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DISCRETIZATION OF THE COUPLED HEAT AND ELECTRICAL

DIFFUSION PROBLEMS BY THE FINITE ELEMENT AND THE FINITE

VOLUME METHODS

ABDALLAH BRADJI† AND RAPHAÈLE HERBIN⋆

Abstract. The modelling of the heat diffusion coupled with electrical diffusion yields a non-
linear system of elliptic equations. The ohmic losses which appear as a source term in the heat
diffusion equation is a nonlinear term which lies in L

1. A finite element scheme and a finite
volume scheme are considered for the discretization of the system; in both cases, we show that
the approximate solution obtained with the scheme converges, up to a subsequence, to a solution
of the coupled elliptic system.

1. Introduction

Let Ω be a bounded domain of R
d, d = 2 or 3, made up of a thermally and electrically conducting

material. It is well known that the diffusion of electricity in a resistive medium induces some
heating, known as ohmic losses. Such a situation arises for instance in the modelling of fuel cells,
see e.g. [22, 23] and references therein. Let φ denote the electrical potential, and κ the electrical
conductivity; then the ohmic losses may be written as κ∇φ · ∇φ. Since φ is the solution of a
diffusion equation, it is reasonable to seek φ in the space H1(Ω), so that ∇φ · ∇φ ∈ L1. Hence
the heat diffusion equation has a right hand–side in L1, and its analysis falls out of the usual
variational framework. Our aim in this paper is to study the convergence of approximate solutions
to the resulting coupled problem obtained with both a linear finite element method and a cell
centred finite volume scheme.

The theory of elliptic and parabolic equations with irregular right–hand–side goes back to the
pioneering work of G. Stampacchia [31], where solutions to the linear problem are defined by
duality. Later on, L. Boccardo, T. Gallouët and co-authors [4, 5, 6, 7] introduced the tools and
setting in which one may define solutions to such problems: these so-called entropy solutions [2]
were found to be equivalent to the so-called renormalized solutions of P.-L. Lions and F. Murat
[29], as well as to the solutions obtained by approximation, as defined by [14]. In the linear case,
all these solutions are also equivalent to those of Stampacchia.

Other solutions obtained by approximation were defined thanks to numerical schemes. They also
lead to the existence of a solution, but more importantly, they yield a constructive way to compute
approximate solutions of the problem. Convergence of the finite volume scheme was proven in
[26] for the Laplace equation with right–hand–side measure; the proof was generalized in [15] to
noncoercive convection diffusion problems. Convergence of the finite element scheme, with irregular
data, on bi-dimensional polygonal domains was proven for Delaunay triangular meshes in [24] and
in [9] for three–dimensional tetrahedral meshes under geometrical conditions. Error estimates may
be obtained using some some “suitable” negative Sobolev spaces as in [30] or interpolation error,
under regularity assumptions on the solution, as in [12, 9].

Key words and phrases. Nonlinear elliptic system, Diffusion equation, Finite element scheme, Finite volume
scheme, L

1-data, Ohmic losses.
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In the present work, we use some of the techniques introduced in the above references to prove
the convergence of both the finite volume and finite element methods for the approximation of
the above mentionned heat and electricity diffusion problem. The considered system of semilinear
elliptic partial differential equations is such that the right-hand-side of the second equation depends
on the solution of the first one and is in L1. The paper is organized as follows: in section 2, we
present the continuous problem, its weak form and the known result about existence [25]. In
section 3, we describe the finite volume and finite element methods for the approximation of the
system and prove the existence of a solution to the resulting discrete system for both cases. The
convergence of the finite element scheme is proven in section 4, and the convergence of the finite
volume scheme in section 5. In both cases, the proof of convergence is based on a priori estimates,
compactness result and a passage to the limit in the scheme. Some conclusions and perspectives
are drawn in the last section.

2. The continuous problem

We wish to find some numerical approximation of solutions to the following nonlinear coupled
elliptic system, which models the thermal and electrical diffusion in a material subject to ohmic
losses:

−∇ · (κ(x, u(x))∇φ(x)) = f(x, u(x)), x ∈ Ω, (1)

φ(x) = 0, x ∈ ∂Ω, (2)

−∇ · (λ(x, u(x))∇u(x)) = κ(x, u(x))|∇φ|2(x), x ∈ Ω, (3)

u(x) = 0, x ∈ ∂Ω, (4)

where Ω is a convex polygonal open subset of R
d, d = 2 or 3, with boundary ∂Ω, φ denotes the

electrical potential and u the temperature; the electrical conductivity κ, the thermal conductivity
λ and the source term f are functions from Ω × R to R satisfying the following Assumptions:

