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Abstract

Rotation and shear flows are an ubiquitous features of many astro-
physical and geophysical bodies, playing a crucial role in turbulent trans-
port. To understand the complex dynamics in these systems, we provide
a consistent theory of turbulence in the presence of shear and rotation.
Starting from a quasi-linear equation for the fluctuating fields, we derive
turbulence amplitude and turbulent transport coefficients (turbulent vis-
cosity and diffusivity), taking into account the effect of shear and rotation
on turbulence. We focus on the two cases where the rotation is perpendic-
ular and parallel to the plane of the shear flow. We show that the shear
reduces both turbulence amplitude and transport, more strongly in the
direction parallel to the shear than in the perpendicular one, effectively
inducing an anisotropic turbulence. The rotation further reduces turbu-
lence amplitude and transport when it is perpendicular to the shear but
does not have much effect when it is parallel to the shear. The interaction
between the shear and the rotation is shown to give rise to a novel non-
diffusive flux of angular momentum (Λ-effect), providing a mechanism
for the permanence of shearing structure in astrophysical and geophysical
systems. Eddy viscosity tends to become negative for fast rotation and
strong shear. Anisotropic transport reduction is also found in turbulent
mixing of passive scalars, largely due to shear flow.

1 Introduction

Rotating turbulent flows can be found in many areas such as engineering (turbo-
machinery, combustion engine), geophysics (oceans, Earth’s atmosphere) or as-
trophysics (gaseous planets, galactic and accretion disks). large-scale fluid mo-
tions tends to appear as a robust feature in these systems, often in the form of
shear flows (such as circulations on the surface of planets, differential rotation
in stars and galaxies or flows in a rotating machinery), which in turn plays a
crucial role in determining turbulence properties and transport, such as energy
transfer or mixing (Kim, 2005). The understanding of the complex interaction
among rotation, large-scale shear flows and turbulence thus lies in the heart of
the predictive theory of turbulent transport in many systems.

The case of the plane shear flow in a rotating frame has been studied by
many authors focusing on its stability both in the laminar and the turbulent
cases. In the case of a rotation vector Ω̃ = Ω̃ez perpendicular to the plane
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of the shear flow, Bradshaw (1969) proposed an analogy between rotation and
stratification [supported by calculation of Pedley (1969)] and showed that the
system was unstable if the vorticity of the shear flow −Aez is anti-parallel to
the rotation and sufficiently strong. Precisely, the ratio Ω̄ = 2Ω̃/A must lie in
the interval [0 , 1] for instability. This destabilisation of laminar shear flow by
rotation has a counterpart for turbulent flows where the rotation can stabilise
turbulence (by decreasing its kinetic energy) or destabilise it. Theoretically
Tritton (1992), by using a displacement argument, and Yanase et al. (1993), by
using stability analysis confirmed by simulations (Metais et al., 1995), reach the
following conclusion: the cyclonic shear (Ω̄ < 0) is always stabilising whereas
the anticyclonic shear (Ω̄ > 0) is destabilising for weak rotation while stabilising
for high rotation, in agreement with Bradshaw criterion. These conclusions are
confirmed for a Poiseuille flow, both experimentally (Johnston et al., 1972) and
numerically (Kristoffersen & Andersson, 1993), and for a plane Couette flow
(Bech & Andersson, 1996, 1997). In comparison, the case where the rotation
lies in the same plane as the flow has been much less studied. From the stability
point of view, one could argue (e.g., Cambon et al., 1994; Leblanc & Cambon,
1997; Sipp & Jacquin, 2000) that as the projection of the vorticity on the ro-
tation axis vanishes in this case (for a linear shear), the system may be stable
regardless of the values of the rotation rate or shear.

Provided that a large-scale shear flow is stable, this flow and rotation have a
crucial influence on the regulation of turbulent transport. The Taylor-Proudman
theorem (Proudman, 1916; Taylor, 1921) states that for sufficiently strong ro-
tation, the motion becomes independent of the coordinate along the rotation
axis (in the linear inviscid regime). However, this linear theory does not permit
to study the transition from three dimensional to two-dimensional structures as
rotation increases. In fact, Cambon et al. (1997) have shown that the turbu-
lence energy concentrates in the plane normal to the rotation axis due to non
linear interactions. This could explain why a linear theory such as the rapid
distortion theory (RDT) cannot capture the transition from three-dimensional
to two-dimensional structures. Later, this result has been confirmed by the nu-
merical simulations by Smith & Waleffe (1999), who showed that the large-scale
energy lies mainly in two-dimensional modes due to non-linear interactions be-
tween inertial waves. However, they also showed that the inverse cascade of
energy was mainly caused by non-local interactions between the large and small
scale velocity fields. According to these results, a linear theory such as RDT
should be able to capture the inverse cascade, if not the transition to two di-
mensions. This will be shown later in this paper.

In rotating turbulence, the inverse cascade can occur not only due to a (dif-
fusive) negative viscosity, but also due to non-diffusive momentum transport.
The latter is known as the anisotropic kinetic α-effect (AKA) (Frisch et al.,
1987) or as the Λ-effect in the astrophysical community. The appearance of
non-diffusive term in the transport of angular momentum prevents a solid body
rotation from being a solution of the Reynolds equation (Lebedinsky, 1941;
Kippenhahn, 1963), and thus act as a source for the generation of large-scale
shear flows. For instance, this effect has been advocated as a robust mecha-
nism to explain the differential rotation in the solar convective zone. Starting
from Navier-Stokes equation, it is possible to show that these fluxes arise when
there is a cause of anisotropy in the system, either due to an anisotropic back-
ground turbulence (see Rüdiger, 1989, and references therein) or else due to
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inhomogeneities such as an underlying stratification (Kichatinov, 1987).
Another important problem, which have received much less attention, is

the effect of rotation and shear on the mixing and transport of scalars (such
as pollutants, heat or reacting species). For instance, observations show that
the concentration of light elements at the surface of the Sun is smaller than
what is expected by comparison with Earth’s or meteorites abundance. As
these light elements can only be destroyed below the strong shearing region
(the tachocline), it is crucial to understand the transport properties of scalars
in a rotating sheared layer. Note that studies of passive scalar transport in non-
rotating sheared turbulence (Tavoularis & Corrsin, 1981; Rogers et al., 1989)
have shown a strong misalignment between the scalar flux and the mean gra-
dient. Thus, gradient-diffusion models are not very appropriate to study the
evolution of a large-scale scalar gradient. In comparison, in rotating turbulence,
Brethouwer (2005) found that numerical simulation results agree fairly well with
linear theory and showed that the scalar flux vector aligned itself in the direction
of strongest velocity fluctuation.

The main purpose of this paper is to investigate the effect of rotation and
shear flow on the turbulence properties and transport. In our previous works,
we have studied the turbulent transport by taking into account the crucial effect
of shearing, the so-called shear stabilisation, due to a strong radial differential
rotation (Kim, 2005; Leprovost & Kim, 2006) and also by incorporating the
interaction of this sheared turbulence with different types of waves that can be
excited due to magnetic fields (Kim & Dubrulle, 2001; Kim, 2006; Leprovost &
Kim, 2007) or stratification (Kim & Leprovost, 2006). Here, we study a (local)
Cartesian model concentrating on the two cases where the shear direction and
the rotation are perpendicular or parallel to each other. We consider a turbu-
lence driven by an external forcing and perform a quasi-linear analysis to derive
the dependence of turbulence amplitude and transport on rotation and shear.
Compared to two-dimensional turbulence studied in Leprovost & Kim (2007),
the (average) rotation supports the propagation of inertial waves in three di-
mensions, which interact with a shear flow, playing an important role in the
overall turbulent transport. In particular, we show that the momentum trans-
port is not only due to eddy-viscosity but also to non-diffusive Λ-effect. Non
trivial Λ-effect can result from an anisotropy induced by shear flow on the tur-
bulence even when the driving force is isotropic, in contrast to the case without
shear flow where this effect exists only for anisotropic turbulence (Kichatinov,
1987). Furthermore, the eddy-viscosity can change its sign depending on the
relative strength of rotation, shear and dissipation. We also examine the effect
of rotation on the stability of shear flows.

The remainder of the paper is organised as follows: in §2, we provide the
quasi-linear equations for the fluctuating velocity and density of particles in
a rotating frame with an arbitrary external forcing. We then proceed to the
calculations of the turbulent intensity and turbulent transport in the case where
shear and rotation are perpendicular (§3) or parallel (§4) to each other. We
then discuss our findings in the strong shear limit (§5) and provide concluding
remarks in §6.
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2 Model

Our model is an incompressible fluid in a rotating frame with average rotation
rate Ω̃. The main governing equations are:

∂tu + u · ∇u = −∇P + ν∇2u + F − 2Ω̃× u , (1)

∇ · u = 0 .

To simplify notation, we let Ω = 2Ω̃. In Cartesian coordinates, the Coriolis
force can be written as:

Ω × u = Ω
[

−uy sin θ i + (ux sin θ − uz cos θ) j + uy cos θk
]

, (2)

where i, j and k are the unit vectors associated to the Cartesian coordinates. Ω
is chosen to lie in the plane y = 0 and to make an angle θ with the z direction.
Following Kim (2005), we study the effect of a large-scale shear U0 = U0(x)ĵ
on the transport properties of turbulence by writing the velocity as a sum of a
shear (chosen in the x-direction) and fluctuations: u = U0 + v = U0(x)ĵ + v =
−xAĵ + v. Without loss of generality, we assume A > 0.

To calculate the turbulence amplitude (or kinetic energy growth) and the
turbulent viscosity, we need to solve the equation for the fluctuating velocity
field. We resort to the quasi-linear approximation (Moffatt, 1978) where the
product of fluctuations is neglected to obtain the following equations for the
evolution of the fluctuating velocity field:

∂tv + U0 · ∇v + v · ∇U0 = −∇p+ ν∇2v + f − 2Ω̃× v , (3)

∇ · v = 0 ,

where p and f are respectively the small-scale components of the pressure and
forcing. This approximation, also-known as rapid distortion theory (Townsend,
1976) is strictly valid only for two scale turbulence, with a spatial gap between
a large-scale for the shear and a small scale for the fluctuating velocity, and for
weak turbulence. However, it is likely to be valid in our case as the large-scale
shear induces a weak turbulence, leading to weak interaction between small
scales which is negligible compared to the (non-local) interaction between the
shear and the small scales. This has in fact been confirmed by direct numerical
simulations showing the validity of the predictions of quasi-linear theory with
a constant-rate shear both in the non-rotating (Lee et al., 1990) and rotating
(Salhi & Cambon, 1997) case.

