noted previously. How does this effect appear in forced turbulence? What is
the effect of shear flow on particle transport dominated by waves? These questions are
answered in this subsection.

In the rapid rotation limit (|Ω|/A ≫ 1), turbulent particle diffusivities can be obtained
after a long, straightforward analysis (see Appendix B for details about the algebra) as:

Dxx
T ∼ τf

8π|Ω|

∫ ∞

0

F (k)

ν
dk , (3.28)

Dyy
T = Dzz

T ∼ τf
16π|Ω|

∫ ∞

0

F (k)

ν
dk ∼ 1

2
Dxx

T .

Note that in that case, the result is not sensitive to the value of the parameter ξ and thus
we do not distinguish between the weak and large shear limits. Equation (3.28) shows
that Dxx

T , Dyy
T and Dzz

T are all reduced as Ω−1 (with no effect of the shear) for large Ω
and also that there is only a slight anisotropy in the transport of scalar: the transport in
the direction of the rotation is twice larger than the one in the perpendicular direction
(Kichatinov et al. 1994). Interestingly, this anisotropy in the transport of particles is not
present in turbulence intensity [see equation (3.12)]. This is because waves can affect the
phase between density fluctuation and velocity, not necessarily altering their amplitude.
However, it is important to note that this anisotropy is only a factor of 2, much weaker
than that in sheared turbulence without rotation (Kim 2005).

To summarise, in this subsection 3.1, we have examined how a shear flow can affect
the turbulent property when turbulence is largely dominated by inertial waves in rapid
rotation limit (|Ω|/A ≫ 1). In particular, the results show:

(a) that shear flow reduces turbulence level with a strong anisotropy [equation (3.14)],
leading to an effectively weaker turbulence in the direction of the shear [which would
otherwise be almost isotropic [equation (3.11)];

(b) that in comparison, transport of particles is mainly governed by waves with almost
isotropic property (within a factor of 2) and quenched as Ω−1 as rotation rate Ω increases;

(c) that energy cascade is inverse with negative viscosity for strong rotation/shear
limit (Ω ≫ A ≫ νk2

y) while its rate is slowed down by strong shear;
(d) that momentum transport is purely diffusive for isotropic forcing, with non diffu-

sive transport appearing only for anisotropic forcing.
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3.2. Weak rotation limit: Ω ≪ A
When Ω ≪ A, flow shear can distort inertial waves over the period of their oscillation,
dramatically weakening the effects of these waves on turbulence. Therefore, shear may
take a dominant role in determining turbulence property (studied in Kim 2005) while
rotation modifies some of the properties of this shear-dominated turbulence. The inves-
tigation of this limit would thus permit us to clarify the effects of rotation as well as flow
shear, thereby complementing the analysis done in Sec. 3.1 for strong rotation (Ω ≫ A).
Of particular interest is (1) to what extent the quenching and anisotropy of sheared tur-
bulence (Kim 2005) are affected by rotation, which favours isotropic turbulence; (2) how
the direction of the energy cascade, which tends to be direct in 3D sheared turbulence,
is affected by rotation (which prefers inverse cascade); (3) whether momentum transport
can occur via non-diffusive fluxes.

To answer these questions, we expand various physical quantities in powers of Ω0 =
|Ω|/A as:

X(τ) = X0(τ) + Ω0X1(τ) + . . . , (3.29)

in the weak rotation limit (Ω ≪ A) and calculate the turbulence intensity and transport
up to first order in Ω0. For the sake of brevity, we here just provide the final results of the
calculation. Note that in this limit, we are only interested in strong shear case (ξ ≪ 1)
since in the opposite limit where νk2

y ≫ A ≫ Ω, the effects of both shear and rotation
simply disappear to leading order.

3.2.1. Turbulence intensity

By using the expansion in powers of Ω0 (3.29) and equation (3.5) and after a long, but
straightforward algebra, we can obtain the turbulence intensity in the shear direction as
follows:

〈v2
x〉 =

τf
(2π)3A

∫

d3kφ11(k)
[

L0(k) + β2Ω̄L1(k)
]

. (3.30)

Here:

L0(k) =

∫ +∞

a

dτ
e−2ξ[Q(τ)−Q(a)]

(γ + τ2)2
dτ , (3.31)

L1(k) =

∫ +∞

a

dτ
e−2ξ[Q(τ)−Q(a)]

(γ + τ2)2

[

τ{T (τ) − T (a)} − 1

2
ln

(

γ + τ2

γ + a2

)]

dτ ,

T (x) =
1√
γ

arctan

(

x√
γ

)

.

In the strong shear limit (ξ ≪ 1), the integrals L0 and L1 in equation (3.31) can be
simplified:

L0(k) ∼
∫ +∞

a

1

(γ + τ2)2
dτ =

1

2γ

[

π

2
√
γ
− T (a) − a

γ + a2

]

dτ , (3.32)

L1(k) ∼
∫ +∞

a

1

(γ + τ2)2

[

τ{T (τ) − T (a)} − 1

2
ln

(

γ + τ2

γ + a2

)]

dτ

=

∫ +∞

a

[

τ

2γ(γ + τ2)
+

1

2γ
T (τ)

]

{T (τ) − T (a)}dτ .

Note that the second formula for L1 in equation (3.32) was obtained by integration by
part. The leading order behaviour of Equation (3.30) coming from the term involving L0

is due to shearing effect, showing that 〈v2
x〉 is quenched by flow shear ∝ A−1 (see Kim
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2005). The effect of rotation appears as a correction proportional to L1. One can see from
Eq. (3.32) that this correction L1 is positive for all values of a (for a < 0, the negative
part of the integral is always smaller than the positive one as the first term is odd in τ
and the second one is an increasing function of a). Therefore, the turbulence intensity
〈v2

x〉 in equation (3.30) increases for Ω̄ > 0 whereas it decreases for Ω̄ < 0. This can
physically be understood from the linear instability analysis (performed in appendix):
that is, instability (Ω̄ > 0) increases turbulence level while stability (Ω̄ < 0) reduces it.

The other components of the turbulence amplitude can be obtained by following similar
analyses in the strong shear limit (ξ ≪ 1) as follows:

〈v2
y〉 ∼

τf
(2π)3A

∫

d3k

[

β2

(

π

2
√
γ
− T (a)

)2

φ11(k) + φ22(k)

]

β2

3γ2

(

3

2ξ

)1/3

,

×
[

Γ(1/3) + Ω̄β2Γ(4/3)(− ln ξ)
]

(3.33)

〈v2
z〉 ∼

τf
(2π)3A

∫

d3k

[

β2

(

π

2
√
γ
− T (a)

)2

φ11(k) + φ22(k)

]

1

3γ2

(

3

2ξ

)1/3

×
[

Γ(1/3) + Ω̄β2Γ(4/3)(− ln ξ)
]

.

Here, Γ is the Gamma function. The first terms in Eq. (3.33) represent the turbulence
amplitude in the direction perpendicular to shear without rotation (Kim 2005), which
are reduced as A−2/3 for strong shear. Compared to the leading order behaviour of
〈v2

x〉 ∝ A−1 in shear direction, the reduction is weaker by a factor of ξ1/3. That is, a
strong anisotropy in turbulence level can be induced for strong shear. The second terms
in Eq. (3.33) capture the effect of weak rotation on sheared turbulence, with turbulence
amplitude again being increased or decreased depending on the sign of Ω̄. Furthermore,
the correction comes with a multiplying factor ∝ | ln ξ| > 1, which is larger compared to
that for the amplitude in the shear (x) direction (which is independent of shear [equation
(3.30)]). Therefore, in the stable situation (Ω̄ < 0) of our interest, weak rotation has the
effect of reducing turbulence in the y− z plane more than the one in the shear direction.
As a result, the anisotropy induced by flow shear is weakened by rotation. Interestingly,
this illustrates the tendency of rotation of leading to almost isotropic turbulence.

It is also interesting to note that the leading order terms in 〈v2
y〉 and 〈v2

z〉, although
apparently very similar, are not exactly the same. For instance, in the case of an isotropic
forcing, the angular integration gives 〈v2

y〉 > 〈v2
z〉. This slight anisotropy in y− z (stream

and span-wise) directions in sheared turbulence was also observed in numerical simula-
tions of homogeneous turbulence subject to high shear rate: the fluctuating velocity in the
direction of the flow is larger than the one in the direction of the shear (Lee et al. 1990).
This can be contrasted to the exact equipartition between 〈v2

y〉 and 〈v2
z〉 [see (3.14)] in

the case of rapid rotation. This is another manifestation of the difference between shear
flow and rotation in inducing anisotropic turbulence.

