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Introduction

Physics is fundamentally divided in two parts. Mechanics, which includes classical, relativistic and quantum mechanics, is ruled by the least-action principle (LAP) and characterized by laws invariant by time reversal. Thermodynamics, on the other hand, can be entirely deduced from the maximum entropy principle (Maxent), and introduces a so-called "arrow of time". LAP is equivalent to Newton's law in classical mechanics, and can be used in relativistic and quantum mechanics with an adequate reformulation of the Lagrangian. It has been historically applied, from Fermat to Feynmann, with such success that today it is a fundamental principle of physics. It has never been, to our knowledge, deduced from more fundamental principles. On the other hand, Maxent is justified by the Bayesian rules of probability, and simply gives the most probable probability distribution according to given constraints. For instance, in equilibrium thermodynamics, Maxent proves that the average values of the extensive quantities used to describe the system (energy, volume, ...) are appropriate constraints. For an excellent summary of Maxent properties and their applications to thermodynamics, see [START_REF] Rc Dewar | Maximum entropy production and the fluctuation theorem[END_REF]. Since Maxent is a principle of logic, it can and has been successfully applied in many different fields, for example biology, economy or ecology [START_REF] Garbaczewski | INFORMATION -Is There Anything Where Nobody Looks[END_REF][3]. A mechanical system is defined by the values of a set of generalized coordinates at a given time. We make the hypothesis that these values, including time, are only known in average. Applying Maxent, we will logically deduce that the system will follow the Lagrangian laws of motion. LAP is a consequence of Maxent with appropriate constraints.

In the first section, a least information principle will be deduced from Maxent. This section does not involve physics and is entirely mathematical. In the second section, the least information principle will be applied to a mechanical system whose space and time coordinates are only known in average. The least information principle will appear to be, up to a multiplicative constant with dimension Action, the least action principle. A third section will be devoted to possible physical interpretations of this result, and to new questions that then naturally emerge.

The least information principle

In this section, a least information principle, similar in form to the least action principle, will be deduced from Maxent applied with linear constraints. Provided that time is one of the constrained quantities, the rate of information will satisfy the equations of Cauchy-Riemann.

The proof

Notations: we write a sequence (s i ) instead of (s 1 , s 2 , ..., s imax ). Two sequences using the same name of indice should have the same length. We write i instead of imax i=1 . A sequence using two indices is written (s i,j ) instead of (s 1,1 , ..., s 1,jmax , ..., s i,1 , ..., s i,jmax , ..., s imax,1 , ..., s imax,jmax ). Some numbers (A k,i ) are given once and for all, and will always be considered fixed. Some other numbers (A k ) are given and we wish to find the probability law (p i ) satisfying the constraints:

   i p i A k,i = A k f or all k i p i = 1 (1) 
Following Jaynes, we will choose the probability law which maximizes the information:

I = - i p i ln p i
Using Lagrange multipliers (α k ) (see demonstration in Annex 1), we obtain the standard results:

dI = k α k dA k (2) 
∂α k ∂A l = ∂α l ∂A k f or all k, l (3) 
Adding another constraint on a new variable t that the reader can conveniently consider as time, the system (1) then becomes:

         i p i A k,i = A k f or all k i p i t i = t i p i = 1 (4) 
Calling β the Lagrange multiplier of t, the results ( 2) and (3) become:

dI = k α k dA k + βdt ( 5 
)
∂α k ∂A l = ∂α l ∂A k f or all k, l ∂α k ∂t = ∂β ∂A k (6) 
The notation .

A k is an abbreviation for the exact differential dA k dt . Equation ( 5) can be written

dI = k α k . A k + β dt Let L((A k ), ( . A k ), t) = k α k . A k + β (7) 
We have:

dI = Ldt (8) 
We now prove our main result, which is that L satisfies the equations of Cauchy-Riemann. Since

∂ . A l ∂A k = 0 (but note that .
dA l dA k may be = 0), we have from equation ( 7)

∂L ∂A k = l ∂α l ∂A k . A l + ∂β ∂A k (9) 
The (α k ) are only functions of the (A k ) and t, ∂α l

∂ . A k = ∂β ∂ . A k
= 0 for all k, l. So we have:

∂L ∂ . A k = α k (10) 
and

d dt ∂L ∂ . A k = dα k dt = l ∂α k ∂A l . A l + ∂α k ∂t (11)
As a result of (6),

d dt ∂L ∂ . A k = l ∂α l ∂A k . A l + ∂β ∂A k
and, using (9), L satisfies the equations of Cauchy-Riemann:

d dt ∂L ∂ . A k = ∂L ∂A k f or all k (12)
As a consequence, the information

I = t 1 t 0 L(t)dt (13) 
is stationary. For any variations δA k (t) such that δA k (t 0 ) = δA k (t 1 ) = 0 for all k, we have δI = 0.