To solve equation (3), we introduce a Fourier transform with a wave number
in the x direction evolving in time in order to compute non-perturbatively the
effect of the advection by the mean shear flow (Goldreich & Lynden-Bell, 1964;
Townsend, 1976; Kim, 2005):

v(x, t) =
1

(2π)2

∫

d3k ei[kx(t)x+kyy+kzz]ṽ(k, t) , (4)

where kx(t) = kx(0)+kyAt. From equations (3) and (4), we obtain the following
set of equations for the fluctuating velocity:

A∂τ v̂x = −ikyτ p̂+ f̂x + Ωv̂y sin θ , (5)

A∂τ v̂y −Av̂x = −ikyp̂+ f̂y + Ω(v̂z cos θ − v̂x sin θ) ,

A∂τ v̂z = −ikzp̂+ f̂z − Ωv̂y cos θ ,

0 = τ v̂x + v̂y + βv̂z .
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Here, the new variables v̂ = ṽ exp[ν(k2
H t + k3

x/3kyA)] and similarly for f̂ and
p̂ have been used to absorb the diffusive term, and the time variable has been
changed to τ = kx(t)/ky. In the remainder of the paper, we solve equation
(5) for the fluctuating velocity (with a vanishing velocity as initial condition)
in the case where the shear and the average rotation are perpendicular (§3)
or parallel (§4). We then use these results and the correlation of the forcing
(defined in §2.3) to compute the turbulence intensity and transport (defined in
§2.2). We divide our study into four cases depending on the relative magnitude
of the three characteristic frequencies in the problem: the diffusion rate (νk2),
the rotation rate Ω and the shearing rate A. We first consider the case of large
(Ω ≫ A) and weak rotation (Ω ≪ A). For each of these cases, we consider the
large (A ≫ νk2) and weak (A ≪ νk2) shear limits.

2.1 Transport of angular momentum

As the large-scale velocity is in the y direction, we are mostly interested in the
transport in that direction. The large-scale equation for the y component of
velocity U0 is given by equation (1) with a supplementary term ∇ ·R where R
is the Reynolds stress given by:

R = 〈vvy〉 . (6)

To understand the effect of R on the transport of angular momentum, one
can formally Taylor expand it with respect to the gradient of the large-scale
flow:

Ri = ΛiU0 − νT∂xU0δi1 + · · · = ΛiU0 + νTAδi1 + . . . . (7)

where we introduced two transport coefficients Λi and νT . The effect of the tur-
bulent viscosity νT is simply to change the viscosity from the molecular value
ν to the effective value ν + νT . Note that rotation may give a negative turbu-
lent viscosity, in which case the turbulent diffusion generates velocity gradients
rather than smooths them out. In comparison, the first term in equation (7)
is proportional to the velocity rather than its gradient. This means that it
does not vanish for a constant velocity field and thus permits the creation of
gradient in the large-scale velocity field. This term is the equivalent to the α
effect in dynamo theory (Parker, 1955; Steenbeck & Krause, 1966) and has been
known as the Λ-effect (Lebedinsky, 1941; Rüdiger, 1980) or anisotropic kinetic
alpha (AKA)-effect (Frisch et al., 1987). Symmetry property of equation (7)
shows that Λ is a polar vector and thus must change sign when going from
right-handed to left handed coordinates. This explains why this tensor cannot
be present in purely isotropic turbulence but can exist for an helical turbulence
[like the α-effect]. In the presence of rotation and anisotropy of the background
medium, the turbulence is likely to be helical, possibly leading to Λ-effect.

2.2 Particle (or heat) transport

To study the influence of rotation and shear on the particle and heat transport,
we have to supplement equation (1) with an advection-diffusion equation for
these quantities. We here focus on the transport of particles since a similar
result also holds for the heat transport. The density of particles N(x, t) is
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governed by the following equation:

∂tN + U · ∇N = D∇2N , (8)

where D is the molecular diffusivity of particle. Note that, in the case of heat
equation, D should be replaced by the molecular heat conductivity χ. Writing
the density as the sum of a large-scale componentN0 and small-scale fluctuations
n (N = N0 + n), we can express the evolution of the transport of chemicals on
large-scale by:

∂tN0 + U0 · ∇N0 = (Dδij +Dij
T )∂i∂jN0 , (9)

where the turbulent diffusivity is defined as 〈vin〉 = −Dij
T ∂jN0. Our study

of turbulent transport of chemicals consists of deriving Dij
T which, owing to

rotation and shear, is likely to be highly anisotropic.
For simplicity, we limit our analysis to the case of a unit Prandtl number

D = χ = ν. In that case, we can apply the transformation introduced in
equation (4) to the density fluctuation n and obtain the following equation:

∂τ n̂ =
(−∂jN0)

A v̂j . (10)

Equation (10) simply shows that the fluctuating density of particles can be
obtained by integrating the fluctuating velocity in time.

2.3 External forcing

As mentioned in introduction, we consider a turbulence driven by an external
forcing f . To calculate the turbulence amplitude and transport defined in §2.1
and §2.2, we need the two point correlation of this forcing (as all the quantities of
interest involve quadratic functions of velocity and/or density). For simplicity,
we prescribe this forcing to be short correlated in time (modelled by a δ-function)
with power spectrum ψij in the Fourier space. Specifically, we assume:

〈f̃i(k1, t1)f̃j(k2, t2)〉 = τf (2π)3δ(k1 + k2) δ(t1 − t2)ψij(k2) , (11)

for i and j = 1, 2 or 3. The angular brackets stand for an average over realisa-
tions of the forcing, and τf is the (short) correlation time of the forcing.

For most results that will be derived later, we assume an incompressible and
isotropic forcing where the spectrum of the forcing is given by:

ψij(k) = F (k)(δij − kikj/k
2) . (12)

It is easy to check that in the absence of rotation and shear, this forcing leads
to an isotropic turbulence with intensity:

〈v2
0〉 =

2τf
(2π)2

∫ ∞

0

F (k)

ν
dk , (13)

where the subscript 0 stands for a turbulence without shear and rotation.
In addition to an isotropic forcing, we will also consider an anisotropic forcing

in §3.1.2 to examine the combined effect of rotation and anisotropy, which can
lead to non-diffusive fluxes of angular momentum. Specifically, we consider an

6



z

y

x

A = −dUy

dx

Ω

Figure 1: Sketch of the configuration in the perpendicular case

extremely anisotropic forcing with motion restricted to a plane perpendicular to
a given direction g. The motion in this perpendicular plane is however assumed
to be isotropic. Such a forcing can be modelled by the following power spectrum
(Rüdiger, 1989):

ψij(k) = G(k)

[

δij −
kikj

k2
− (g · k)2

k2
δij − gigj +

g · k
k2

(gikj + gjki)

]

. (14)

In that case, the turbulence without rotation or shear would have the following
properties:

〈(v0 · g)2〉 = 0 , (15)

〈(v0 × g)2〉 =
2τf

3(2π)2

∫ ∞

0

G(k)

ν
dk .

3 The perpendicular case (θ = π/2)

In this section, we study the combined effect on turbulence of global rotation
and shear which are perpendicular to each other (see figure 1).
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For θ = π/2, the system (5) can be simplified to:

∂2
τ

[

(γ + τ2)v̂x

]

+ β2Ω̄(Ω̄ − 1)v̂x = ∂τ

[h1(τ)

A
]

− Ω̄β
h2(τ)

A , (16)

∂τ v̂z = −β
γ
∂τ

[

τ v̂x

]

+ β
Ω̄ − 1

γ
v̂x +

h2(τ)

γA ,

v̂y = −(τ v̂x + βv̂z) .

Here:

Ω̄ = Ω/A , β = kz/ky , γ = 1 + β2 = k2
H/k

2
y (k2

H = k2
y + k2

z) ,(17)

h1(τ) = γf̂x − τ f̂y − βτf̂z , h2(τ) = f̂z − βf̂y .

To solve the first of equation (16) which is a non-homogeneous second order
differential equation, we need two boundary conditions. We impose v(τ0) =
0 which implies v̂x(τ0) = 0 and ∂τ v̂x|τ=τ0

= h1(τ0)/(γ + τ2
0 )A. The second

boundary condition was obtained in the intermediate steps of deriving equation
(16).

The exact solution of the homogeneous part of equation for the velocity v̂x

can be found in terms of generalised hyper-geometric function F ([a1, a2, . . . ], [b1, b2, . . . ], x)
(Gradshteyn & Ryzhik, 1965). Two independent solutions are:

X1(τ) = F
([3

4
+

√
1 − 4b

4
,
3

4
−

√
1 − 4b

4

]

,
[1

2

]

,−τ
2

γ

)

, (18)

X2(τ) = τF
([5

4
+

√
1 − 4b

4
,
5

4
−

√
1 − 4b

4

]

,
[3

2

]

,−τ
2

γ

)

.

Here, b = β2Ω̄(Ω̄ − 1) is (up to the multiplicative constant β2) the quantity
introduced by Bradshaw (1969) (see discussion in the introduction). Figure 2
shows the evolution of these two functions as a function of τ .

Solutions for the other components of the velocity are obtained by using the
last two equations of (16) :

v̂y = − 1

γ

[

τXn(τ) + β2(Ω̄ − 1)Yn(τ)
]

, (19)

v̂z = −β
γ

[

τXn(τ) − (Ω̄ − 1)Yn(τ)
]

,

for n = 1 or 2. Here, Y1 and Y2 are defined as:

Y1(τ) = τF
([3

4
+

√
1 − 4b

4
,
3

4
−

√
1 − 4b

4

]

,
[3

2

]

,−τ
2

γ

)

, (20)

Y2(τ) = −γ
b
F
(

[
1

4
−

√
1 − 4b

4
,
1

4
+

√
1 − 4b

4
], [

1

2
],−τ

2

γ

)

.

The plots of Y1(τ) and Y2(τ) are shown in figure 3.
Figure 3 shows that the eigenfunctions diverge for τ → ∞ when b < 0. This

is because shear flows in presence of rotation (perpendicular to the shear flow)
is stable only for b > 0. This result agrees with Bradshaw (1969) and Salhi &
Cambon (1997). We can also notice that the solution with b > 0 always decays
faster than that with b < 0.
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Figure 2: Evolution of the solution X1 (panel [a]) and X2 (panel [b]) as a
function of τ for b = −0.5 (circles), b = 0 (crosses) and b = 0.5 (squares).
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Figure 3: Evolution of the solution Y1 (panel [a]) and Y2 (panel [b]) as a function
of τ for b = −0.5 (circles), b = 0 (crosses) and b = 0.5 (squares).

10



Unfortunately, computations of correlation functions with this exact solution
turns out to be too complex to be analytically tractable. To gain a physical
insight into the problem, we consider the two regimes of the strong and weak
(compared to shear) rotation limits, where approximate solutions can be derived
and then be used for deriving analytic results for the correlation functions.