In summary, in the case of a weak rotation/strong shear turbulence (A ≫ |Ω| and
A ≫ νk2

y), the rotation tends to reduce the anisotropy in sheared turbulence.

3.2.2. Transport of angular momentum

As noted previously, a strong anisotropy in turbulence is caused by strong shear in
the weak rotation limit. There is thus a possibility that this anisotropic turbulence gives
rise to non-trivial non-diffusive momentum transport. This will be shown to be the case
below.
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In the strong shear limit (ξ ≪ 1), momentum flux can be derived as:

〈vxvy〉 ∼
τf

(2π)3A

∫

d3k
{φ11(k)

γ

[

− 1

2(γ + a2)
+ β2

(

π

2
√
γ
− T (a)

)2
]

(3.34)

+
β2Ω̄

3γ
(− ln ξ)

[

β2

(

π

2
√
γ
− T (a)

)2

φ11(k) + φ22(k)

]

}

.

The momentum flux in (3.34) consists of a diffusive part (the first half term in the
integrand on the RHS) and a non-diffusive part (the second half term in the integrand
on the RHS). First, the diffusive part, independent of Ω̄, recovers the eddy viscosity
of sheared turbulence without rotation (Kim 2005), showing that its value decreases as
∝ A−2 for strong shear. Second, the non-diffusive part, the correction due to the rotation,
is proportional to Ω̄ and is odd in the rotation. This is a non-diffusive contribution to
Reynolds stress – the so-called Λ-effect. The origin of this non trivial Λ-effect is the
strong anisotropy induced by shear flow on the turbulence even when the driving force
is isotropic. It is important to contrast this to the case of rapid rotation limit where
non-diffusive fluxes emerge only for anisotropic forcing. A similar result was also found
in §3.1.2 [see equations (3.20) and (3.22)]. This Λ-effect [the second term in equation
(3.34)] is obviously of the same sign as Ω̄ whereas the turbulent viscosity [the first term in
equation (3.34)] can either be positive or negative, depending on the relative magnitude
of the two terms inside the integral. In the two-dimensional (2D) limit with kz = 0
(β = 0), we can easily show that the turbulent viscosity is negative. Note that in this
2D case, νT < 0 signifies the amplification of shear flow while |νT | ∝ A−2 reflects that
the generation of shear flow slows down for strong shear. In contrast, in 3D with an
isotropic forcing, the turbulent viscosity is positive. Finally, we note that our results here
are compatible with previous studies which showed that non-diffusive fluxes of angular
momentum (Rüdiger 1980; Kichatinov 1986) are proportional to the anisotropy in the
background turbulence, which is induced by flow shear in our case.

3.2.3. Transport of particles

Transport of particles has been shown to be severely quenched by shear flow with
strong anisotropic properties (Kim 2005). We now examine how (weak) rotation affects
this. In the strong shear limit (ξ ≪ 1), we can find turbulent diffusivity of particles as:

Dxx
T ∼ τf

(2π)3A2

∫

d3k φ11(k)

(

π

2
√
γ
− T (a)

)2 [

1 + Ω̄β2 − ln ξ

3

]

, (3.35)

Dzz
T ∼ τf

(2π)3A2

∫

d3k

[

φ11(k)β2

γ2

(

π

2
√
γ
− T (a)

)2

+
φ22(k)

γ2

]

×

1

3

(

3

2ξ

)2/3

Γ(2/3)

{

1 + 2Ω̄β2 − ln ξ

3

}

.

The first terms in Eq. (3.35) manifest the quenching of particle transport for strong
shear as Dxx

T ∝ A−2 and Dzz
T ∝ A−4/3, with effectively faster transport in span-wise

direction compared to shear direction. That is, a strong anisotropic transport can arise
for strong shear. It is interesting to contrast this result to that in the case of rotation
where the transport in the shear (x) direction was larger only by a factor 2 than the
one in the perpendicular direction. The second, correction terms in Eq. (3.35) represent
the effect of rotation and are proportional to Ω̄: Thus, for Ω̄ > 0, the transport is
increased whereas it is reduced for Ω̄ < 0. This is physically because a weak rotation
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Figure 3. Sketch of the configuration in the parallel case

destabilises sheared turbulence for Ω̄ > 0 whereas it stabilises for Ω̄ < 0 (see figure 5
and the discussion in Appendix A.1). Note that a similar behaviour was also found in
turbulence intensity, given in equations (3.30) and (3.33). Thus, one can see that for
stable configuration (Ω̄ < 0) of our interest, the corrections due to rotation tend to
weaken the strong anisotropy induced by flow shear. These results highlight the crucial
role of shear in transport, in particular in introducing anisotropy.

To summarise Sec. 3.2, in the slow rotation limit where turbulence is mainly governed
by flow shear, turbulence intensity [equations (3.30) and (3.33)] and transport [equation
(3.35)] can be severely quenched with strong anisotropy due to shearing while weak
rotation weakens this anisotropy to next order. The strong anisotropic turbulence was
shown to give rise to a Λ-effect for momentum transport [equation (3.34)] even for an
isotropic forcing.

4. The parallel case (θ = 0)

In Sec. 3, we have considered the case where rotation and shear are perpendicular and
investigated how rotation and flow shear influence turbulence properties, elucidating that
shear acts as a main mechanism for quenching turbulent amplitude and turbulence level
and for causing anisotropy while rotation results in almost isotropic turbulence affect-
ing largely particle transport. The energy cascade direction is shown to be determined
whether rotation is stronger or weaker compared to flow shear, with strong rotation
favouring inverse cascade with negative viscosity. In this section, we examine how robust
these results are by considering a different configuration of rotation and shear. Specif-
ically, we study turbulence property in the case where the shear and the rotation are
parallel (see figure 3). The results obtained in this case would be relevant to turbulence
near the poles in stars or planets, where the rotation is along radial shear. In addition to
small-scale forcing f included in §3, we assume a large-scale forcing F to maintain an equi-
librium for the large-scale flow (e.g. Yu & Girimaji 2006). In real physical situation, this
large-scale forcing can be provided by thermal wind associated with (latitudinal) tem-
perature gradient on large scales (Kichatinov & Rüdiger 1995; Salhi & Cambon 2006).
Density/temperature fluctuations in this case can then be included as a part of the small-
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scale external forcing f in our formalism. Note that a similar approach was adopted by
(Kichatinov & Rüdiger 1995) in computing the transport of momentum and particle in
stars, including the polar region. A consistent treatment of fluctuating temperature re-
quires the extension of the present work to stratified rotating sheared turbulence and
will be performed in future publications.

Most of the discussions in this section will be brief as similar physical motivations and
reasonings can be found in the previous section §3. To investigate turbulence property
in the parallel case, we set θ = 0 and rearrange (2.5), thereby eliminating the pressure
term, and obtain the following equations for fluctuating velocity:

∂τ

[1

τ
∂τ

(

{γ + τ2}v̂x

)

]

+ (Ω̄2τ − Ω̄β)v̂x = ∂τ

[h1(τ)

Aτ
]

− Ω̄
ĥ2(τ)

A , (4.1)

∂τ v̂z = −β
γ
∂τ

[

τ v̂x

]

+
Ω̄τ − β

γ
v̂x +

ĥ2(τ)

γA ,

v̂y = −(τ v̂x + βv̂z) .

Here again, β = kz/ky, γ = 1 + β2 = k2
H/k

2
y and Ω̄ = Ω/A.

To calculate the turbulence amplitude and transport, the first equation in equation
(4.1) is to be solved with initial conditions: v̂x(τ0) = 0 and ∂τ v̂x|τ=τ0

= h1(τ0)/(γ+τ2
0 )A.

Unfortunately, we were unable to find an exact solution of equation (4.1) in the general
case. In order to gain a useful insight into the problem, we here focus on the three
simplified cases where approximate solutions can be found: the large rotation limit in
§4.1 where we find a WKB solution of equation (4.1), the weak rotation limit in §4.2
and finally, in §4.3, we consider the symmetric perturbation (with β =0) to find an exact
solution. As the results of the first two subsections (§4.1 and 4.2) turn out to be very
similar to the perpendicular case (§3), we here just show the main differences resulting
from the different configuration of shear and rotation.