Assumption 1. The functions κ, λ and f , defined from Ω ×R to R, are bounded and continuous
with respect to y ∈ R for a.e. x ∈ Ω, and measurable with respect to x ∈ Ω for any y ∈ Ω, and
such that:

∃α > 0; α ≤ κ(x, y) and α ≤ λ(x, y), ∀y ∈ R, for a.e. x ∈ Ω. (5)

The following existence result was proven in [25]:

Theorem 2.1. Under Assumption 1, there exists a solution to the following weak form of Problem
(1)– (4):























(φ, u) ∈ H1
0 (Ω) × ∩p< d

d−1
W

1,p
0 (Ω),

∫

Ω

κ(·, u)∇φ · ∇ψ dx =

∫

Ω

f(·, u)ψ dx, ∀ψ ∈ H1
0 (Ω)

∫

Ω

λ(·, u)∇u · ∇v dx =

∫

Ω

κ(·, u)|∇φ|2v dx, ∀v ∈ ∪r>dW
1,r
0 (Ω).

(6)

Note that the exponents d
d−1 and d are conjugate, and that, for r > d the space W 1,r

0 (Ω) is

continuously imbedded in the space C(Ω,R); therefore all terms in (6) make sense. In the case

d = 2, we have u ∈ W
1,p
0 (Ω) for all p < 2, but in general, u 6∈ H1

0 (Ω). Similarly, if d = 3,

u ∈W
1,p
0 (Ω) for all p < 3

2 .

The proof of this theorem relies mainly on the analysis tools which were developped for the
analysis of elliptic equations with irregular right–hand–side, see for instance [4] or [6]. We shall
not need to assume this existence result for our present analysis. Indeed, the existence of a solution
to (1)–(4) is obtained as a by–product of the convergence of the scheme. Nevertheless, a large part
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of the convergence analysis of the schemes is inspired from the ideas developed in [25] for the
existence result, and we shall again use the ideas of [4] and [7] in our proofs.

3. The discretization schemes

In [23], the numerical simulation of solid oxide fuel cells led to a mathematical model involving
a set of semilinear partial differential equations, the unknowns of which were the temperature, the
electrical potential and the concentrations of various chemical species in the porous media of the
cell. System (1)–(4) is a sub–problem of this latter model, obtained by leaving out the chemical
species diffusion equations. In [23], three different discretization schemes were implemented and
compared, namely the linear finite element method, the mixed finite element method, and the cell
centred finite volume method. Because of interface conditions involving the electrical current [28],
a precise approximation of the electrical flux is needed at the interfaces, the linear finite element
method was found to be less adapted than the two latter methods, so that finally the mixed
finite element method and the cell centred finite volume method were numerically compared. The
cell centred finite volume method was found to be easier to implement and comparable to the
mixed finite element method as to the ratio precision vs. computing time, so that it was finally
chosen for the simulations of different geometries of fuel cells [22]. Here we shall give a theoretical
justification of the convergence of both the linear finite element method and the cell centred finite
volume method for the discretization of system (1)–(4). Let us first start by introducing the finite
element scheme.

3.1. The finite element scheme. Let M denote a finite element mesh of Ω, consisting of sim-
plices and satisfying the usual conditions, see e.g. [10, p. 61], that is:

Definition 1 (Finite element mesh). Let M be a set of open triangular (in two space dimensions)
or tetrahedral (in three space dimensions) subsets of Ω such that:

• Ω =
⋃

T∈M T .

• For any (T, T ′) ∈ M2, T 6= T ′ =⇒ T ∩ T ′ = ∅.

• For any (T, T ′) ∈ M2, T ∩T
′
= ∅ or T ∩T

′
is an edge (or a face in three space dimensions)

of T and T ′.

We define the mesh size of M by hM = sup{diam(T ), T ∈ M}, where diam(T ) denotes the
diameter of T .

The set of vertices xi of the finite element mesh is indexed by V = I ∪ B, where I (resp. B)
refers to the interior (resp. boundary) vertices, namely the vertices laying in Ω (resp. on ∂Ω). For
any i ∈ V let ξi be the basis function associated with the vertex xi, defined by:

{

ξi ∈ C(Ω), ξi|T ∈ P1 for all T ∈ M,

ξi(xi) = 1, ξi(xj) = 0, ∀j ∈ V such that j 6= i,

where P1 is the set of affine functions. Let us then consider the linear finite element space spanned
by the basis functions (ξi)i∈I :

VM
0 = {u ∈ C(Ω);u|T ∈ P1 for all T ∈ M and u = 0 on ∂Ω}, (7)
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A finite element approximation of (1)-(4) may then be given by:


































Find (uM, φM) ∈ VM
0 × VM

0 such that :

∫

Ω

κ(·, uM)∇φM · ∇ψ dx =

∫

Ω

f(·, uM)ψ dx, ∀ψ ∈ VM
0 ,

∫

Ω

λ(·, uM)∇uM · ∇v dx =

∫

Ω

κ(·, uM)|∇φM|2v dx, ∀v ∈ VM
0 .