3.1 Strong rotation limit: Ω ≫ A
When the rotation rate is much larger than shearing rate (Ω0 = |Ω|/A ≫ 1),
we can use a WKB approximation (Bender & Orszag, 1975). After a long but
straightforward algebra, the solution of equation (16) can be found as:

v̂x(τ) =
1

A(γ + τ2)3/4

∫ τ

τ0

dt

{

ĥ1(t)

(γ + t2)1/4
cos[v(t, τ)] + ĥ2(t)(γ + t2)1/4θ sin[v(t, τ)]

}

,

v̂y(τ) =
1

Aγ(γ + τ2)3/4

∫ τ

τ0

dt
{ ĥ1(t)

(γ + t2)1/4

(

−τ cos[v(t, τ)] + βθ
√

γ + τ2 sin[v(t, τ)]
)

+ĥ2(t)(γ + t2)1/4
(

−θτ sin[v(t, τ)] − β
√

γ + τ2 cos[v(t, τ)]
)}

, (21)

v̂z(τ) =
1

Aγ(γ + τ2)3/4

∫ τ

τ0

dt
{ ĥ1(t)

(γ + t2)1/4

(

−βτ cos[v(t, τ)] − θ
√

γ + τ2 sin[v(t, τ)]
)

+ĥ2(t)(γ + t2)1/4
(

−θβτ sin[v(t, τ)] +
√

γ + τ2 cos[v(t, τ)]
)}

.

Here,

Ω0 = |Ω̄| , ω0 = |β|Ω0 , θ = sign(βΩ̄) , (22)

s(t) =

(

1 − 1

2Ω̄

)

arcsinh

(

t√
γ

)

+O

(

1

Ω2
0

)

,

v(t, τ) = ω0 [s(t) − s(τ)] .

In the following subsections, we compute the various correlation functions by
assuming a homogeneous and short-correlated forcing [see equation (11)]. As

the system (16) involves the forcing in terms of ĥ1 and ĥ2 only [see equation
(17)], we define the power spectrum φij as:

〈h̃i(k1, t1)h̃j(k2, t2)〉 = τf (2π)3δ(k1 + k2) δ(t1 − t2)φij(k2) , (23)

for i and j = 1 or 2. In the case of an isotropic and incompressible forcing
[equation (12)], φij in equation (23) can be written:

φ11(k) = γ(γ + a2)F (k) , φ12(k) = 0 , φ22(k) = γF (k) . (24)

3.1.1 Turbulence intensity

Using equations (21) and (23), we obtain the following turbulence intensity in
the x direction:

〈v2
x〉 =

τf
(2π)3A

∫

d3k

∫ +∞

a

dτ
e−2ξ[Q(τ)−Q(a)]

(γ + τ2)3/2

{ φ11(k)
√

γ + a2
cos2[v(a, τ)](25)

+θφ12(k) sin[2v(a, τ)] + φ22(k)
√

γ + a2 sin2[v(a, τ)]
}

.
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Here, a = kx/ky, β = kz/ky, γ = 1+β2, ξ = A/(νk2
y) and Q(x) = x3/3+γx. In

the case of an isotropic forcing [equation (24)], equation (25) and the turbulence
intensity in the two other directions can then be derived as:

〈v2
x〉 =

τf
(2π)3A

∫

d3k γ
√

γ + a2F (k) I0(k) , (26)

〈v2
y〉 =

τf
(2π)3A

∫

d3k
√

γ + a2F (k)
{

β2I0k) + I2(k)
}

,

〈v2
z〉 =

τf
(2π)3A

∫

d3k
√

γ + a2F (k)
{

I0(k) + I2(k)
}

.

Here:

Ip(k) =

∫ +∞

a

τp e−2ξ[Q(τ)−Q(a)]

(γ + τ2)3/2
dτ . (27)

In order to elucidate the effect of shear flow on rotating turbulence, we estimate
the integral Ip in equation (27) in the weak (ξ = νk2

y/A ≫ 1) and strong (ξ ≪ 1)
shear limits.

First, in the weak shear limit (ξ ≫ 1), the integral Ip in equation (27) takes
the approximate value:

Ip(k) ∼ ap

2ξ(γ + a2)5/2
=

Aap

2νk2(γ + a2)3/2
. (28)

By using equation (28) in equation (26), we can then obtain the following
result for the turbulent intensity:

〈v2
x〉 =

τf
(2π)3

∫

d3k
F (k)

2νk2

γ

γ + a2
, (29)

〈v2
y〉 =

τf
(2π)3

∫

d3k
F (k)

2νk2

β2 + a2

γ + a2
,

〈v2
z〉 =

τf
(2π)3

∫

d3k
F (k)

2νk2

1 + a2

γ + a2
.

Performing the integration over the angular variable, we obtain:

〈v2
x〉 =

τf
(2π)3

∫

dk
F (k)

2ν

∫ 2π

0

dφ

∫ π

0

dθ sin θ
(

cos2 θ + sin2 θ sin2 φ
)

=
2τf

3(2π)2

∫

dk
F (k)

ν
, (30)

and exactly the same expression for the turbulence intensity in the other two
directions. These results indicate that, in the large rotation limit, the turbulence
intensity is isotropic and equals to the one without rotation [see equation (13)].
This result is consistent with the result of Cambon et al. (1997) which showed
that the anisotropy in rotating flows was induced by non-linear interactions and
thus cannot be captured by a linear theory such as the one we used. However, in
the presence of strong shear flows, the velocity amplitude is no longer isotropic,
as shown below.
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Second, in the strong shear limit (ξ ≪ 1), the integral (27) take the following
form

I0(k) =
1

γ

(

1 − a
√

γ + a2

)

, (31)

I2(k) =
− ln ξ

3
.

By plugging equation (31) in equation (26), we obtain:

〈v2
x〉 =

τf
(2π)3A

∫

d3k
√

γ + a2F (k) , (32)

〈v2
y〉 =

τf
(2π)3A

∫

d3k
√

γ + a2F (k)
− ln ξ

3
,

〈v2
z〉 =

τf
(2π)3A

∫

d3k
√

γ + a2F (k)
− ln ξ

3
,

to leading order in ξ ≪ 1. Note that in the calculation of 〈v2
x〉, we neglected the

component proportional to a = kx/ky as it is odd in both kx and ky and thus
vanishes after integration over the angular variables. equation (32) shows that
the turbulence intensity is reduced due to the shear A but effectively stronger
in the x direction than in the perpendicular one, by a factor of ln ξ. This shows
that shear flow can induce anisotropic turbulence (unlike rotation) even when
the forcing is isotropic. This results agree with the simulation of a Couette flow
at high rotation rate (Bech & Andersson, 1997) where the velocity fluctuations
perpendicular to the wall exceed that in the stream-wise direction. Furthermore,
rapid rotation results in 〈v2

y〉 = 〈v2
y〉 with the same velocity fluctuations in the

y and z directions. This contrasts to the case of slow rotation (considered in
§3.2) where 〈v2

y〉 is larger than 〈v2
z〉.

3.1.2 Transport of angular momentum

In the case of an isotropic forcing, we obtain the following Reynolds stress from
equations (21) and (23):

〈vxvy〉 = − τf
(2π)3A

∫

d3k
√

γ + a2F (k) I1(k) , (33)

where I1 was defined in equation (27). In the following, we again consider the
weak and strong shear limits.

First, in the weak shear limit (ξ ≫ 1), there is no contribution to leading
order as the function I1 is odd in a and thus vanishes after integration over the
wave vector. We thus include one higher order in the expansion and obtain the
following result:

〈vxvy〉 = − τf
(2π)3A

∫

d3k
aF (k)

2ω0
J(k) . (34)

Here, we defined a function J(k), which has the following asymptotic behaviour

13



in the weak shear limit:

J(k) =

∫ +∞

a

τe−2ξ[Q(τ)−Q(a)]

(γ + τ2)3/2
sin [2ω0 {s(a) − s(τ)}]dτ (35)

∼ − aω0A
2(γ + a2)3/2[ν2k4 + ω0

2]
,

where ω0 = ω0A/
√

γ + a2. Plugging equation (35) in equation (34) and per-
forming the integration over the azimuthal angle variable φ, we obtain:

〈vxvy〉 =
τfA

32(3π)2

∫

dk k2F (k)

∫ π

0

dθ sin5 θ
1

ν2k4 + ω0
2 . (36)

Finally, we change the integration variable from θ to ω0 = Ω cos θ, obtaining
the following formula:

〈vxvy〉 =
τfA

16(2π)2|Ω|

∫ +∞

0

dk k2F (k)

∫ |Ω|

0

dω0

(

1 − ω0
2/Ω2

)2

ν2k4 + ω0
2 . (37)

Therefore, in the large rotation and weak shear limit, the Reynolds stress be-
comes purely diffusive (with no Λ-effect) with the following turbulent viscosity:

νT ∼ πτf
32(2π)2|Ω|

∫ +∞

0

dk
F (k)

ν
. (38)

This result shows that the turbulent viscosity is positive and proportional to
Ω−1 for large Ω. It is worth comparing equation (38) with equation (22) in
Kichatinov (1986). To this end, we use equation (13), which gives the turbulence
amplitude without rotation (the original turbulence of Kichatinov) in equation
(38) to obtain the turbulent viscosity νT ∼ π〈v2

0〉/64|Ω|. Thus νT in equation
(38) is the same as equation (22) in Kichatinov (1986) for |Ω| ≫ 1 and θ = π/2,
but has an opposite sign. In other words, we obtain νT > 0 whereas Kichatinov
(1986) obtained νT < 0.

In comparison, in the strong shear limit (ξ ≪ 1), the function I1 in equation
(27) has the following asymptotic behaviour for ξ ≪ 1:

I1(k) =
1

√

γ + a2
. (39)

Plugging equation (39) in equation (33), we obtain the turbulent viscosity in
the strong shear limit as:

νT =
〈vxvy〉
A = − τf

(2π)3A2

∫

d3k F (k) . (40)

Equation (40) shows that the turbulent viscosity is negative (as F (k) > 0) in the
strong shear limit, in sharp contrast to the weak shear limit where νT > 0 [see
equation (38)]. Furthermore, the magnitude of νT is reduced only by the shear
(∝ A−2) and is independent of rotation, which should also be compared to the
weak shear limit [see equation (38) where νT ∝ Ω−1]. Therefore, the turbulent
viscosity changes from positive (for weak shear) to negative (for large shear)
as the ratio of shear to dissipation increases. This result can be understood
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if we assume that, as in most rapidly rotating fluid, the inverse cascade is
associated with the conservation of a potential vorticity (Pedlovsky, 1987). In
presence of strong shear (compared to dissipation), the potential vorticity is
strictly conserved giving rise to an inverse cascade (negative viscosity). When
the dissipation increases, the potential vorticity is less and less conserved and
thus the inverse cascade is quenched. Our results show that there is a transition
from inverse to direct cascade as the dissipation is increased. A similar behaviour
is also found in two-dimensional hydrodynamics (HD) where an inverse cascade
can be shown to be present only for sufficient weak dissipation (Kim & Dubrulle,
2001).