4.1. Strong rotation limit: Ω ≫ A (and a > 0)

For |Ω̄| ≫ 1, we seek for a WKB solution of the first equation in equation (4.1). However,
since this approximation breaks for τ = 0, we assume that the initial value is positive
(τ0 = a > 0) to make our solution meaningful. In §4.3, we study an exactly solvable
case and show that the solution can be altered by negative initial value (τ0 = a < 0).
Assuming τ0 = a > 0, we obtain the following solutions for the three components of the
velocity for |Ω/A| ≫ 1:

v̂x(τ) =
1

A(γ + τ2)3/4

∫ τ

τ0

dt

{

ĥ1(t)

(γ + t2)1/4
cos[v(t, τ)] + χĥ2(t)(γ + t2)1/4 sin[v(t, τ)]

}

,

v̂y(τ) =
1

Aγ(γ + τ2)3/4

∫ τ

τ0

dt
{ ĥ1(t)

(γ + t2)1/4

(

−τ cos[v(t, τ)] + βχ
√

γ + τ2 sin[v(t, τ)]
)

+ĥ2(t)(γ + t2)1/4
(

−χτ sin[v(t, τ)] − β
√

γ + τ2 cos[v(t, τ)]
)}

, (4.2)

v̂z(τ) =
1

Aγ(γ + τ2)3/4

∫ τ

τ0

dt
{ ĥ1(t)

(γ + t2)1/4

(

−βτ cos[v(t, τ)] − χ
√

γ + τ2 sin[v(t, τ)]
)

+ĥ2(t)(γ + t2)1/4
(

−χβτ sin[v(t, τ)] +
√

γ + τ2 cos[v(t, τ)]
)}

.



22 Nicolas Leprovost and Eun-jin Kim

Here,

Ω0 = |Ω̄| , χ = sign(Ω̄) , (4.3)

r(t) =
√

γ + τ2 − βχ

2Ω0
ln
[

τ +
√

γ + τ2
]

+O

(

1

Ω2
0

)

,

v(t, τ) = Ω0 [r(t) − r(τ)] .

Due to the similarity between equation (4.2) and equation (3.3) obtained in the perpen-
dicular case in §3.1, the turbulence amplitude can easily be shown to be the same as that
of equation (3.8). Similarly, the turbulent viscosity is the same as previously [see equa-
tion (3.15)] with a negative eddy-viscosity in the strong shear limit. In the weak shear
limit, however, the next order term is odd in β and thus vanishes for an isotropic forcing,
giving no contribution to the eddy-viscosity. Consequently, the eddy viscosity vanishes to
leading order (for rotation and shear parallel) in the weak shear limit. Also, the transport
of particles is the same as previously [see equation (3.28)] both in the strong and weak
shear limits.

4.2. Weak rotation limit: Ω ≪ A
In the weak rotation limit, we expand all the quantities in powers of Ω0 as:

X(τ) = X0(τ) + Ω0X1(τ) + . . . . (4.4)

Contrary to the perpendicular case, we find that the leading order correction (propor-
tional to Ω0) vanishes in the case of an isotropic forcing (because these terms are odd in
β) for all the previously calculated quantities. This means that the turbulence amplitude
and particle transport are the same (up to first order in Ω0) as in the case without shear:
the component in the direction of the shear is more quenched (〈v2

x〉 as A−1 and Dxx
T as

A−2) than in the direction perpendicular to it (〈v2
y〉 as A−2/3 and Dyy

T as A−4/3).

However, the component of the Reynolds stress involving the velocity component vz

does not vanish and is odd in Ω. Thus, the Λ-effect appears here in the other component
of the Reynolds stress Λz (recall that in the perpendicular case, the Λ-effect was present
only in 〈vxvy〉), in the form:

Λz ∼ − τf
(2π)3A2

∫

d3k
Γ(2/3)

6γ2

(

3

2ξ

)2/3

(3β2−1)

{

β2

(

π

2
√
γ
− T (a)

)2

φ11(k) + φ22(k)

}

.

(4.5)
Equation (4.5) shows that the sign of Λz is indefinite (as both signs appear in the prefactor
(3β2 − 1). However, as for equation (3.34), in the case of an isotropic forcing, the term
proportional to β2 dominates, making Λz negative. This Λ effect appears due to the
anisotropy between the stream-wise and the span-wise components of the velocity, due
to the shear (alone) as shown in §3.2.1

4.3. Symmetric perturbation (β = 0)

In this section, we consider a symmetric perturbation with kz = 0 by assuming a forcing
that is symmetric in the span-wise direction with no dependence on z. Note that even
though kz = 0, vz and vy are closely linked through rotation Ωx̂. That is, the case kz = 0
with rotation is not similar to the 2D case. Details of the derivation are given in Appendix
C, where solutions for arbitrary values of Ω0 are provided. Here, we show only the results
in the large rotation limit.
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4.3.1. Turbulence amplitude

In the large rotation limit: Ω0 ≫ 1, we obtain the turbulent amplitude to leading order:

〈v2
x〉 =

τf
(2π)3A

∫

d3k F (k)
√

1 + a2 , (4.6)

〈v2
z〉 =

τf
(2π)3A

∫

d3k F (k)
√

1 + a2

(− ln ξ

3

)

.

Thus, the turbulence amplitude is larger in the y − z plane than the one in the shear
direction by a logarithmic factor. Moreover, equation (4.6) shows that the turbulence
amplitude does not depend on the rotation rate in the large rotation limit but is quenched
by shear only. In particular, 〈v2

y〉 = 〈v2
z〉. These results are the same as in the case where

the shear and the rotation are perpendicular [see equation (3.8)] and thus agree with the
WKB solution in Sec. 4.1.

4.3.2. Turbulent transport of momentum

In the large rotation limit (Ω0 ≫ 1), we obtain the following turbulent viscosity:

νT = − τf
(2π)3A2

∫

d3k F (k) . (4.7)

Equation (4.7) shows that the turbulent viscosity does not depend on rotation in the
large rotation limit and is obviously negative. Note that this result is the same as in the
perpendicular case [see equation (3.22)] and, thus again, agrees with the WKB solution
found previously.

4.3.3. Particles transport

In the limits of strong shear (ξ ≪ 1) and large rotation (Ω0 ≫ 1), the transport of
particles is given by:

Dxx
T ∼ τf

8π|Ω|

∫ ∞

0

F (k)

ν
dk +

πτf
(2π)3A|Ω|

∫

a<0

d3k
√

1 + a2F (k) ,

Dzz
T ∼ τf

16π|Ω|

∫ ∞

0

F (k)

ν
dk +

πτf
(2π)3A|Ω|

∫

a<0

d3k
√

1 + a2F (k) . (4.8)

The transport of particles in equation (4.8) involves two contributions, both of which
scale as Ω−1 for rapid rotation. The first contribution comes from the integration by
parts and has to be kept only because ω0 can vanish for a = 0 while the second comes
from the stationary point in the integration (see appendix D.3 for details). Note that
the ratio of the second term to the first one is equal to νk2/A ∼ ξ. Consequently, in the
strong shear limit (ξ ≪ 1), the first term dominates. Thus, the transport of particles is
the same as the one found with the WKB analysis (see §4.1).

To summarise, in this section, we solved equation (4.1) exactly for β = 0 and found the
same results to those in §4.1 obtained by WKB analysis (which is valid only for a > 0).
The results being the same, the conclusions reached by WKB analysis remain valid for
arbitrary values of a.

5. Discussion in the strong shear limit

In §3 and §4, depending on the values of the parameter ξ = (νk2
y)/A, we considered

two regimes: the strong shear (ξ ≪ 1) and the weak shear limits (ξ ≫ 1). Since we are
interested in the effects of flow shear as well as rotation, we here summarise and discuss
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Perpendicular Parallel

Ω ≫ A Ω ≪ A Ω ≫ A Ω ≪ A

〈v2

x〉 A−1 A−1
[

1 + CΩ̄
]

A−1 A−1

〈v2

y〉 ∼ 〈v2

z〉 A−1| ln ξ| A−2/3
[

1 + CΩ̄| ln ξ|
]

A−1| ln ξ| A−2/3

νT −A−2 A−2 −A−2 A−2

Λx 0 A−2| ln ξ| 0 0

Λz 0 0 0 A−4/3

Dxx
T Ω−1 A−2

[

1 + CΩ̄| ln ξ|
]

Ω−1 A−2

Dyy
T ∼ Dzz

T Ω−1 A−4/3
[

1 + CΩ̄| ln ξ|
]

Ω−1 A−4/3

Table 1. Summary of our results obtained for the perpendicular and parallel cases in the
strong shear limit (ξ = νk2

y/A ≪ 1). In the perpendicular case, the rotation is in the z direction
whereas it is in the x direction in the parallel case. In both cases, the shear is in the x direction.
The C symbol stands for an additional constant of order 1.

our results obtained in the limit of strong shear with ξ ≪ 1. Table 1 summarises our
findings by highlighting the quenching of these quantities due to large shearing rate A
and the rotation rate Ω (or their ratio, Ω̄ = Ω/A). These results are discussed in the
following.