(8)

To prove the convergence of the finite element scheme (8), we need the following assumption on
the mesh M, which are also required for the discrete maximum principle to hold, see e.g. [10, p.
148].

Assumption 2. Let M be a simplicial finite element mesh in the sense of Definition 1. We
assume that for all uM ∈ VM

0 ,

θλi,j(uM) = −

∫

Ω

λ(·, uM)∇ξi · ∇ξj dx ≥ 0, ∀(i, j) ∈ I × V such that i 6= j, (9)

In the case of the Laplace operator (i.e. λ(·, uM) ≡ 1), it is well known (see e.g. [9]) that in two
space dimensions, Assumption 2 is equivalent to the fact that M is Delaunay, i.e. for every edge
[xixj ] of the triangulation such that [xixj ] 6⊂ ∂Ω, the sum of the two opposite angles facing [xixj ]
is less or equal π. In three space dimensions, this condition holds if every inner dihedral angle of
every tetrahedron is acute; however, there is to our knowledge no constructive way yet known to
build such meshes [3, 16].

Remark 3.1. Note that the condition (9) of Assumption 2 maybe replaced by condition (1.14) of
[9], which we recall (abbreviating θλi,j(uM) to θi,j for notational convenience):

∀i ∈ I, θi,i +
∑

j∈I

j 6=i

|θi,j | ≤ 0. (10)

It is easily seen that (9) implies (10). Indeed, let i ∈ I, thanks to the fact that
∑

j∈V ξj = 1, we get

that θi,i = −
∑

j∈V,j 6=i θi,j ; using assumption (9), we then get that θi,i ≤ −
∑

j∈V,j 6=i |θi,j | which

implies (10).

Now let IB denote the set of interior nodes which are neighbours to the boundary nodes; let us
show that if condition (10) is satisfied, then condition (9) holds for any (i, j) ∈ V × V \ IB × IB.
Indeed, if i (resp. j) ∈ V \ IB, then θi,k (resp. θj,k) = 0, and therefore:

∑

j∈I

j 6=i

|θi,j | =
∑

j∈V

j 6=i

|θi,j | ≥
∑

j∈V

j 6=i

θi,j = −θi,i.

Hence we get that

θi,i +
∑

j∈I

j 6=i

|θi,j | ≥ 0,

with equality if and only if θi,j ≥ 0 for all j ∈ I, which shows that this latter condition must hold
in order for (10) to hold.

Hence condition (9) (which is the usual condition for the so called discrete maximum principle,
see e.g. [11]) is slightly stronger than (10). Nevertheless, we prefer to use (9) for which some
constructive characterizations are known.
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3.2. A cell centred finite volume scheme. To define a finite volume approximation, we intro-
duce an admissible mesh T in the sense of [17, Definition 9.1 page 762], which we recall here for
the sake of completeness:

Definition 2 (Admissible meshes). Let Ω be an open bounded polygonal subset of R
d, d = 2 or 3.

An admissible finite volume mesh of Ω, denoted by T , is given by a family of “control volumes”,
which are open polygonal convex subsets of Ω , a family of subsets of Ω contained in hyperplanes of
R
d, denoted by E (these are the edges in two space dimensions, or faces in three space dimensions,

of the control volumes), with strictly positive (d− 1)-dimensional measure, and a family (xK)K∈T

of points of Ω satisfying the following properties:

(i) The closure of the union of all the control volumes is Ω.

(ii) For any K ∈ T , there exists a subset EK of E such that ∂K = K \K = ∪σ∈EK
σ. Further-

more, E = ∪K∈T EK .

(iii) For any (K,L) ∈ T 2 with K 6= L, either the (d − 1)-dimensional Lebesgue measure of
K ∩ L is 0 or K ∩ L = σ for some σ ∈ E, which will then be denoted by K|L.

(iv) The family of points (xK)K∈T is such that xK ∈ K (for all K ∈ T ) and, if σ = K|L, it is
assumed that xK 6= xL, and that the straight line going through xK and xL is orthogonal
to K|L.

An example of two cells of such a mesh is given in Figure 1, along with some notations.

dK,σ

DK,σ

xL
dKL

xK

m(σ)

K|LL
K

Figure 1. Notations for a control volume K in the case d = 2

Item (iv) of the above Definition will be referred to in the sequel as the “orthogonality property”.