The preceding results [equation (38) and (40)] indicate that in the large
rotation limit where rotation dominates over shear, the momentum transport
is purely diffusive for isotropic forcing, with opposite sign of turbulent viscosity
for weak (ξ ≫ 1) and strong shear (ξ ≪ 1) for a fixed value of |Ω|/A (≫ 1). In
the case of anisotropic forcing, there is however a possibility of the appearance
of non-diffusive momentum transport (Λ-effect). To examine this possibility, we
now consider an extremely anisotropic forcing (introduced in §2.3) where the
forcing is restricted to horizontal plane (y-z), perpendicular to the direction of
the shear. Using equation (14) with gij = δi1, we obtain the following Reynolds
stress:

〈vxvy〉 = − τf
(2π)3A

∫

d3k
γG(k)

2
√

γ + a2

[{

I1(k) − J ′(k)
}

+ βθK(k)
]

. (41)

Here, I1 was defined previously in equation (27) and:

J ′(k) =

∫ +∞

a

τe−2ξ[Q(τ)−Q(a)]

(γ + τ2)3/2
cos [2ω0 {s(a) − s(τ)}] dτ , (42)

K(k) =

∫ +∞

a

e−2ξ[Q(τ)−Q(a)]

(γ + τ2)
sin [2ω0 {s(a) − s(τ)}] dτ .

We again consider the weak and strong shear limits in the following. First,
in the weak shear limit (ξ ≫ 1), equation (41) is simplified to:

〈vxvy〉 =
τf

(2π)3A

∫

d3k
γG(k)βθ

4(γ + a2)3/2

ω0

ν2k4 + ω0
2 . (43)

Performing the angular integration in equation (43) and taking the large rotation
limit, we obtain the following:

〈vxvy〉 =
τf

3(2π)3ΩA

∫

d3k
G(k)

ν
. (44)

Equation (44) is odd in the rotation and thus represents the Λ-effect. Again, the
latter favours the creation of velocity gradient rather than smoothing it out and
can thus provide a mechanism for the occurrence of differential rotation (e.g in
the sun). By using equation (15), one can see that the Λ-effect is proportional to
the anisotropy in the turbulence without shear and rotation. This result shows
that, in the large rotation limit, one needs anisotropic forcing to generate non-
diffusive fluxes of angular momentum (as in the case without shear as shown
Kichatinov, 1986). This should be contrasted to the case of weak rotation (§3.2)
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where the shear can alone give rise to an anisotropic turbulence, thereby leading
to a Λ-effect even with an isotropic forcing.

Finally, in the strong shear limit, equation (41) becomes:

〈vxvy〉 = − τf
(2π)3A

∫

d3k
γG(k)

2(γ + a2)
, (45)

which is even in the rotation. Thus, the turbulent viscosity νT is obviously
positive. Thus, in the large shear limit (but still negligible compared to the
rotation), anisotropic forcing does not induce any non-diffusive fluxes but just
increases the magnitude of the negative turbulent viscosity.

3.1.3 Transport of particles

In this section, we show that in the large rotation limit (|Ω|/A ≫ 1), the trans-
port of particles is mainly governed, to leading order, by rotation. By using
equations (10), (21) and (23) and going through a similar long, but straightfor-
ward analysis as previously, we can obtain the turbulent diffusivities of chemi-
cals:

Dxx
T = − τf

(2π)3A2

∫

d3k γ(γ + a2)1/4F (k)
S0

3

ω0
, (46)

Dyy
T =

τf
(2π)3A2

∫

d3k

√

γ + a2F (k)

γω0
×

{

− aS1
3

(γ + a2)1/4
+

βθ

(γ + a2)1/4

(

√

γ + a2C1
3 − aC0

1

)

− β2(γ + a2)1/4S0
1

+
βθ

2(γ + a2)3/4

(

β2
√

γ + a2C0
1 − aC1

3

)

+
β2

2(γ + a2)3/4

(

aS0
1 +

√

γ + a2S1
3

)}

,

where:

ζp
n(k) =

∫ +∞

a

τpe−2ξ[Q(τ)−Q(a)]

(γ + τ2)n/4
exp [iω0 {s(a) − s(τ)}]dτ , (47)

µp
n(k) =

∫ +∞

a

τpe−2ξ[Q(τ)−Q(a)]

(γ + τ2)n/4
(τ − a) exp [iω0 {s(a) − s(τ)}] dτ ,

Cp
n = ℜ(ζp

n) , Sp
n = ℑ(ζp

n) , Cp
n = ℜ(µp

n) , Sp
n = ℑ(µp

n) .

The expression for Dzz
T is omitted here as it is very similar of that for Dyy

T .
To compute the asymptotic behaviour of integrals (47), the distinction between
large and weak shear is not necessary as, for ω0 ≫ 1, these integrals can easily
be evaluated to leading order as:

ζp
n(k) ∼ ap(2νk2 − iω0)A

(γ + a2)n/4[4ν2k4 + ω0
2]
, (48)

where ω0 = ω0A/
√

γ + a2. In comparison, the functions µp
n vanish to leading

order and are thus omitted here. By using equation (48) in equation (46), we
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obtain the following results:

Dxx
T =

τf
(2π)3

∫

d3k F (k)
γ

γ + a2

1

4ν2k4 + ω0
2 , (49)

Dyy
T =

τf
(2π)3

∫

d3k F (k)
a2 + β2

(γ + a2)

1

4ν2k4 + ω0
2 ,

Dzz
T =

τf
(2π)3

∫

d3k F (k)
1 + a2

(γ + a2)

1

4ν2k4 + ω0
2 .

Here, we have discarded all the terms which are odd in a (for example in Dyy
T ,

the terms proportional to C1 and C3) as they vanish after angular integration,
which gives the following result:

Dxx
T ∼ τf

8π|Ω|

∫ ∞

0

F (k)

ν
dk , (50)

Dyy
T = Dzz

T ∼ τf
16π|Ω|

∫ ∞

0

F (k)

ν
dk .

Equation (50) shows that Dxx
T , Dyy

T and Dzz
T are all reduced as Ω−1 for large

Ω and also that there is only a slight anisotropy in the transport of scalar: the
transport in the direction of the rotation is twice larger than the one in the
perpendicular direction (Kichatinov et al., 1994). This anisotropy is present in
the transport of particles but not in the turbulence intensity [see equation (30)]
because rotation affects only the phase between the different velocity compo-
nents and not their magnitude. Note also that this anisotropy is much weaker
than that in sheared turbulence without rotation (Kim, 2005).

To summarise, this section shows how a shear flow can affect the turbulent
transport when turbulence is largely dominated by rapid rotation (|Ω|/A ≫ 1).
In particular, the results indicate that shear flow can induce a strong anisotropic
turbulence [equation (32)] (with an effectively weaker turbulence in the direction
of the shear), which would otherwise be almost isotropic [equation (29)].

3.2 Weak rotation limit: Ω ≪ A
In this section, we consider the case when shear dominates over rotation (|Ω|/A ≪
1) to study how the rotation alters the transport properties in the sheared tur-
bulence (studied in Kim, 2005). In the weak rotation limit, we expand quantities
in powers of Ω0 = |Ω|/A as:

X(τ) = X0(τ) + Ω0X1(τ) + . . . , (51)

and calculate the turbulence intensity and transport up to first order in Ω0. For
the sake of brevity, we here just provide the final results of the calculation.

3.2.1 Turbulence intensity

By using the expansion in powers of Ω0 and equation (23) and after a long,
but straightforward algebra, we can obtain the turbulence intensity in the x
direction as follows:

〈v2
x〉 =

τf
(2π)3A

∫

d3kφ11(k)
[

L0(k) + β2Ω̄L1(k)
]

. (52)
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Here:

L0(k) =

∫ +∞

a

dτ
e−2ξ[Q(τ)−Q(a)]

(γ + τ2)2
dτ , (53)

L1(k) =

∫ +∞

a

dτ
e−2ξ[Q(τ)−Q(a)]

(γ + τ2)2

[

τ{T (τ) − T (a)} − 1

2
ln

(

γ + τ2

γ + a2

)]

dτ ,

T (x) =
1√
γ

arctan

(

x√
γ

)

.

In the strong shear limit (ξ ≪ 1), the integrals L0 and L1 in equation (53)
can be simplified:

L0(k) ∼
∫ +∞

a

1

(γ + τ2)2
dτ =

1

2γ

[

π

2
√
γ
− T (a) − a

γ + a2

]

dτ , (54)

L1(k) ∼
∫ +∞

a

1

(γ + τ2)2

[

τ{T (τ) − T (a)} − 1

2
ln

(

γ + τ2

γ + a2

)]

dτ

=

∫ +∞

a

[

τ

2γ(γ + τ2)
+

1

2γ
T (τ)

]

{T (τ) − T (a)}dτ .

Note that the second formula for L1 in equation (54) was obtained by integration
by part. Equation (54) clearly shows that L1 is positive for all values of a (for
a < 0, the negative part of the integral is always smaller than the positive
one as the first term is odd in τ and the second one is an increasing function
of a). Therefore, the turbulence intensity 〈v2

x〉 in equation (52) increases for
Ω̄ > 0 whereas it decreases for Ω̄ < 0. This can be understood from figure
2 which shows that the homogeneous solution decays faster as the parameter
b is increased (recall that b = −β2Ω̄ in the weak shear limit). Therefore, we
recover the conclusion of the stability analysis performed at the beginning of §3:
a weak rotation destabilises sheared turbulence for Ω̄ > 0 whereas it stabilises
for Ω̄ < 0.