5.1. Turbulence amplitude

In all the cases considered, turbulence amplitude is always quenched due to strong shear
(ξ = νk2

y/A ≪ 1), with stronger reduction in the direction of the shear (x) than those
in the perpendicular directions. Specifically, in the large rotation limit, they scale as
A−1 and A−1| ln ξ|, respectively while in the weak rotation limit, they scale as A−1 and
A−2/3, respectively. Thus, flow shear always leads to weak turbulence with an effectively
stronger turbulence in the plane (y-z) than in the shear direction, regardless of rotation
rate. The anisotropic reduction of turbulence amplitude is because of the shear which
increases the dissipation (anisotropically) by efficiently creating small-scale fluctuations
in the x-direction, with a direct impact on turbulence in the shear direction (see Figure
1). The anisotropy in turbulence amplitude is however weaker by a factor of ξ1/3| ln ξ|
(∝ A−1/3| ln ξ|) in the rapid rotation limit than that in weak rotation limit since rotation
favours almost-isotropic turbulence. Furthermore, turbulence amplitude is affected by
weak rotation only in the case where the rotation is perpendicular to the shear flow.
This can be understood in terms of stability of rotating shear flow, that is, rotation
affects the stability of shear flows only in the perpendicular case (see Appendix A for
more details). In the case of weak rotation (Ω ≪ A), the effect of rotation appears
in combination with the linear instability criterion in turbulence amplitude with linear
stability Ω̄ < 0 (instability Ω̄ > 0) decreasing (increasing) turbulence amplitude. For
stable configuration Ω̄ < 0, the rotation thus has the effect of weakening the anisotropy
caused by strong shear. In summary, turbulence amplitude is quenched by shear with
strong anisotropy while rotation tends to weaken the shear-induced anisotropy.
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5.2. Transport of angular momentum

The transport of angular momentum was found to involve two contributions: the tur-
bulent viscosity νT and the Λ-effect. The former is a diffusive flux, making the effective
viscosity to νT + ν (ν is the molecular viscosity) while the latter is a non-diffusive mo-
mentum flux. The turbulent viscosity is negative with inverse cascade of energy as long
as rotation is sufficiently strong compared to flow shear (Ω ≫ A). In comparison, tur-
bulent viscosity is positive in the opposite limit of weak rotation (Ω ≪ A). These are
robust results, valid independent of the relative orientation of the shear and rotation.
This is because rotation favours transfer of energy from small scales to large scales (in-
verse cascade) while flow shear efficiently creates small scales via shearing, cascading the
energy from large to small scales. Even if the eddy viscosity is negative for strong rota-
tion (Ω ≫ A), flow shear, which transfers energy to small scales, has an interesting effect
by slowing down the rate of inverse cascade with the value of negative eddy viscosity
decreasing as |νT | ∝ A−2 for strong shear.

The non-diffusive part of momentum transport (Λ-effect) can act as a source of large-
scale flow, preventing a uniform rotation to be solution of the averaged Reynolds equation.
A strong anisotropy induced by flow shear (Kim 2005) gives rise to non-trivial Λ-effect
even for an isotropic forcing. Note that in the absence of flow shear, the appearance of
a Λ-effect requires a source of anisotropy in the system such as an anisotropic forcing in
which case the Λ-effect is proportional to the anisotropy in the velocity field (Kichatinov
1986; Rüdiger 1989) induced by this anisotropy forcing. Interestingly, our results show
that in the perpendicular case, the Λ-effect scales as A−2| ln ξ| whereas the anisotropy in
the velocity amplitude is given, to leading order, by A−4/3. Consequently, the Λ-effect
is smaller than the anisotropy in the turbulent velocity amplitude. This is because the
anisotropy is not simply given here but has to be induced self-consistently by the shear
during the evolution. In other words, the anisotropy does not remain the same at all
time, and the resulting Λ-effect is smaller than the anisotropy in the velocity amplitude
in the long-time limit. One can also note that the magnitude of the Λ-effect is not the
same in the two cases. In the parallel case, it scales as A−4/3 while, in the perpendicular
case, it scales as A−2| ln ξ|. Thus, the effect is larger in the parallel case than in the
perpendicular case.

5.3. Transport of particles

The dynamics of particles transport crucially depends on whether rotation is stronger
or weaker than flow shear. When rotation is stronger than flow shear (Ω ≫ A), the
transport is inhibited by inertial waves, being quenched inversely proportional to the
rotation rate (i.e. ∝ Ω−1) while in the opposite case where flow shear is stronger than
rotation, it is reduced by shearing as A−1. It is important to compare this result with
turbulence amplitude, which is quenched by shearing even when Ω ≫ A. This strikingly
different behaviour between particle transport and turbulence amplitude highlights the
different roles of waves and flow shear in turbulence regulation; that is, waves mainly
affect transport by altering phase relation while flow shear quenches both transport and
turbulence level, via enhanced dissipation.

Furthermore, in the strong rotation limit (Ω ≫ A) where the transport of parti-
cles is dominated by inertial waves, the transport is almost isotropic with only a slight
anisotropy – the transport in the direction parallel to the rotation is twice larger than the
one in the perpendicular direction (see also (3.28) and Kichatinov et al. 1994). However,
in the weak rotation limit, it is flow shear that quenches particle mixing; the anisotropy
in resulting transport can be very large with much slower mixing by a factor of A−2/3 in
the direction of shear. These are robust results, valid in both perpendicular and parallel
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cases. The weak rotation on shear-dominated turbulence weakens the anisotropy, but
only in the perpendicular case.

5.4. Effect of a bounded domain

The calculation of all the turbulent coefficients in the weak shear limit (ξ ≫ 1) and also
of the transport of particles in the strong shear limit (ξ ≪ 1) required the evaluation of
the integrals of the following type:

I(k,Ω) =

∫

H(k)

ν2k4 + ω0
2 d

3k , (5.1)

where ω0 = (Ω · k)/k is the projection of the unit vector in the direction of the wave
number on the rotation axis. When the domain of integration is unbounded (infinite),
the integration over the angular variable of this integral becomes proportional to Ω−1,
when the rotation rate Ω is sufficiently large [see equation (3.18)-(3.20) for details]. This
is because this integral involves some contribution of order unity (when Ω · k = 0) and
others of magnitude Ω−2.

However, in realistic situations, the domain of integration in Fourier space is bounded
with a minimum wavenumber that is permitted in the system (corresponding to a max-
imum length, for instance the size of the box) in the direction of the rotation. If we call
this minimum wavenumber km = min(kx), we can show that the preceding scaling of
Ω−1 is valid only when ν2k6 ≫ Ω2k2

m. In the opposite case, the term ω0
2 in equation

(5.1) is always dominant, altering this integral to ∝ Ω−2 for large rotation rate, with a
stronger dependence on Ω.

6. Conclusion

In this paper, we have performed a thorough investigation of the combined effects of
shear and rotation on the structure of turbulence, by using a quasi-linear theory. We
assumed an external forcing in the Navier-Stokes equation which leads to an equilibrium
situation where the dissipation (whose effect is enhanced by the shear) is balanced by
the injection of energy due to forcing. We studied the case where the rotation and the
shear are perpendicular or parallel. It is useful to recall that there are three (inverse)
time-scales in the problem: the shearing rate A, the rotation rate Ω and the diffusion
rate D = νk2

y where ν is the (molecular) viscosity of the fluid and k−1
y is a characteristic

small-scale of the forcing. The first regime of strong rotation (Ω ≫ A) has been studied
in the strong shear (A ≫ D) and weak shear (A ≪ D) limits. However, the second
regime of weak rotation has been considered only in the strong shear (A ≫ D) case, as
the effects of both shear and rotation disappear in the opposite case.

While both rotation and (stable) shear flow tend to regulate turbulence, there are
important differences in their effects, which should be emphasised. Rotation, by excit-
ing inertial waves, tends to reduce turbulence transport more heavily than turbulence
amplitude while shear flows reduce both of them to a similar degree. That is, rotation
(or waves) quenches the cross-phase (normalised flux) more than shear flow does (Kim
& Diamond 2003; Kim 2006). Furthermore, in sharp contrast to rotation, shear flow in-
duces a strong anisotropic turbulence and transport (e.g. momentum transport, chemical
mixing, etc.).