By analogy with LAP, this consequence will be subsequently referred as the "least information principle".

Conservation laws

From equations ( 11) and (12), we obtain

dα k dt = ∂L ∂A k f or all k (14)
One can also prove that (see demonstration in Annex 2)

dβ dt = ∂L ∂t (15) 
If L does not depend explicitly on a given A k , then the conjugate quantity α k does not vary with t. If L does not depend explicitly on time t, then the quantity β does not vary with t.

Degree of validity

Note that in this problem, there are no assumptions about the nature of the (A k ). In particular: -The (A k ) do not have to be frequency averages of the values (A k,i ) in an experiment. Neither do we need a notion of ensemble. We want to find a probability law which reflects our state of knowledge, not a property of some system.

-The (A k ) do not have to be extensive quantities (a thermodynamical concept not necessary for Maxent), neither do they need to scale together or have any other relationship.

Physical application

Let us consider a mechanical system whose state is defined by a set of independent coordinates (q k ). The motion of such a system can be described by a parameterized curve (q k (λ), t(λ)) in the ((q k ), t) space. We call such a curve a path. The system can potentially take many different paths from a given starting position (q k (0), t(0)). Let us denote by (i) the set of all these paths, and adopt, without loss of generality, a common parameter λ to describe all these paths. A given path i is then described by the k + 1 functions ((q k,i (λ)), t i (λ)).

We make the hypothesis that the observed path ((q k (λ)), t(λ)) is the average path of all the paths i, each one occurring with a probability p i . Mathematically:

         i p i q k,i (λ) = q k (λ) f or all k i p i t i (λ) = t(λ) i p i = 1
f or all λ

We now fix the parameter λ, and no longer write the dependence on λ. The Maxent distribution which satisfies the preceding constraints is the solution of system (4), with:

q k,i = A k,i q k = A k
Equations ( 7), ( 8), ( 14) and (15) become:

L((q k ), ( . q k ), t) = k α k . q k + β dI = k α k dq k + βdt = Ldt dα k dt = ∂L ∂q k f or all k dβ dt = ∂L ∂t (16)
We recognize the equations of Lagrangian mechanics: L being the Lagrangian, the (α k ) the generalized momentum, β the opposite of the Hamiltonian and I the action. But this can not be correct because, for instance, the dimension of action is Action = Energy × T ime while I is dimensionless. However, K being an appropriate constant of dimension Action, we recover all lagrangian mechanics with the following identifications:

K I = S action K α k = p k generalized momentum K β = -H -Hamiltonian K L = L Lagrangian which give L((q k ), ( . q k ), t) = k p k . q k -H dS = k p k dq k -Hdt = Ldt dp k dt = ∂L ∂q k f or all k d(-H) dt = ∂L ∂t (17) 
The least information principle becomes the least action principle. The action

S = t 1 t 0 L(t)dt
is stationary. For any variations δA k (t) such that δA k (t 0 ) = δA k (t 1 ) = 0 for all k, we have δS = 0.

Equations ( 14) and (15) become:

dp k dt = ∂L ∂q k f or all k d(-H) dt = ∂L ∂t
which is Noether's theorem [START_REF]Wikipedia: Noether's theorem[END_REF]. The generalized momentum is conserved if L does not explicitly depend on the associated generalized coordinate. Energy is conserved if L does not explicitly depend on time.

The relation between the Lagrangian L and the Hamiltonian H appears naturally in the Maxent formalism. However, while one is the Legendre transform of the other, they do not play roles similar to I and ln(Z). In fact, the partition function Z does not play any particular role in our description (the properties of ln(Z) mirror the properties of I [START_REF] Rc Dewar | Maximum entropy production and the fluctuation theorem[END_REF]), and it is the presence of time which induces the relation between L and H.

One can also note that, fundamentally, L satisfies the equations of Cauchy-Riemann because dI is an exact differential.

In the case of conservative forces, LAP is equivalent to Newton's law. This means that Laplace's equations could have emerge without any hint of Newton, if the work of Jaynes (1922-1998) had been known. Maxent as a fundamental physical principle certainly has epistemological implications.