Performing similar calculations for the other components of the turbulence
amplitude, we obtain the following result in the strong shear limit (ξ ≪ 1):

〈v2
y〉 ∼ τf

(2π)3A

∫

d3k

[

β2

(

π

2
√
γ
− T (a)

)2

φ11(k) + φ22(k)

]

β2

3γ2

(

3

2ξ

)1/3

×
[

Γ(1/3) + Ω̄β2Γ(4/3)(− ln ξ)
]

(55)

〈v2
z〉 ∼ τf

(2π)3A

∫

d3k

[

β2

(

π

2
√
γ
− T (a)

)2

φ11(k) + φ22(k)

]

1

3γ2

(

3

2ξ

)1/3

×
[

Γ(1/3) + Ω̄β2Γ(4/3)(− ln ξ)
]

Here, Γ is the Gamma function. Equation (55) shows that, here again, the tur-
bulence amplitude is increased or decreased due to the weak rotation depending
on the sign of Ω̄. Furthermore, the correction now has a logarithmic dependence
on the shear, contrary to the case of the amplitude in the shear (x) direction,
which is independent of shear [equation (52)]. Therefore, the turbulence in the
y − z plane is more affected by rotation than the one in the x direction. As a
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result, the turbulence due to shearing becomes less anisotropic. This illustrates
the tendency of rotation to lead to almost isotropic turbulence. The results for
〈v2

y〉 and 〈v2
y〉 are very similar but, as ky and kz do not play symmetric roles, not

exactly the same. For an isotropic forcing, the angular integration gives that
〈v2

y〉 is larger than 〈v2
z〉. This effect appears at leading order and is thus only an

effect of the shear that has already been evidenced by numerical simulations:
the fluctuating velocity in the direction of the flow is larger than the one in the
direction of the shear (Lee et al., 1990). This should be contrasted to the result
(32) in the case of rapid rotation, where we showed that the turbuence in the
y-z plane was isotropic (〈v2

y〉 = 〈v2
y〉). This clearly illustrates the tendency of

rotation to make almost isotropic turbulence.
In summary, in the case of a strong shear turbulence (A ≫ |Ω| and A ≫ νk2

y),
the rotation can either enhance or reduce the turbulence amplitude, depending
on the relative sign of the rotation Ω and shear A, and tends to reduce the
anisotropy in sheared turbulence.

3.2.2 Transport of angular momentum

In the strong shear limit (ξ ≪ 1), the transport of angular momentum can be
derived as:

〈vxvy〉 ∼ τf
(2π)3A

∫

d3k
{φ11(k)

γ

[

− 1

2(γ + a2)
+ β2

(

π

2
√
γ
− T (a)

)2
]

(56)

+
β2Ω̄

3γ
(− ln ξ)

[

β2

(

π

2
√
γ
− T (a)

)2

φ11(k) + φ22(k)

]

}

.

For Ω̄ = 0, we recover the result of Kim (2005) that the turbulent viscosity
is reduced proportionally to A−2 for strong shear. The correction due to the
rotation is proportional to Ω̄ and is odd in the rotation. This is the so-called
Λ-effect, a non-diffusive contribution to Reynolds stress. It is important to em-
phasise that non trivial Λ-effect results from an anisotropy induced by shear
flow on the turbulence even when the driving force is isotropic. This should be
contrasted to the case without shear flow where non-diffusive fluxes emerge only
for anisotropic forcing. A similar result was also found in §3.1.2 [see equations
(38) and (40)]. This Λ-effect [the second term in equation (56)] is obviously of
the same sign as Ω̄ whereas the turbulent viscosity [the first term in equation
(56)] can either be positive or negative, depending on the relative magnitude
of the two terms inside the integral. In the two-dimensional limit or for a
symmetric perturbation with kz = 0 (β = 0), we can easily show that the tur-
bulent viscosity is negative. On the contrary, in the case of an isotropic forcing
in three-dimensional, the turbulent viscosity is positive. This is in agreement
with previous studies which showed that non-diffusive fluxes of angular mo-
mentum (Rüdiger, 1980; Kichatinov, 1986) are proportional to the anisotropy
in the background turbulence. However, in our case, the anisotropy is not ar-
tificially introduced in the system but is created by the shear and calculated
self-consistently.
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3.2.3 Transport of particles

In the strong shear limit (ξ ≪ 1), we can compute the transport of particles
〈nvi〉 with the result:

Dxx
T ∼ τf

(2π)3A2

∫

d3k φ11(k)

(

π

2
√
γ
− T (a)

)2 [

1 + Ω̄β2 − ln ξ

3

]

, (57)

Dzz
T ∼ τf

(2π)3A2

∫

d3k

[

φ11(k)β2

γ2

(

π

2
√
γ
− T (a)

)2

+
φ22(k)

γ2

]

×

1

3

(

3

2ξ

)2/3

Γ(2/3)

{

1 + 2Ω̄β2 − ln ξ

3

}

.

Equation (57) shows that the effect of rotation on the transport of particles
depends on the sign of Ω̄: for Ω̄ > 0, the transport is increased whereas it is
reduced for Ω̄ < 0. Again, this is because a weak rotation destabilises sheared
turbulence for Ω̄ > 0 whereas it stabilises for Ω̄ < 0 (see figure 3 and the
discussion at the beginning of §3). Note that a similar behaviour was also found
in turbulence intensity, given in equations (52) and (55). The correction term
due to rotation in Dxx

T and Dzz
T in equation (57) depends weakly on the shear by

a logarithmic factor | ln ξ|, which cannot be too large even for ξ = νk2
y/A ≪ 1,

and is of the same order for transport in different directions. Thus, the scaling
of the turbulent diffusivity is roughly the same as in the case without rotation:
the transport in x direction is more reduced (by a factor A−2) than the one in
the y − z plane (by a factor A−4/3). This result should be contrasted to the
large rotation case where the transport in the shear (x) direction was larger (by
a factor 2) than the one in the perpendicular direction. These results highlight
the crucial role of shear in transport, in particular in introducing anisotropy.

To summarise, in the slow rotation limit, where turbulence is mainly reg-
ulated by shear flow, the turbulence intensity [equations (52) and (55)] and
transport [equation (57)] are shown to be strongly anisotropic due to shear flow
while they are slightly enhanced or reduced by rotation for Ω̄ > 0 or Ω̄ < 0,
respectively, to next order. The strong anisotropic turbulence was shown to give
rise to a Λ-effect for momentum transport [equation (56)] even for an isotropic
forcing.

4 The parallel case (θ = 0)

We now study the case where the shear and the rotation are parallel as depicted
in figure 4. Setting θ = 0 and rearranging (5) in order to eliminate the pressure
terms, the three remaining equations can be written:

∂τ

[1

τ
∂τ

(

{γ + τ2}v̂x

)

]

+ (Ω̄2τ − Ω̄β)v̂x = ∂τ

[h1(τ)

Aτ
]

− Ω̄
ĥ2(τ)

A , (58)

∂τ v̂z = −β
γ
∂τ

[

τ v̂x

]

+
Ω̄τ − β

γ
v̂x +

ĥ2(τ)

γA ,

v̂y = −(τ v̂x + βv̂z) .

Here again, β = kz/ky, γ = 1 + β2 = k2
H/k

2
y and Ω̄ = Ω/A. We first study the

stability of the homogeneous solution in the long time limit. Setting ĥ1 = ĥ2 = 0
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Figure 4: Sketch of the configuration in the parallel case

in the first equation of (58), the long time behaviour (for τ ≫ |β/Ω̄|) is given
by:

∂τ

[1

τ
∂τ

(

{γ + τ2}v̂x

)

]

+ Ω̄2τ v̂x = 0 . (59)

Making the change of variable x =
√

γ + τ2 and letting v̂x(τ) = h(x)/x, the
equation for h becomes

x2h′′(x) + xh′(x) + (Ω̄2x2 − 1)h(x) = 0 . (60)

Two independent solutions to equation (60) are given by a Bessel function of the
first kind J1(|Ω̄|x) and of the second kind Y1(|Ω̄|x). Thus, the general solution
of equation (59) can be written as:

v̂x(τ) ∼ 1
√

γ + τ2

[

AJ1(|Ω̄|
√

γ + τ2) +BY1(|Ω̄|
√

γ + τ2)
]

, (61)

for large time. It is then easy to see that v̂x(τ) → 0 as τ → +∞. We can also
show (see Appendix A for details) that the other two components of the velocity
vanish for large time. Consequently, the configuration is always linearly stable.
Furthermore there is no effect at all of rotation on the stability of shear flows
in this configuration.

To calculate the turbulence amplitude and transport, the first equation in
equation (58) is to be solved with initial conditions: v̂x(τ0) = 0 and ∂τ v̂x|τ=τ0

=
h1(τ0)/(γ + τ2

0 )A. Unfortunately, we were unable to find an exact solution of
equation (58) in the general case. Thus, to gain a useful insight into the problem,
we here focus on the three simplified cases where approximate solutions can
be found: the large rotation limit in §4.1 where we find a WKB solution of
equation (58), the weak rotation limit in §4.2 and finally, in §4.3, we consider
the symmetric perturbation (with β =0) to find an exact solution. As the results
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of the two first sections are very similar to the perpendicular case (§3), we here
just show the differences because of the different configuration of shear and
rotation.

4.1 Large rotation limit: |Ω̄| ≫ 1 (and a > 0)

For |Ω̄| ≫ 1, we seek for a WKB solution of the first equation in equation (58).
However, since this approximation breaks for τ = 0, we assume that the initial
value is positive (τ0 = a > 0) to make our solution meaningful. In §4.3, we study
an exactly solvable case and show that the solution can be altered by negative
initial value (τ0 = a < 0). Assuming τ0 = a > 0, we obtain the following
solutions for the three components of the velocity for |Ω/A| ≫ 1:

v̂x(τ) =
1

A(γ + τ2)3/4

∫ τ

τ0

dt

{

ĥ1(t)

(γ + t2)1/4
cos[v(t, τ)] + χĥ2(t)(γ + t2)1/4 sin[v(t, τ)]

}

,

v̂y(τ) =
1

Aγ(γ + τ2)3/4

∫ τ

τ0

dt
{ ĥ1(t)

(γ + t2)1/4

(

−τ cos[v(t, τ)] + βχ
√

γ + τ2 sin[v(t, τ)]
)

+ĥ2(t)(γ + t2)1/4
(

−χτ sin[v(t, τ)] − β
√

γ + τ2 cos[v(t, τ)]
)}

, (62)

v̂z(τ) =
1

Aγ(γ + τ2)3/4

∫ τ

τ0

dt
{ ĥ1(t)

(γ + t2)1/4

(

−βτ cos[v(t, τ)] − χ
√

γ + τ2 sin[v(t, τ)]
)

+ĥ2(t)(γ + t2)1/4
(

−χβτ sin[v(t, τ)] +
√

γ + τ2 cos[v(t, τ)]
)}

.

Here,

Ω0 = |Ω̄| , χ = sign(Ω̄) , (63)

r(t) =
√

γ + τ2 − βχ

2Ω0
ln
[

τ +
√

γ + τ2
]

+O

(

1

Ω2
0

)

,

v(t, τ) = Ω0 [r(t) − r(τ)] .

Due to the similarity between equation (62) and equation (21) obtained in the
perpendicular case in §3.1, the turbulence amplitude can easily be shown to
be the same as that of equation (26). Similarly, the turbulent viscosity is the
same as previously [see equation (33)] with a negative eddy-viscosity in the
strong shear limit. In the weak shear limit, however, the next order term is
odd in β and thus vanishes for an isotropic forcing, giving no contribution to
the eddy-viscosity. Consequently, the eddy viscosity vanishes to leading order
(for rotation and shear parallel) in the weak shear limit. Also, the transport of
particles is the same as previously [see equation (50)] both in the strong and
weak shear limit.