Specifically, in the large rotation limit (|Ω| ≫ A), we have found:
• The turbulent intensity is reduced only by a strong shear (i.e. in the case of strong

rotation and strong shear) and in an anisotropic way.
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• As the dissipation decreases (compared to the shear), there is a crossover from a
positive to a negative viscosity.
• The transport of particle is reduced by rotation, with a slight anisotropy of a factor

2, largely unaffected by shear.
These results are independent of the orientation of the rotation with respect to the shear.

In the opposite weak rotation limit (|Ω| ≪ A), we found that the main reduction is
due to the shear with an anisotropic turbulence with preferred motion and transport in
the plane perpendicular to the shear. In the case where the rotation and the shear are
perpendicular, rotation can increase or decrease slightly the turbulence intensity and the
particle transport, depending on the sign of Ω̄ = Ω/A.

Furthermore, we found non-diffusive flux for momentum transport (the so-called Λ-
effect) which transfers energy from the fluctuating velocity field to the large-scale flow. In
the large rotation limit, this term can appear only for an anisotropic forcing. In contrast,
in the weak rotation limit, rotation acting together with shear flow was shown to give
rise to non diffusive fluxes even with an isotropic forcing.

These results can have significant implications for astrophysical and geophysical sys-
tems. For instance, the Λ-effect and/or negative viscosity can provide a mechanism for
the generation of ubiquitous large-scale shear flows, which are often observed in these
objects. Furthermore, the anisotropic mixing of scalars should be taken into account in
understanding the surface depletion of light elements in stars (Pinsonneault 1997). Fi-
nally, we note that numerical confirmation of our prediction and the extension of our work
to stratified rotating sheared turbulence with/without magnetic fields remain challenging
important problems, and will be addressed in future publications.

We thank A. P. Newton for providing us with Figure 1 and L. L. Kichatinov for useful
comments. This work was supported by U.K. PPARC Grant No. PP/B501512/1.

Appendix A. Linear stability analysis of the homogeneous system

As Eq. (2.3) is the same as that for a perturbation u about a basic flow U0, up to
the extra forcing term f , our study gives some insight into the stability of shear flows in
presence of rotation. After summarising results previously obtained by others, we present
our results in the cases where the rotation and the shear are perpendicular and parallel,
respectively.

The case of the plane shear flow in a rotating frame has been studied by many authors
focusing on the stability both in the laminar and the turbulent cases. In the case of a
rotation vector Ω̃ = Ω̃ez perpendicular to the plane of the shear flow, Bradshaw (1969)
proposed an analogy between rotation and stratification [supported by calculation of
Pedley (1969)] and showed that the system was unstable if the vorticity of the shear flow
−Aez is anti-parallel to the rotation and sufficiently strong. Precisely, the ratio Ω̄ = 2Ω̃/A
must lie in the interval [0 , 1] for instability. This destabilisation of laminar shear flow by
rotation has a counterpart for turbulent flows where the rotation can stabilise turbulence
(by decreasing its kinetic energy) or destabilise it, as shown by Tritton (1992) using a
displacement argument. It is interesting to note that both Bradshaw and Titon arguments
are pressure-less. However, the Pedley criterion was shown to hold by Yanase et al. (1993),
using stability analysis confirmed by simulations (Metais et al. 1995): the cyclonic shear
(Ω̄ < 0) is always stabilising whereas the anticyclonic shear (Ω̄ > 0) is destabilising for
weak rotation while stabilising for high rotation, in agreement with Bradshaw criterion.
These conclusions are confirmed for a Poiseuille flow, both experimentally (Johnston
et al. 1972) and numerically (Kristoffersen & Andersson 1993), and for a plane Couette
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Figure 4. Evolution of the solution X1 (panel [a]) and X2 (panel [b]) as a function of τ for
b = −0.5 (circles), b = 0 (crosses) and b = 0.5 (squares).

flow (Bech & Andersson 1996, 1997). The fact that the pressure-less argument gives the
exact stability criterion is due to the fact that the modes which are dominant in the
instability process are naturally unaffected by pressure fluctuations (Leblanc & Cambon
1997).

In comparison, the case where the rotation lies in the same plane as the flow has been
studied much less. However a generalisation of the instability argument of Leblanc &
Cambon (1997) might show that, as the projection of the vorticity on the rotation axis
vanishes in this case (for a linear shear), the system may be stable regardless of the values
of the rotation rate or shear. We will show in Sec. A.2 that this is indeed the case.

A.1. In the perpendicular case

The exact solution of the homogeneous part of Eq. (3.1) for the velocity v̂x can be found in
terms of generalised hyper-geometric function F ([a1, a2, . . . ], [b1, b2, . . . ], x) (Gradshteyn
& Ryzhik 1965). Two independent solutions are:

X1(τ) = F
([3

4
+

√
1 − 4b

4
,
3

4
−

√
1 − 4b

4

]

,
[1

2

]

,−τ
2

γ

)

, (A 1)

X2(τ) = τF
([5

4
+

√
1 − 4b

4
,
5

4
−

√
1 − 4b

4

]

,
[3

2

]

,−τ
2

γ

)

.

Here, b = β2Ω̄(Ω̄ − 1) is (up to the multiplicative constant β2) the quantity introduced
by Bradshaw (1969) (see discussion in the introduction). Figure 4 shows the evolution of
these two functions as a function of τ .

Solutions for the other components of the velocity are obtained by using the last two
equations of (3.1) :

v̂y = − 1

γ

[

τXn(τ) + β2(Ω̄ − 1)Yn(τ)
]

, (A 2)

v̂z = −β
γ

[

τXn(τ) − (Ω̄ − 1)Yn(τ)
]

,
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Figure 5. Evolution of the solution Y1 (panel [a]) and Y2 (panel [b]) as a function of τ for
b = −0.5 (circles), b = 0 (crosses) and b = 0.5 (squares).

for n = 1 or 2. Here, Y1 and Y2 are defined as:

Y1(τ) = τF
([3

4
+

√
1 − 4b

4
,
3

4
−

√
1 − 4b

4

]

,
[3

2

]

,−τ
2

γ

)

, (A 3)

Y2(τ) = −γ
b
F
(

[
1

4
−

√
1 − 4b

4
,
1

4
+

√
1 − 4b

4
], [

1

2
],−τ

2

γ

)

.

The plots of Y1(τ) and Y2(τ) are shown in figure 5.
Figure 5 shows that the eigenfunctions diverge for τ → ∞ when b < 0. This is because

shear flows in presence of rotation (perpendicular to the shear flow) is stable only for
b > 0. This result agrees with Bradshaw (1969) and Salhi & Cambon (1997). We can
also notice that the solution with b > 0 always decays faster than that with b < 0.

In conclusion, we recovered the Bradshaw criterion (Bradshaw 1969). In our notation,
it states that the configuration is unstable if B = −Ω̄(1 − Ω̄) < 0 or, equivalently, if
Ω̄ = Ω/A lies in the interval [0 , 1]. This result has already been reported by many
authors, who showed not only that the maximum destabilisation occurs for Ω̄ = 1/2
but also that there is an important asymmetry with respect to Ω̄ = 1/2 which is not
included in the Bradshaw criterion (Speziale & Mhuiris 1989; Cambon et al. 1994; Salhi
& Cambon 1997). This is because Bradshaw criterion can be recovered by a pressure-less
analysis: while the pressure does not affect the most unstable modes (Leblanc & Cambon
1997) and thus does not alter the instability criterion, is does destroy this symmetry. We
can easily show that there is indeed asymmetry with respect to Ω̄ = 1/2 in our results:
even if the equation (A 1) for the x-component of the velocity is symmetric with respect
to Ω̄ = 1/2 (as it depends only on b = −β2B), equation (A 2) for the other components
of the velocity are not because of the term proportional to Ω̄ − 1.