For a given physical path, there is a constant K with dimension Action such that

K I = S action K α k = p k generalized momentum K β = -H -Hamiltonian K L = L Lagrangian
But nothing a priori prevents the value of K to be different in different experiments. One can not calculate the values of I and of the (α k ) for a given physical path, since the (q k,i ) are a priori unknown. However, the (q k,i ) could eventually be known using quantum mechanics (QM). To simplify, let us state that there is one single coordinate x. In QM, a system is defined by its wave function, which is a function of space and time ϕ(x, t). We can identify a path i of probability p i with the set of all (x, t) such that |ϕ(x, t)| 2 = p i (of course, to be rigorous, the discrete set of paths (i) first has to be replaced by a continuous set). Since the paths i are known, the (x i (λ)) and (t i (λ)) are also known if we can parameterize all these paths with a common parameter λ. Deducing the value of K rests an open question.

Feynmann's path integral formulation of QM [START_REF]Wikipedia: Path integral formulation[END_REF] offers similarities with our description. However, the two theories also present fundamental differences. In particular, Feynmann assigns equal probabilities to all paths, and does not average the action S, but the quantity e iS/h . A possible link has to be investigated.

An analogy between mechanics and thermodynamics has already been found [START_REF] Gaies | Analogy between mechanics and thermodynamics[END_REF]. It uses the formalism of differential forms, but the main results can be obtain using Maxent. This analogy comes fundamentally from the fact that Lagrangian mechanics and equilibrium thermodynamics can both be described by a set of linear constraints as has been shown in this paper.

The least action principle (LAP) is a consequence of Maxent, provided that the constraints concern the average coordinates and the average time of a mechanical system. The simplicity of the demonstration and the high degree of generality of Maxent explain why LAP is so general in mechanics. This demonstration of LAP sheds a new light on the relationship between thermodynamics and mechanics. It offers an opportunity to unify these two branches of physics, with Maxent as a common basis.

Annex 1

This annex demonstrates classical results about Maxent distributions [START_REF] Jaynes | Probability Theory: The Logic of Science[END_REF]. Some numbers (A k,i ) are given once and for all, and will always be considered fixed. Some other numbers (A k ) are given and we wish to find the probability law (p i ) satisfying the constraints:

   i p i A k,i = A k f or all k i p i = 1 (18) 
The Maxent principle consists of choosing the distribution (p i ) which maximizes the information

I = - i p i ln(p i )
Using the method of Lagrange multipliers, let

£ = I - k α k i p i A k,i -γ i p i
where (α k ) and γ are new variables called the Lagrange multipliers. The distribution (p i ) should satisfy

∂£ ∂p i = 0 = -ln(p i ) -1 - k α k A k,i -γ for all i Calling Z i = e - k α k A k,i Z = i Z i (19) 
we obtain

p i = Z i Z and -ln(p i ) = k α k A k,i + ln(Z) Therefore I = i p i (-ln(p i )) = k α k A k + ln(Z) (20) 
Differentiating (19), we obtain:

∂Z i ∂α k = -A k,i Z i = -A k,i p i Z ∂Z ∂α k = i ∂Z i ∂α k = -A k Z
that we write:

∂ ln(Z) ∂α k = -A k for all k (21) 
The (α k ) can be found by solving the k max equations of this last system. ln(Z) is an exact differential and can be written:

d(ln(Z)) = - k A k dα k
Using equation (20), we can now find an expression for dI. Since the quantities (A k ) are independent, ∂A k ∂A l = δ k,l (δ k,l is Kronecker symbol) and:

∂I ∂A l = k ∂α k ∂A l A k + α l + ∂ ln Z ∂A l
Since Z is a function of the α k ,

∂ ln Z ∂A l = k ∂ ln Z ∂α k ∂α k ∂A l
and using (21):

∂ ln Z ∂A l = k -A k ∂α k ∂A l
We finally obtain:

∂I ∂A k = α k for all k
I is a function of the (A k ):

dI = k α k dA k
dI is an exact differential:

∂ 2 S ∂A k ∂A l = ∂ 2 S ∂A l ∂A k therefore: ∂α k ∂A l = ∂α l ∂A k f or all k, l Annex 2
We have, by definition of L (equation ( 7)): 

β = L -
dβ dt = ∂L ∂t

  into account (14) and (10), we obtain (15):