4.2 Weak rotation limit: Ω ≪ A
In the weak rotation limit, we expand all the quantities in powers of Ω0 as:

X(τ) = X0(τ) + Ω0X1(τ) + . . . . (64)

Contrary to the perpendicular case, we find that the leading order correction
(proportional to Ω0) vanishes in the case of an isotropic forcing (because these
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terms are odd in β) for all the previously calculated quantities. However, the
component of the Reynolds stress involving the velocity component vz does not
vanish and is odd in Ω. Thus, the Λ-effect appears here in the other component
of the Reynolds stress Λz (recall that in the perpendicular case, the Λ-effect was
present only in 〈vxvy〉), in the form:

Λz ∼ − τf
(2π)3A2

∫

d3k
Γ(2/3)

6γ2

(

3

2ξ

)2/3

(3β2−1)

{

β2

(

π

2
√
γ
− T (a)

)2

φ11(k) + φ22(k)

}

.

(65)
Equation (65) shows that the sign of Λz is indefinite (as both signs appear in
the prefactor (3β2−1). However, as for equation (56), in the case of an isotropic
forcing, the term proportional to β2 dominates, making Λz negative. This Λ
effect appears due to the anisotropy between the y- and the z-components of
the velocity, due to the shear (alone) as shown in §3.2.1

4.3 Symmetric perturbation (β = 0)

In this section, we consider a symmetric perturbation with kz = 0 by assum-
ing a forcing that is symmetric in the z direction. For β = kz/ky = 0, the
homogeneous part of the first equation in (58) becomes:

∂τ

[1

τ
∂τ

(

{1 + τ2}v̂x

)

]

+ Ω̄2τ v̂x = 0 . (66)

This equation is the same as the one we obtained for the study of the stability of
the configuration where the shear and the rotation are parallel [see equation (59)
with γ = 1]. Solutions of the homogeneous problem are thus Bessel functions.
Using the method of variation of parameters, we can then express the general
solution of the first equation to (58) as:

v̂x(τ) =
πΩ0

2
√

1 + τ2

∫ τ

τ0

dt

[

h1(t)

A L01(t, τ) +
h2(t)

A
√

1 + t2L11(t, τ)

]

.(67)

Here again, Ω0 = |Ω̄|, χ = sign(Ω̄); and Lnp are defined by:

Lnp(t, τ) = Yn[Ω0

√

1 + t2]Jp[Ω0

√

1 + τ2] − Jn[Ω0

√

1 + t2]Yp[Ω0

√

1 + τ2] .
(68)

The second equation of system (58) can then be used to obtain the other com-
ponents of the velocity in the form:

v̂z(τ) =
πΩ0

2

∫ τ

τ0

dt

[

h1(t)

A χL00(t, τ) −
h2(t)

A
√

1 + t2L10(t, τ)

]

, (69)

and a similar expression for v̂y(τ). We can now use equations (67) and (69) to
calculate turbulence amplitude (§4.3.1) and transport (§4.3.2 and §4.3.3). Note
that equations (67) and (69) are exact solutions valid for all values of Ω0.
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4.3.1 Turbulence amplitude

From equations (67) and (69), we can easily obtain the turbulence amplitude
as:

〈v2
x〉 =

τfπ
2Ω2

0

4(2π)3A

∫

d3kF (k)(1 + a2) [X1(k) +X2(k)] , (70)

〈v2
z〉 =

τfπ
2Ω2

0

4(2π)3A

∫

d3kF (k)(1 + a2) [X3(k) +X4(k)] .

Here, for simplicity, we considered only an isotropic forcing, given by equation
(24), and defined the following integrals:

X1(k) =

∫ +∞

a

e−2ξ[Q(τ)−Q(a)]

1 + τ2
[L01(a, τ)]

2
dτ , (71)

X2(k) =

∫ +∞

a

e−2ξ[Q(τ)−Q(a)]

1 + τ2
[L11(a, τ)]

2
dτ ,

X3(k) =

∫ +∞

a

e−2ξ[Q(τ)−Q(a)] [L00(a, τ)]
2 dτ ,

X4(k) =

∫ +∞

a

e−2ξ[Q(τ)−Q(a)] [L10(a, τ)]
2
dτ .

Here, Lnp’s are given by equation (68). We now consider the strong shear limit:
ξ = νk2

y/A ≪ 1. As both Bessel functions becomes as (1 + τ2)−1/4 (up to a
trigonometric functions) for large τ , the first two integrals converge as ξ → 0.
Thus, it is sufficient to put ξ = 0 in X1 and X2 in equation (71) to obtain the
leading order behaviour for ξ ≪ 1. In comparison, the integrand of X3 and X4

behaves as 1/τ for τ ≫ 1, giving a contribution of order ln ξ to leading order.
We now examine the turbulence amplitude in the large rotation limit: Ω0 ≫

1. To do so, we use the asymptotic behaviour of the integrals (71) derived in
appendix B.1.2. Using equations (91) and (93) in equation(70), we obtain the
following leading order contribution of the turbulent amplitude:

〈v2
x〉 =

τf
(2π)3A

∫

d3k F (k)
√

1 + a2 , (72)

〈v2
z〉 =

τf
(2π)3A

∫

d3k F (k)
√

1 + a2

(− ln ξ

3

)

.

Thus, the turbulence amplitude is larger in the y − z plane than the one in
x direction by a logarithmic factor. Moreover, equation (72) shows that the
turbulence amplitude does not depend on the rotation rate in the large rotation
limit, being quenched only by shear. In particular, 〈v2

y〉 = 〈v2
z〉. These results

are the same as in the case where the shear and the rotation are perpendicular
[see equation ((26)] and thus agree with the WKB solution in the previous
section.

4.3.2 Turbulent transport of momentum

We now calculate the turbulent viscosity νT defined by 〈vxvy〉 = −νT∂xU0 =
νTA. From equations (67) and (69), we can derive the Reynolds stress in the

24



case of an isotropic forcing:

〈vxvy〉 = − τfπ
2Ω2

0

4(2π)3A

∫

d3kF (k)(1 + a2) [X5(k) +X6(k)] , (73)

where,

X5(k) =

∫ +∞

a

τ e−2ξ[Q(τ)−Q(a)]

1 + τ2
[L01(t, τ)]

2
dτ , (74)

X6(k) =

∫ +∞

a

τ e−2ξ[Q(τ)−Q(a)]

1 + τ2
[L11(a, τ)]

2
dτ .

Here, Lnp’s are again given by equation (68). Note that the expression for
the transport of angular momentum [equation (73)] is the same as that of 〈v2

x〉
[equation (70)] except for the multiplicative factor of −τ . This is simply because,
for β = 0, the incompressibility condition imposes v̂y = −τ v̂x. By using the
asymptotic behaviour of Bessel functions for large argument, we see that the
two integrals X5 and X6 in equation (74) can be evaluated in the strong shear
limit by just putting ξ = 0. Consequently, the turbulent viscosity is of order
A−2 for any value of Ω̄.

In the large rotation limit (Ω0 ≫ 1), we can estimate the integrals (74) and
obtain the following turbulent viscosity:

νT = − τf
(2π)3A2

∫

d3k F (k) . (75)

Equation (75) shows that the turbulent viscosity does not depend on rotation
in the large rotation limit and is obviously negative. Note that this result is the
same as in the perpendicular case [see equation (40)] and, thus again, agrees
with the WKB solution found previously.

4.3.3 Particles transport

The fluctuating concentration of particles can be obtained by integration of the
fluctuating velocities (67) and (69) [see equation (10)]. Then, the diagonal part
of turbulent diffusivity can be obtained as:

Dxx
T =

τfπ
2Ω2

0

4(2π)3A2

∫

d3k (1 + a2)F (k) [P1(k) + P2(k)] , (76)

Dzz
T =

τfπ
2Ω2

0

4(2π)3A2

∫

d3k (1 + a2)F (k) [P3(k) + P4(k)] .

Here, we defined integrals Pi which all have the following form:

Pi(k) =

∫ +∞

a

dτe−2ξ[Q(τ)−Q(a)]Fi(τ)

∫ τ

a

Fi(t) dt , (77)

for i = 1 to 4. The functions Fi(τ)’s are defined by:

F1 =
L01(a, τ)√

1 + τ2
, F2 =

L11(a, τ)√
1 + τ2

, (78)

F3 = L00(a, τ) , F4 = −L10(a, τ) .
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In the large rotation limit (Ω̄ ≫ 1), the Fi’s are oscillating functions. Thus,
to evaluate integrals (77) in the strong shear limit (ξ ≪ 1), we can not simply
put ξ = 0 in equation (77) as is explained in the appendix B.3. A careful
analysis (see appendix B.3) then gives us the following expression in the limits
of strong shear (ξ ≪ 1) and large rotation (Ω0 ≫ 1):

Dxx
T ∼ τf

8π|Ω|

∫ ∞

0

F (k)

ν
dk +

πτf
(2π)3A|Ω|

∫

a<0

d3k
√

1 + a2F (k) ,

Dzz
T ∼ τf

16π|Ω|

∫ ∞

0

F (k)

ν
dk +

πτf
(2π)3A|Ω|

∫

a<0

d3k
√

1 + a2F (k) . (79)

The transport of particles in equation (79) involves two contributions, both
of which scale as Ω−1 for rapid rotation. The first contribution comes from
the integration by parts and has to be kept only because ω0 can vanish for
a = 0 while the second comes from the stationary point in the integration (see
appendix B.3 for details). Note that the ratio of the second term to the first
one is equal to νk2/A ∼ ξ. Consequently, in the strong shear limit (ξ ≪ 1), the
first term dominates. Thus, the transport of particles is the same as the one
found with the WKB analysis (see §4.1).

To summarise, in this section, we solved equation (58) exactly for β = 0 and
compared the results with the WKB analysis performed in §4.1 (which is valid
only for a > 0). The results being the same, the conclusions reached from WKB
analysis remain valid even if a ≤ 0.

5 Discussion in the strong shear limit

In §3 and §4, depending on the values of the parameter ξ = A/(νk2
y), we consid-

ered two regimes: the strong shear (ξ ≪ 1) and the weak shear limits (ξ ≫ 1).
As the quasi-linear analysis is likely to be valid for sufficiently strong shear, we
here summarise and discuss the results obtained in the limit of strong shear.
Table 1 summarises our findings by highlighting the dependence of these quan-
tities on the shearing rate A and the rotation rate Ω (or their ratio, Ω̄ = Ω/A).
In the following, we discuss these results.