A.2. In the parallel case

The long time behaviour (for τ ≫ |β/Ω̄|) of system (4.1) is given by:

∂τ

[ 1

τ
∂τ

(

{γ + τ2}v̂x

)

]

+ Ω̄2τ v̂x = 0 . (A 4)
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Making the change of variable x =
√

γ + τ2 and letting v̂x(τ) = h(x)/x, the equation
for h becomes

x2h′′(x) + xh′(x) + (Ω̄2x2 − 1)h(x) = 0 . (A 5)

Two independent solutions to equation (A 5) are given by a Bessel function of the first
kind J1(|Ω̄|x) and of the second kind Y1(|Ω̄|x). Thus, the general solution of equation
(A 4) can be written as:

v̂x(τ) ∼ 1
√

γ + τ2

[

AJ1(|Ω̄|
√

γ + τ2) +BY1(|Ω̄|
√

γ + τ2)
]

, (A 6)

for large time. Here, the two constants can be calculated at a given time τc sufficiently
large (τc ≫ |β/Ω̄|) in the form:

A = −CY2(|Ω̄|
√

γ + τ2
c ) −DY1(|Ω̄|

√

γ + τ2
c ) (A 7)

B = CJ2(|Ω̄|
√

γ + τ2
c ) +DJ1(|Ω̄|

√

γ + τ2
c ) ,

where we defined the new coefficients:

C =
π|Ω̄|(γ + τ2

c )

2
v̂x(τc) , (A 8)

D =
π(γ + τ2

c )3/2

2τc
v̂′x(τc) =

π
√

γ + τ2
c

2

[

Ω̄ (βv̂y(τc) − v̂z(τc)) − 2v̂x(τc)
]

.

Then, we can use the second equation of (4.1) to obtain the velocity in the span-wise
direction for large time (for τ ≫ |β/Ω̄|) as:

v̂z(τ) ∼ v̂z(τc) +
β

γ

[

τ v̂x(τ) − τcv̂x(τc)
]

+

∫ τ

τc

Ω̄ t v̂x(t) dt (A 9)

∼ v̂z(τc) −
β

γ

[

τ v̂x(τ) − τcv̂x(τc)
]

− χ

γ

[

AJ0(|Ω̄|
√

γ + t2) +BY0(|Ω̄|
√

γ + t2)
]τ

τc

.

Here, χ is the sign of Ω̄. equation (A 9) shows that the velocity in the span-wise direction
tends to approach a finite limit v̂z(+∞) as τ → +∞. To calculate this limit, we need to
calculate the term in big square brackets in equation (A 9) for t = τc. In the following,
we call this term E. Plugging equation (A 7) in the E, we obtain the following:

E =

[

2C

|Ω̄|
√

γ + τ2
c

+D

]

2

π|Ω̄|(γ + τ2
c )

. (A 10)

Finally, using this result, we can obtain v̂z(+∞) as follows:

v̂z(+∞) = v̂z(τc) +
β

γ
τcv̂x(τc) +

χ

γ
E (A 11)

=
β

γ
[τcv̂x(τc) + v̂y(τc) + βv̂z(τc)] = 0 ,

because of incompressibility. Then, by incompressibility, v̂y → 0 when τ → +∞. Con-
sequently, the configuration is always linearly stable. Furthermore there is no effect of
rotation on the stability of shear flows at all in this configuration.
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Appendix B. Derivation of the particle transport in the large
rotation limit

By using equations (2.10), (3.3) and (3.5), we obtain the transport of particles in the
direction of the shear as follows:

Dxx
T = − τf

(2π)3A2

∫

d3k γ(γ + a2)1/4F (k)
S0

3

ω0
, (B 1)

Dyy
T =

τf
(2π)3A2

∫

d3k

√

γ + a2F (k)

γω0
×

{

− aS1
3

(γ + a2)1/4
+

βθ

(γ + a2)1/4

(

√

γ + a2C1
3 − aC0

1

)

− β2(γ + a2)1/4S0
1

+
βθ

2(γ + a2)3/4

(

β2
√

γ + a2C0
1 − aC1

3

)

+
β2

2(γ + a2)3/4

(

aS0
1 +

√

γ + a2S1
3

)}

,

where:

ζp
n(k) =

∫ +∞

a

τpe−2ξ[Q(τ)−Q(a)]

(γ + τ2)n/4
exp [iω0 {s(a) − s(τ)}] dτ , (B 2)

µp
n(k) =

∫ +∞

a

τpe−2ξ[Q(τ)−Q(a)]

(γ + τ2)n/4
(τ − a) exp [iω0 {s(a) − s(τ)}] dτ ,

Cp
n = ℜ(ζp

n) , Sp
n = ℑ(ζp

n) , Cp
n = ℜ(µp

n) , Sp
n = ℑ(µp

n) .

The expression forDzz
T is omitted here as it is very similar to that forDyy

T . The asymptotic
behaviour of integrals (B 2) can be obtained to leading order in Ω−1

0 as:

ζp
n(k) ∼ ap(2νk2 − iω0)A

(γ + a2)n/4[4ν2k4 + ω0
2]
, (B 3)

where ω0 = ω0A/
√

γ + a2. In comparison, the functions µp
n vanish to leading order and

are thus omitted here. By using equation (B 3) in equation (B 1), we obtain the following
results:

Dxx
T =

τf
(2π)3

∫

d3k F (k)
γ

γ + a2

1

4ν2k4 + ω0
2 , (B 4)

Dyy
T =

τf
(2π)3

∫

d3k F (k)
a2 + β2

(γ + a2)

1

4ν2k4 + ω0
2 ,

Dzz
T =

τf
(2π)3

∫

d3k F (k)
1 + a2

(γ + a2)

1

4ν2k4 + ω0
2 .

Here, we have discarded all the terms which are odd in a (for example in Dyy
T , the terms

proportional to C1 and C3) as they vanish after angular integration. After performing
this integration, (B 4) reduces to Eq. (3.28) given in the main text.

Appendix C. Symmetric perturbation (β = 0)

In this Appendix, we consider a symmetric perturbation with kz = 0 by assuming a
forcing that is symmetric in the span-wise direction with no dependence on z. Note that
even though kz = 0, vz and vy are closely linked through rotation Ωx̂. For β = kz/ky = 0,
the homogeneous part of the first equation in (4.1) becomes:

∂τ

[ 1

τ
∂τ

(

{1 + τ2}v̂x

)

]

+ Ω̄2τ v̂x = 0 . (C 1)
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This equation is the same as the one that we obtained for the study of the stability
of the configuration where the shear and the rotation are parallel [see equation (A 4)
with γ = 1]. Solutions of the homogeneous problem are thus Bessel functions. Using the
method of variation of parameters, we can then express the general solution of the first
equation to (4.1) as:

v̂x(τ) =
πΩ0

2
√

1 + τ2

∫ τ

τ0

dt

[

h1(t)

A L01(t, τ) +
h2(t)

A
√

1 + t2L11(t, τ)

]

. (C 2)

Here again, Ω0 = |Ω̄|, χ = sign(Ω̄); and Lnp are defined by:

Lnp(t, τ) = Yn[Ω0

√

1 + t2]Jp[Ω0

√

1 + τ2] − Jn[Ω0

√

1 + t2]Yp[Ω0

√

1 + τ2] . (C 3)

The second equation of system (4.1) can then be used to obtain the other components
of the velocity in the form:

v̂z(τ) =
πΩ0

2

∫ τ

τ0

dt

[

h1(t)

A χL00(t, τ) −
h2(t)

A
√

1 + t2L10(t, τ)

]

, (C 4)

and a similar expression for v̂y(τ). We have used equations (C 2) and (C 4) to calculate
turbulence amplitude (§C.1) and transport (§C.2 and §C.3). Note that equations (C 2)
and (C 4) are exact solutions valid for all values of Ω0.

C.1. Turbulence amplitude

From equations (C 2) and (C 4), we can easily obtain the turbulence amplitude as:

〈v2
x〉 =

τfπ
2Ω2

0

4(2π)3A

∫

d3kF (k)(1 + a2) [X1(k) +X2(k)] , (C 5)

〈v2
z〉 =

τfπ
2Ω2

0

4(2π)3A

∫

d3kF (k)(1 + a2) [X3(k) +X4(k)] .

Here, for simplicity, we considered only an isotropic forcing, given by equation (3.6), and
defined the following integrals:

X1(k) =

∫ +∞

a

e−2ξ[Q(τ)−Q(a)]

1 + τ2
[L01(a, τ)]

2
dτ , (C 6)

X2(k) =

∫ +∞

a

e−2ξ[Q(τ)−Q(a)]

1 + τ2
[L11(a, τ)]

2
dτ ,

X3(k) =

∫ +∞

a

e−2ξ[Q(τ)−Q(a)] [L00(a, τ)]
2
dτ ,

X4(k) =

∫ +∞

a

e−2ξ[Q(τ)−Q(a)] [L10(a, τ)]
2
dτ .