5.1 Stability of rotating shear flows

Our first result concerns the stability of shear flows in the presence of rotation.
In the case where the rotation is perpendicular to the plane of the fluid motion
(see figure 1), we recovered the Bradshaw criterion (Bradshaw, 1969). In our
notation, it states that the configuration is unstable if B = −Ω̄(1 − Ω̄) < 0 or,
equivalently, if Ω̄ = Ω/A lies in the interval [0 , 1]. This result has already been
reported by many authors, who showed not only that the maximum destabilisa-
tion occurs for Ω̄ = 1/2 but also that the there is an important asymmetry with
respect to Ω̄ = 1/2 which is not included in the Bradshaw criterion (Speziale &
Mhuiris, 1989; Cambon et al., 1994; Salhi & Cambon, 1997). This is because
Bradshaw criterion can be recovered by a pressure-less analysis while the effect
of pressure is to destroy this symmetry. We can easily show this asymmetry
with respect to Ω̄ = 1/2 in our results: even if the equation (18) for the x-
component of the velocity is symmetric with respect to Ω̄ = 1/2 (as it depends
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Perpendicular Parallel

Ω ≫ A Ω ≪ A Ω ≫ A Ω ≪ A

〈v2
x〉 1 A−1

[

1 + CΩ̄
]

1 A−1

〈v2
y〉 ∼ 〈v2

z〉 | ln ξ| A−2/3
[

1 + CΩ̄| ln ξ|
]

| ln ξ| A−2/3

νT −A−2 A−2 −A−2 A−2

Λx 0 A−2| ln ξ| 0 0

Λz 0 0 0 A−4/3

Dxx
T Ω−1 A−2

[

1 + CΩ̄| ln ξ|
]

Ω−1 A−2

Dyy
T ∼ Dzz

T Ω−1 A−4/3
[

1 + CΩ̄| ln ξ|
]

Ω−1 A−4/3

Table 1: Summary of our results obtained both for the perpendicular and
parallel cases in the strong shear limit. In the perpendicular case, the rotation
is in the z direction whereas it is in the x direction in the parallel case. In both
cases, the shear is in the x direction. The C symbol stands for an additional
constant of order 1.

only on b = −β2B), equation (19) for the other components of the velocity are
not because of the term proportional to Ω̄ − 1. In the parallel case (see figure
4), we found that the system was stable regardless of the values of shear and
rotation.

5.2 Turbulence amplitude

The first two rows of Table 1 show that the turbulence amplitude in the direction
of the shear (x) is more reduced by the shear than in the perpendicular one. This
is true both for the large rotation limit, where they scale as ξ0 and | ln ξ| (recall
that ξ = νk2

y/A ≪ 1) respectively, and for the weak rotation limit, where they

scale as A−1 and A−2/3 respectively. These results thus imply an effectively
stronger turbulence in the plane (y-z) than in the x-direction. This anisotropic
reduction of turbulence amplitude is mainly due to the shear which increases
the dissipation (anisotropically) by efficiently creating small-scale fluctuations
in the x-direction. Furthermore, the turbulence amplitude is affected by the
rotation only in the case where the rotation is perpendicular to the shear flow
and in the weak rotation limit. This is because rotation affects the stability
of shear flows only in this case, as mentioned previously. Here we recover the
Bradshaw criterion: for Ω̄ ≪ 1, a positive Ω̄ tends to destabilise the turbulence
(the kinetic energy is increased) whereas a negative value tends to stabilise
the turbulence. For Ω ≪ A, the effect of rotation on turbulence is weakly
anisotropic, suppressing the turbulence in the y − z plane more than the one
in the x-direction by a factor of ln ξ. As a result, the anisotropy due to shear
flow is weakened by rotation. This reflects the tendency of rotation to lead to
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almost isotropic turbulence.

5.3 Transport of angular momentum

The transport of angular momentum was found to involve two contributions:
the turbulent viscosity νT and the Λ-effect. The former is a diffusive transport
making the effective viscosity to νT + ν (ν is the molecular viscosity) while
the latter is a non-diffusive momentum transport. Our results show that the
turbulent viscosity does not depend on the relative orientation of the shear and
rotation. We also found a transition from a negative viscosity, for large rotation,
to a positive viscosity, for weak rotation. This shows the influence of rotation to
favour transfer of energy from small-scales to large-scales (inverse cascade). In
comparison, the Λ-effect is a source of non-diffusive flux and prevents a uniform
rotation to be solution of the averaged Reynolds equation. This term is present
with an isotropic forcing in contrast with the case without shear where a source
of anisotropy in the system is necessary for such an effect to appear. This is
due to the fact that, even for an isotropic forcing, the shear induces anisotropy
in the system as shown here and by Kim (2005). In the case of an anisotropic
turbulence, it was shown that the Λ-effect was proportional to the anisotropy in
the velocity field (Kichatinov, 1986; Rüdiger, 1989). Here, in the perpendicular
case, we found that the Λ-effect scales as A−2| ln ξ| whereas the anisotropy in
the velocity amplitude is given, at leading order, by A−4/3. Consequently, the
Λ-effect is smaller than the anisotropy in the turbulent velocity amplitude. This
is because the anisotropy is not simply given here but has to be induced self-
consistently by the shear during the evolution. Consequently, the anisotropy
does not remain the same at all time and the resulting Λ-effect is smaller than
the anisotropy in the velocity amplitude for large time. One can also note that
the magnitude of the Λ-effect is not the same in the two cases. In the parallel
case, it scales as A−4/3 while, in the perpendicular case, it scales as A−2| ln ξ|.
Thus, the effect is larger in the parallel case than in the perpendicular case.

5.4 Transport of scalar

In the case of rapid rotation, we found that the transport of scalars is mainly
governed by the rotation, scaling as Ω−1 in all directions. The transport in the
direction parallel to the rotation is twice larger than the one in the perpendicular
direction (see equation (50) and Kichatinov et al., 1994) with a slight anisotropy.
However, in the weak rotation limit, the transport of chemical species is reduced
by shear with a stronger reduction in the direction parallel to the shear than in
the perpendicular one (by a factor A−2 and A−4/3 respectively). Furthermore,
there is a (weak) reduction due to rotation but only in the perpendicular case.
These results are consistent with the calculations of Brethouwer (2005) as the
anisotropy in the transport of particles is the same as that in the turbulent in-
tensity. This is because, in the quasi-linear approximation, the rotation favours
isotropy with the anisotropy of both quantities being caused by the shear only.

5.5 Effect of a bounded domain

In the calculation of all the turbulent coefficients in the weak shear limit (ξ ≫ 1)
and also of the transport of particles in the strong shear limit (ξ ≪ 1), we
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obtained a result proportional to the following type of integral:

I(k,Ω) =

∫

H(k)

ν2k4 + ω0
2 d

3k , (80)

where ω0 = (Ω · k)/k is the projection of the unit vector in the direction of
the wave number on the rotation axis. When the domain of integration is
unbounded, the integration over the angular variable gives this integral propor-
tional to Ω−1, when the rotation rate Ω is sufficiently large [see equation (36-38)
for details]. This is because this integral involves some contribution of order 1
(when Ω · k = 0) and others of magnitude Ω−2.

However, in most practical applications, the domain of integration in Fourier
space is bounded. Thus there is a minimal wavenumber (corresponding to a
maximum length, for instance the size of the box) in the direction of the rotation
that we call km = min(kx). The preceding scaling in Ω−1 is valid when ν2k6 ≫
Ω2k2

m. In the opposite case, the term ω0
2 in equation (80) is always dominant

and we thus expect this integral to behave as Ω−2 for large rotation rate.

5.6 Comparison with stratification

It is well known that compressibility can inhibit mixing and reduce energy am-
plification produced by a large-scale shear (see Simone et al., 1997, and refer-
ences therein). Furthermore, the analogy between rotating and stratified flows
(Greenspan, 1968), which has been used by Bradshaw (1969) to derive his cri-
terion, can be used to comment on the case with shear and stratification. Salhi
(2002) has shown that, by the normal analysis, the perpendicular case (studied
here) is equivalent to the case with a stratification in the x-direction (except
when Ω · k = 0). Thus, the stratified case in the x-direction is expected to be
very similar to the case where the rotation is perpendicular to the plane of the
flow. Indeed, in that case, we found (Kim & Leprovost, 2006) that the scal-
ing of the turbulent intensity and the turbulent viscosity do not depend on the
Brunt-Väisälä frequency N (which characterises the intensity of the stratifica-
tion and thus plays the same role as Ω in the rotating case) and have the same
scalings as those given in the first column of Table 1. Kim & Leprovost (2006)
also found that the transport of scalar was reduced proportional to N−2, which
corresponds to the case discussed in §5.5.

6 Conclusion

In this paper, we have performed a thorough investigation of the combined ef-
fects of shear and rotation on the structure of turbulence. While both rotation
and (stable) shear flow tend to regulate turbulence, there are important differ-
ences in their effects, which should be emphasised. Rotation, by exciting inertial
waves, tends to reduce turbulence transport more heavily than turbulence am-
plitude while shear flows reduce both of them to a similar degree. That is,
rotation (or waves) quenches the cross-phase (normalised flux) more than shear
flow does (Kim & Diamond, 2003; Kim, 2006). Furthermore, in sharp contrast
with rotation, shear flow induces a strong anisotropic turbulence and transport
(e.g. momentum transport, chemical mixing, etc.). On the other hand, rotation
acting together with shear flow is shown to give rise to a novel, non-diffusive
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flux for momentum transport (the so-called Λ-effect) which transfers energy
from the fluctuating velocity field to the large-scale flow. In comparison, the
eddy viscosity from the diffusive part of momentum transport is found to be
negative for strong shear and rotation.

These results can have significant implications for astrophysical and geophys-
ical systems. In particular, the Λ-effect and/or negative viscosity can provide
a mechanism for the generation of ubiquitous large-scale shear flows, which are
often observed in these objects. Furthermore, the anisotropic mixing of scalars
should be taken into account in understanding the surface depletion of light
elements in stars (Pinsonneault, 1997).

Finally, we note that numerical confirmation of our prediction as well as the
extension of our work to three-dimensional magnetohydrodynamics with rota-
tion remain important problems, and will be addressed in future publications.

This work was supported by U.K. PPARC Grant No. PP/B501512/1.

A Decay of the homogeneous solution in the
parallel case

In §4, we have seen that for sufficiently large τ , the solution of the first equation
of equation (58) can be written:

v̂x(τ) ∼ 1
√

γ + τ2

[

AJ1(|Ω̄|
√

γ + τ2) +BY1(|Ω̄|
√

γ + τ2)
]

. (81)

Here, the two constants can be calculated at a given time τc that is large enough
(τc ≫ |β/Ω̄|) in the form:

A = −CY2(|Ω̄|
√

γ + τ2
c ) −DY1(|Ω̄|

√

γ + τ2
c ) (82)

B = CJ2(|Ω̄|
√

γ + τ2
c ) +DJ1(|Ω̄|

√

γ + τ2
c ) ,

where we defined the new coefficients:

C =
π|Ω̄|(γ + τ2

c )

2
v̂x(τc) , (83)

D =
π(γ + τ2

c )3/2

2τc
v̂′x(τc) =

π
√

γ + τ2
c

2

[

Ω̄ (βv̂y(τc) − v̂z(τc)) − 2v̂x(τc)
]

.