Here, Lnp’s are given by equation (C 3). We now consider the strong shear limit: ξ =
νk2

y/A ≪ 1. As both Bessel functions becomes as (1 + τ2)−1/4 (up to a trigonometric
functions) for large τ , the first two integrals converge as ξ → 0. Thus, it is sufficient
to put ξ = 0 in X1 and X2 in equation (C 6) to obtain the leading order behaviour for
ξ ≪ 1. In comparison, the integrand of X3 and X4 behaves as 1/τ for τ ≫ 1, giving a
contribution of order ln ξ to leading order.

We now examine the turbulence amplitude in the large rotation limit: Ω0 ≫ 1. To do so,
we use the asymptotic behaviour of the integrals (C 6) derived in appendix D.1.2. Using
equations (D 5) and (D 7) in equation(C5), we obtain the leading order contribution of
the turbulent amplitude given by Eq. (4.6) in the main text.
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C.2. Turbulent transport of momentum

The turbulent viscosity νT is computed by using its definition 〈vxvy〉 = −νT∂xU0 = νTA.
From equations (C 2) and (C 4), we can derive the Reynolds stress in the case of an
isotropic forcing:

〈vxvy〉 = − τfπ
2Ω2

0

4(2π)3A

∫

d3kF (k)(1 + a2) [X5(k) +X6(k)] , (C 7)

where,

X5(k) =

∫ +∞

a

τ e−2ξ[Q(τ)−Q(a)]

1 + τ2
[L01(t, τ)]

2 dτ , (C 8)

X6(k) =

∫ +∞

a

τ e−2ξ[Q(τ)−Q(a)]

1 + τ2
[L11(a, τ)]

2
dτ .

Here, Lnp’s are again given by equation (C 3). Note that the expression for the transport
of angular momentum [equation (C 7)] is the same as that of 〈v2

x〉 [equation (C 5)] except
for the multiplicative factor of −τ . This is simply because, for β = 0, the incompressibility
condition imposes v̂y = −τ v̂x. By using the asymptotic behaviour of Bessel functions
for large argument, we see that the two integrals X5 and X6 in equation (C 8) can be
evaluated in the strong shear limit by just putting ξ = 0. Consequently, the turbulent
viscosity is of order A−2 for any value of Ω̄.

In the large rotation limit (Ω0 ≫ 1), we can estimate the integrals (C 8) and obtain
the turbulent viscosity given by Eq. (4.7) in the main text.

C.3. Particles transport

The fluctuations of particle density can be obtained by integration of the fluctuating
velocities (C 2) and (C 4) [see equation (2.10)]. Then, the diagonal part of turbulent
diffusivity can be obtained as:

Dxx
T =

τfπ
2Ω2

0

4(2π)3A2

∫

d3k (1 + a2)F (k) [P1(k) + P2(k)] , (C 9)

Dzz
T =

τfπ
2Ω2

0

4(2π)3A2

∫

d3k (1 + a2)F (k) [P3(k) + P4(k)] .

Here, we defined integrals Pi which all have the following form:

Pi(k) =

∫ +∞

a

dτe−2ξ[Q(τ)−Q(a)]Fi(τ)

∫ τ

a

Fi(t) dt , (C 10)

for i = 1 to 4. The functions Fi(τ)’s are defined by:

F1 =
L01(a, τ)√

1 + τ2
, F2 =

L11(a, τ)√
1 + τ2

, (C 11)

F3 = L00(a, τ) , F4 = −L10(a, τ) .

In the large rotation limit (Ω̄ ≫ 1), the Fi’s are oscillating functions. Thus, to evaluate
integrals (C 10) in the strong shear limit (ξ ≪ 1), we can not simply put ξ = 0 in equation
(C 10) as explained in the appendix D.3. Instead, a careful analysis (see appendix D.3)
then gives us Eq. (4.8) of the main text in the limits of strong shear (ξ ≪ 1) and large
rotation (Ω0 ≫ 1).
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Appendix D. Asymptotic expansion of integrals

In §4.3, we took a large shear limit (ξ ≪ 1) and obtain equation (C 5) for the turbulence
intensity, equation (C 7) for the transport of angular momentum, and equation (C 9) for
the transport of particles in terms of integrals involving Bessel functions of an argument
depending on the rotation. We here derive asymptotic behaviour of these integrals to
simplify our results.

D.1. Non Oscillating integrands

For non oscillating integrands, it is sufficient to put ξ = 0 in the integrals to find the
large shear limit (the resulting integral converges as ξ → 0). Here, we provide asymptotic
behaviour of the following integrals for small or large Ω0:

X1(k) =

∫ +∞

a

1

1 + τ2
[L0,1(t, τ)]

2
dτ , (D 1)

X2(k) =

∫ +∞

a

1

1 + τ2
[L11(a, τ)]

2 dτ ,

X5(k) =

∫ +∞

a

τ

1 + τ2
[L01(t, τ)]

2
dτ ,

X6(k) =

∫ +∞

a

τ

1 + τ2
[L11(a, τ)]

2
dτ .

Here Lnp’s are given by equation (C 3)

D.1.1. Small rotation limit (Ω0 ≪ 1)

To calculate X1 and X5, one can use the asymptotic expansion of the Bessel functions
and readily obtain:

X1 ∼ 4

π2Ω2
0

∫ ∞

a

dτ

(1 + τ2)2
=

2

π2Ω2
0

[

(π

2
− arctan(a)

)

− a

1 + a2

]

, (D 2)

X5 ∼ 4

π2Ω2
0

∫ ∞

a

τdτ

(γ + τ2)2
=

2

π2Ω2
0(1 + a2)

.

If we use similar analysis to the calculations of X2 and X6, the resulting expression would
not be integrable. We thus compute these in a different manner:

X2 ∼ 2

πΩ0

√
1 + a2

∫ ∞

a

J2
1 (Ω0

√
1 + τ2)

1 + τ2
dτ =

2

π
√

1 + a2

∫ ∞

Ω0a

J2
1 (
√

Ω2
0 + x2)

Ω2
0 + x2

dτ (D 3)

∼ 2

π
√

1 + a2

∫ ∞

0

J2
1 (x)

x2
∼ 8

3π2
√

1 + a2
,

X6 ∼ 2

πΩ0

√
1 + a2

∫ ∞

a

τJ2
1 (Ω0

√
1 + τ2)

1 + τ2
dτ ∼ 2

πΩ0

√
1 + a2

∫ ∞

0

J2
1 (x)

x
∼ 1

πΩ0

√
1 + a2

.

D.1.2. Large rotation limit (Ω0 ≫ 1)

Using the Bessel asymptotic behaviour for large argument, we obtain the following
formula for the first integral:

X1 ∼ 4

π2Ω2
0

√
1 + a2

∫ +∞

a

cos2
[

Ω0{
√

1 + a2 −
√

1 + τ2}
]

(1 + τ2)3/2
dτ (D 4)

∼ 2

π2Ω2
0

√
1 + a2

∫ +∞

a

1

(1 + τ2)3/2
=

2

π2Ω2
0

√
1 + a2

(

1 − a√
1 + a2

)

,
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ans similarly for the other three integrals. Finally, we obtain the following asymptotic
behaviour for the four integrals (D 1):

X1 ∼ X2 ∼ 2

π2Ω2
0

√
1 + a2

(

1 − a√
1 + a2

)

, (D 5)

X5 ∼ X6 ∼ 2

π2Ω2
0

1

1 + a2
.

D.2. Logarithmic divergence

As noted in §C.1, there is a logarithmic divergence arising in the calculation ofX3 andX4.
We here calculate this divergence in the case of a fast oscillation. Following Kim (2005),
we change the integration variable from τ to y = 2ξτ3/3, replace the Bessel function by
the expression valid for large argument (ξ ≪ 1), and then obtain the following, to leading
order in ξ:

X3(k1) =
2

πΩ0

∫ ∞

ξa3

dy
e−ydy

(3y)2/3(2ξ)1/3

√

1 +
(

3y
2ξ

)2/3
× (D 6)

{

cos
[

Ω0

√

1 +
(3y

2ξ

)2/3 − π

4

]

Y0[w(a)] − sin
[

Ω0

√

1 +
(3y

2ξ

)2/3 − π

4

]

J0[w(a)]
}2

.

We see that as ξ tends to zero, the integrand in equation (D 6) becomes proportional to
1/y, giving a contribution of the order ln ξ.