Then, we can use the second equation of (58) to obtain the velocity in the
z-direction for large time (for τ ≫ |β/Ω̄|) as:

v̂z(τ) ∼ v̂z(τc) +
β

γ

[

τ v̂x(τ) − τcv̂x(τc)
]

+

∫ τ

τc

Ω̄ t v̂x(t) dt (84)

∼ v̂z(τc) −
β

γ

[

τ v̂x(τ) − τcv̂x(τc)
]

− χ

γ

[

AJ0(|Ω̄|
√

γ + t2) +BY0(|Ω̄|
√

γ + t2)
]τ

τc

.

Here, χ is the sign of Ω̄. equation (84) shows that the velocity in the z-direction
tends to approach a finite limit v̂z(+∞) as τ → +∞. To calculate this limit, we
need to calculate the term in large square brackets in equation (84) for t = τc.

30



In the following, we call this term E. Plugging equation (82) in the E, we obtain
the following:

E =

[

2C

|Ω̄|
√

γ + τ2
c

+D

]

2

π|Ω̄|(γ + τ2
c )

. (85)

Finally, using this result, we can obtain v̂z(+∞) as follows:

v̂z(+∞) = v̂z(τc) +
β

γ
τcv̂x(τc) +

χ

γ
E (86)

=
β

γ
[τcv̂x(τc) + v̂y(τc) + βv̂z(τc)] = 0 ,

because of incompressibility. Then, by incompressibility, v̂y → 0 when τ → +∞.

B Asymptotic expansion of integrals

In §4.3, we took a large shear limit(ξ ≪ 1) and obtain equation (70) for the
turbulence intensity, equation (73) for the transport of angular momentum, and
equation (76) for the transport of particles in terms of integrals involving Bessel
functions of an argument depending on the rotation. We here derive asymptotic
behaviour of these integrals to simplify our results.

B.1 Non Oscillating integrands

For non oscillating integrands, it is sufficient to put ξ = 0 in the integrals to
find the large shear limit (the resulting integral converges as ξ → 0). Here, we
provide asymptotic behaviour of the following integrals for small or large Ω0:

X1(k) =

∫ +∞

a

1

1 + τ2
[L0,1(t, τ)]

2
dτ , (87)

X2(k) =

∫ +∞

a

1

1 + τ2
[L11(a, τ)]

2
dτ ,

X5(k) =

∫ +∞

a

τ

1 + τ2
[L01(t, τ)]

2 dτ ,

X6(k) =

∫ +∞

a

τ

1 + τ2
[L11(a, τ)]

2
dτ .

Here Lnp’s are given by equation (68)

B.1.1 Small rotation limit (Ω0 ≪ 1)

To calculate X1 and X5, one can use the asymptotic expansion of the Bessel
functions and readily obtain:

X5 ∼ 4

π2Ω2
0

∫ ∞

a

dτ

(1 + τ2)2
=

2

π2Ω2
0

[

(π

2
− arctan(a)

)

− a

1 + a2

]

, (88)

X5 ∼ 4

π2Ω2
0

∫ ∞

a

τdτ

(γ + τ2)2
=

2

π2Ω2
0(1 + a2)

.
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If we apply the same strategy to the calculations of X2 and X6, the resulting
expression would not be integrable so we have to calculate it otherwise:

X3 ∼ 2

πΩ0

√
1 + a2

∫ ∞

a

J2
1 (Ω0

√
1 + τ2)

1 + τ2
dτ =

2

π
√

1 + a2

∫ ∞

Ω0a

J2
1 (
√

Ω2
0 + x2)

Ω2
0 + x2

dτ (89)

∼ 2

π
√

1 + a2

∫ ∞

0

J2
1 (x)

x2
∼ 8

3π2
√

1 + a2
,

X6 ∼ 2

πΩ0

√
1 + a2

∫ ∞

a

τJ2
1 (Ω0

√
1 + τ2)

1 + τ2
dτ ∼ 2

πΩ0

√
1 + a2

∫ ∞

0

J2
1 (x)

x
∼ 1

πΩ0

√
1 + a2

.

B.1.2 Large rotation limit (Ω0 ≫ 1)

Using the Bessel asymptotic behaviour for large argument, we obtain the fol-
lowing formula for the first integral:

X1 ∼ 4

π2Ω2
0

√
1 + a2

∫ +∞

a

cos2
[

Ω0{
√

1 + a2 −
√

1 + τ2}
]

(1 + τ2)3/2
dτ (90)

∼ 2

π2Ω2
0

√
1 + a2

∫ +∞

a

1

(1 + τ2)3/2
=

2

π2Ω2
0

√
1 + a2

(

1 − a√
1 + a2

)

,

ans similarly for the other three integrals. Finally, we obtain the following
asymptotic behaviour for the four integrals (87):

X1 ∼ X2 ∼ 2

π2Ω2
0

√
1 + a2

(

1 − a√
1 + a2

)

, (91)

X5 ∼ X6 ∼ 2

π2Ω2
0

1

1 + a2
.

B.2 Logarithmic divergence

As noticed in §4.3.1, there is a logarithmic divergence arising in the calculation
of X3 and X4. We here calculate this divergence in the case of a fast oscillation.
Following Kim (2005), we change the integration variable from τ to y = 2ξτ3/3,
replace the Bessel function by the expression valid for large argument (ξ ≪ 1),
and then obtain the following, to leading order in ξ:

X3(k1) =
2

πΩ0

∫ ∞

ξa3

dy
e−ydy

(3y)2/3(2ξ)1/3

√

1 +
(

3y
2ξ

)2/3
× (92)

{

cos
[

Ω0

√

1 +
(3y

2ξ

)2/3 − π

4

]

Y0[w(a)] − sin
[

Ω0

√

1 +
(3y

2ξ

)2/3 − π

4

]

J0[w(a)]
}2

.

We see that as ξ tends to zero, the integrand in equation (92) becomes propor-
tional to 1/y, giving a contribution of the order ln ξ.

In the large rotation limit (Ω0 ≫ 1), we replace the Bessel functions by their
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asymptotic behaviour to obtain:

X3 ∼ 4

π2Ω2
0

√
1 + a2

∫ ∞

ξa3

e−ydy

(3y)2/3(2ξ)1/3

sin2
[

Ω0

(√
1 + a2 −

√

1 +
(

y
ξ

)2/3)
]

√

1 +
(

3y
2ξ

)2/3
(93)

∼ 2

π2Ω2
0

√
1 + a2

∫ ∞

ξa3

1

3

e−ydy
√

(

2ξy2

3

)2/3

+ y2

∼ 2

π2Ω2
0

√
1 + a2

− ln ξ

3
,

to leading order in ξ ≪ 1. Following the same analysis, we find the same
asymptotic behaviour for X4.

B.3 Oscillating integrands

The calculation of the transport of particles involves the computation of double
integrals of the type:

P =

∫ +∞

a

dτe−2ξ[Q(τ)−Q(a)]F (τ)

∫ τ

a

F (t) dt , (94)

where the functions F contains an oscillating functions. We here derive the
asymptotic behaviour of this integral with F (t) = f(t) cos[Ω0φ(t)] and the phase
given by φ(t) =

√
1 + a2−

√
1 + t2. The difficulty associated with the calculation

of such integral is the presence of a point of stationary phase t = 0 where the
integral cannot be done with an integration by part.

For a > 0, the point of stationary phase is never reached and then, the first
integral can be approximated, for Ω0 ≫ 1, as:

I(τ) ≡
∫ τ

a

F (t) dt ∼ −
√

1 + τ2f(τ)

Ω0τ
sin[Ω0φ(τ)] . (95)

Using this approximation, P can be computed with the following result:

P ∼ f(a)2(1 + a2)

4[ξ(1 + a2)2 + Ω2
0a

2]
. (96)

Note that the result is the same as in the perpendicular case where the integral
defining the transport of particles does not involve any stationary point.

For a < 0, the behaviour of the integral I(τ) is affected by the stationary
point in the vicinity of τ = 0. We can however find an approximation as:

I(τ) ∼















−
√

1+τ2f(τ)
Ω0τ sin[Ω0φ(τ)] if τ ≤ − 1√

Ω0

,

I0 + cτ if |τ | < 1√
Ω0

,

2I0 −
√

1+τ2f(τ)
Ω0τ sin[Ω0φ(τ)] if τ ≥ 1√

Ω0

.

(97)

Here, I0 =
√

π/2Ω0f(0) cos [Ω0φ(0) − π/4] is the value given by the stationary
point and c = f(0) cos [Ω0φ(0)] is obtained by Taylor expanding I in the vicinity
of τ = 0. Figure 5 shows the numerical computation of the integral compared
to the approximation (97) and shows an excellent agreement. Using equation
(97), we obtain P as:

P ∼ f(a)2(1 + a2)

4[ξ(1 + a2)2 + Ω2
0a

2]
+ 2I2

0 . (98)
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Figure 5: Graph of the function I(τ) with our approximation (97). The pa-
rameters are a = −1 and Ω0 = 100.

The first contribution comes from the integration by part (and as the result is
odd in τ , the contributions from −1/

√
Ω0 and 1/

√
Ω0 cancel out). The second

contribution (of order Ω−1
0 ) comes from the stationary point. Both contributions

have to be kept as the first one can be important if |ω0a| ≪ 1.
For a = 0, the stationary point counts twice as less, so the approximation

becomes:

I(τ) ∼
{

cτ if 0 ≤ τ < 1√
Ω0

I0 −
√

1+τ2f(τ)
Ω0τ sin[Ω0φ(τ)] if τ ≥ 1√

Ω0

(99)

In that case, the contribution from the stationary point cancels out as I(0) = 0.
Therefore, for a = 0, the only contribution comes from the end point of the
integration and is the same as for a > 0 [see equation (96)].

Performing the same procedure when F (t) = f(t) sin[Ω0φ(t)], we obtain the
following result:

P ∼ − f(a)2(1 + a2)

4[ξ(1 + a2)2 + Ω2
0a

2]
+

f(a)2(1 + a2)

[4ξ(1 + a2)2 + Ω2
0a

2]
(100)

(

+
π

Ω0
f(0)2 sin2 [Ω0φ(0) − π/4]

)

, (101)

the second line being present only if a < 0 (i.e. when the point of stationary
phase is reached).
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