In the large rotation limit (Ω0 ≫ 1), we replace the Bessel functions by their asymptotic
behaviour to obtain:

X3 ∼ 4

π2Ω2
0

√
1 + a2

∫ ∞

ξa3

e−ydy

(3y)2/3(2ξ)1/3

sin2
[

Ω0

(√
1 + a2 −

√

1 +
(

y
ξ

)2/3)
]

√

1 +
(

3y
2ξ

)2/3
(D 7)

∼ 2

π2Ω2
0

√
1 + a2

∫ ∞

ξa3

1

3

e−ydy
√

(

2ξy2

3

)2/3

+ y2

∼ 2

π2Ω2
0

√
1 + a2

− ln ξ

3
,

to leading order in ξ ≪ 1. Following the same analysis, we find the same asymptotic
behaviour for X4.

D.3. Oscillating integrands

The calculation of the transport of particles involves the computation of double integrals
of the type:

P =

∫ +∞

a

dτe−2ξ[Q(τ)−Q(a)]F (τ)

∫ τ

a

F (t) dt , (D 8)

where the functions F contains an oscillating functions. We here derive the asymptotic
behaviour of this integral with F (t) = f(t) cos[Ω0φ(t)] and the phase given by φ(t) =√

1 + a2 −
√

1 + t2. The difficulty associated with the calculation of such integral is the
presence of a point of stationary phase t = 0 where the integral cannot be computed by
integration by part.

For a > 0, the point of stationary phase is not included and then, the first integral can
be approximated, for Ω0 ≫ 1, as:

I(τ) ≡
∫ τ

a

F (t) dt ∼ −
√

1 + τ2f(τ)

Ω0τ
sin[Ω0φ(τ)] . (D 9)



36 Nicolas Leprovost and Eun-jin Kim

−1 −0.5 0 0.5 1
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

τ

I(
τ)

Ω
0
 = 100

Figure 6. Graph of the function I(τ ) with our approximation (D11). The parameters are
a = −1 and Ω0 = 100.

Using this approximation, P can be computed with the following result:

P ∼ f(a)2(1 + a2)

4[ξ(1 + a2)2 + Ω2
0a

2]
. (D 10)

Note that the result is the same as in the perpendicular case where the integral for the
transport of particles does not involve any stationary point.

For a < 0, the behaviour of the integral I(τ) is affected by the stationary point in the
vicinity of τ = 0. We can however find I(τ) approximately as:

I(τ) ∼















−
√

1+τ2f(τ)
Ω0τ sin[Ω0φ(τ)] if τ 6 − 1√

Ω0

,

I0 + cτ if |τ | < 1√
Ω0

,

2I0 −
√

1+τ2f(τ)
Ω0τ sin[Ω0φ(τ)] if τ > 1√

Ω0

.

(D 11)

Here, I0 =
√

π/2Ω0f(0) cos [Ω0φ(0) − π/4] is the value given by the stationary point and
c = f(0) cos [Ω0φ(0)] is obtained by Taylor expanding I in the vicinity of τ = 0. Figure 6
shows the numerical computation of the integral compared to the approximation (D 11)
and shows an excellent agreement. Using equation (D 11), we obtain P as:

P ∼ f(a)2(1 + a2)

4[ξ(1 + a2)2 + Ω2
0a

2]
+ 2I2

0 . (D 12)

The first contribution comes from the integration by part (as the result are odd in τ , the
contributions from −1/

√
Ω0 and 1/

√
Ω0 cancel out). The second contribution (of order

Ω−1
0 ) comes from the stationary point. Both contributions have to be kept as the first

one can be important if |ω0a| ≪ 1.
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For a = 0, the stationary point counts twice as less, so the approximation becomes:

I(τ) ∼
{

cτ if 0 6 τ < 1√
Ω0

I0 −
√

1+τ2f(τ)
Ω0τ sin[Ω0φ(τ)] if τ >

1√
Ω0

(D 13)

In that case, the contribution from the stationary point cancels out as I(0) = 0. Therefore,
for a = 0, the only contribution comes from the end point of the integration and is the
same as for a > 0 [see equation (D 10)].

Performing the same analysis when F (t) = f(t) sin[Ω0φ(t)], we obtain the following
result:

P ∼ − f(a)2(1 + a2)

4[ξ(1 + a2)2 + Ω2
0a

2]
+

f(a)2(1 + a2)

[4ξ(1 + a2)2 + Ω2
0a

2]
(D 14)

(

+
π

Ω0
f(0)2 sin2 [Ω0φ(0) − π/4]

)

, (D 15)

the second line being present only if a < 0 (i.e. when the point of stationary phase is
included).
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Kichatinov, L. L. & Rüdiger, G. 1995 Differential rotation in solar-type stars: revisiting the
taylor-number puzzle. Astron. Astrophys. 299, 446–452.

Kim, E. 2004 Formation of transport barrier by shearing. Mod. Phys. Lett. B 18 (12-13), 551–
571.

Kim, E. 2005 Self-consistent theory of turbulent transport in the solar tachocline. I. Anisotropic
turbulence. Astron. Astrophys. 441, 763–772.

Kim, E. 2006 Consistent theory of turbulent transport in two-dimensional magnetohydrody-
namics. Phys. Rev. Lett. 96, 084504.

Kim, E. & Diamond, P. H. 2003 Effect of mean flow shear on cross phase and transport
reconsidered. Phys. Rev. Lett. 91 (7), 075001.

Kim, E., Diamond, P. H. & Hahm, T. S. 2004 Transport reduction by shear flows in dynamical
models. Phys. Plasmas 11 (10), 4554–4558.

Kim, E. & Dubrulle, B. 2001 Turbulent transport and equilibrium profiles in two-dimensional
magnetohydrodynamics with background shear. Phys. Plasmas 8 (3), 813–824.

Kim, E. & Leprovost, N. 2007a On a long-term dynamics of the magnetised solar tachocline.
Astron. Astrophys. 465, 633–639.

Kim, E. & Leprovost, N. 2007b Self-consistent theory of turbulent transport in the solar
tachocline. III. Gravity waves. Astron. Astrophys. 468, 1025–1031.

Kippenhahn, R. 1963 Differential rotation in stars with convective envelopes. Astrophys. J.
137, 664–678.

Kristoffersen, R. & Andersson, H. I. 1993 Direct simulations of low-Reynolds-number
turbulent flow in a rotating channel. J. Fluid Mech. 256, 163–197.

Lebedinsky, A. I. 1941 Rotation of the sun. Astron. Zh. 18, 10.

Leblanc, S. & Cambon, C. 1997 On the three-dimensional instabilities of plane flows subjected
to Coriolis force. Phys. Fluids 9 (5), 1307–1316.

Leconte, M., Beyer, P., Benkadda, S. & Garbet, X. 2006 Effects of a fluctuating sheared
flow on cross phase in passive-scalar turbulent diffusion. Phys. Plasmas 13, 112301.

Lee, J. M., Kim, J. & Moin, P. 1990 Structure of turbulence at high shear rate. J. Fluid Mech.
216, 561–583.

Leprovost, N. & Kim, E. 2006 Self-consistent theory of turbulent transport in the solar
tachocline. II. tachocline confinement. Astron. Astrophys. 456 (2), 617–621.

Leprovost, N. & Kim, E. 2007 Effect of Rossby and Alfvén waves on the dynamics of the
tachocline. Astrophys. J. 654, 1166.

Metais, O., Flores, C., Yanase, S., Riley, J. J. & Lesieur, M. 1995 Rotating free-shear
flows. 2. Numerical simulations. J. Fluid Mech. 293, 47–80.

Moffatt, H. K. 1967 The interaction of turbulence with strong wind shear. In Atmospheric
turbulence and radio wave propagation (ed. A. M. Yaglom & V. I. Tatarsky), pp. 139–154.
Nauka, Moscow.

Moffatt, H. K. 1978 Magnetic field generation in fluids. CUP.

Parker, E. N. 1955 Hydromagnetic dynamo models. Astrophys. J. 122, 293–314.



Analytical theory of forced rotating sheared turbulence 39

Pedley, T. J. 1969 On instability of viscous flow in a rapidly rotating pipe. J. Fluid Mech. 35,
97–115.

Pedlovsky, J. 1987 Geophysical fluid dynamics. Springer-Verlag.
Pinsonneault, M. 1997 Mixing in stars. Annu. Rev. Astron. Astrophys. 35, 557–605.
Proudman, J. 1916 On the motion of solids in a liquid possessing vorticity. Proc. R. Soc. Lond.

A 92, 408–424.
Rogers, M. M., Mansour, N. N. & Reynolds, W. C. 1989 An algebraic model for the

turbulent flux of a passive scalar. J. Fluid Mech. 203, 77–101.
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