We refer to [17] for a description of such admissible meshes, which include triangular meshes,
rectangular meshes, or Voronöı meshes. Here, for the sake of simplicity, we assume that the points
xK ∈ K.
The finite volume approximations φT and uT of φ and u solution to (6) are sought in the space
X(T ) of functions from Ω to R which are constant over each control volume of the mesh, that is:

X(T ) = {u ∈ L2(Ω);u|K ∈ P0 for all K ∈ T }, (11)

where P0 denotes the set of constant functions.
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Remark 3.2. Any element uT ∈ X(T ) can be written as: uT =
∑

K∈T uK1K , where 1K(x) = 1
if x ∈ K and 1K(x) = 0 otherwise, and uK denotes the value taken by uT on the control volume
K. We shall naturally identify the set R

Card(T ) to X(T ) and then we can write uT = (uK)K∈T .

The finite volume scheme is classically obtained from the balance form of Equations (1) and (3)
on a control volume K, that is:

−

∫

∂K

κ(·, u)∇φ · nK dγ(x) =

∫

K

f(·, u)dx (12)

−

∫

∂K

λ(·, u)∇u · nK dγ(x) =

∫

K

κ(·, u)|∇φ|2dx, (13)

where nK denotes the unit normal vector to ∂K outward to K and dγ(x) is the integration
symbol for the (d− 1)- dimensional Lebesgue measure. Let EK denote the set of edges or faces of
∂K, decomposing the boundary of K into edges or faces, ∂K = ∪σ∈EK

σ, we may rewrite (12)-(13)
as:

−
∑

σ∈EK

∫

σ

κ(·, u)∇φ · nK,σ dγ(x) =

∫

K

f(·, u)dx (14)

−
∑

σ∈EK

∫

σ

λ(·, u)∇u · nK,σ dγ(x) =

∫

K

κ(·, u)|∇φ|2dx, (15)

where nK,σ denotes the normal unit vector to σ outward to K. Let us write the sought approxi-
mations as φT =

∑

K∈T φK1K and uT =
∑

K∈T uK1K (see Remark 3.2); we then set

fK(uK) =
1

m(K)

∫

K

f(x, uK) dx. (16)

Let E denote the set of edges (or faces in 3D) of the mesh, and Eint (resp. Eext) the set of edges
laying in Ω (resp. on ∂Ω). For σ ∈ E , let F κK,σ(φT ) (resp. FλK,σ) be an approximation of the

flux
∫

σ
κ(x, u(x))∇φ(x) · nK,σdγ(x) (resp.

∫

σ
λ(x, u(x))∇u(x) · nK,σdγ(x)) , and let JK(uT , φT )

denote an approximation of the nonlinear right-hand-side 1
m(K)

∫

K
κ(x, u(x))|∇φ|2(x)dx. With

these notations, a finite volume approximation may then be written under the form:














∑

σ∈EK

FκK,σ(φT ) = m(K)fK(uK), ∀K ∈ T ,

∑

σ∈EK

FλK,σ(uT ) = m(K)JK(uT , φT ), ∀K ∈ T ,
(17)

provided one defines the expressions FκK,σ(φT ), FλK,σ(uT ) and JK(uT , φT ) with respect to the

discrete unknowns (φK)K∈T and (uK)K∈T . The discrete fluxes are given by the classical two–
points formula:

FκK,σ(φT ) =

{

m(σ)τκσ (uT )(φK − φL) if σ ∈ Eint, σ = K|L,
m(σ)τκσ (uT )φK if σ ∈ EK ∩ Eext,

(18)

FλK,σ(uT ) =

{

m(σ)τλσ (uT )(uK − uL) if σ ∈ Eint, σ = K|L,
m(σ)τλσ (uT )(uK) if σ ∈ EK ∩ Eext,

(19)
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where τκσ (and, similarly τλσ ) is defined through a harmonic average, that is:

τκσ (uT ) =















κK(uK)κL(uL)

dK,σκL(uL) + dL,σκK(uK)
if σ ∈ Eint, σ = K|L,

κK(uK)

dK,σ
if σ ∈ Eext ∩ EK ,

(20)

where the values κK(uK) and λK(uK) are defined by (16), replacing f by κ or λ.
The term JK(uT , φT ) is defined as:

JK(uT , φT ) =
1

m(K)

∑

σ∈EK

m(DK,σ)Jσ(uT , φT ), (21)

where, for K ∈ T and σ ∈ EK , we define the half dual cell DK,σ as the convex hull of xK and σ

(see Figure 1), that is:

DK,σ = {txK + (1 − t)x, (x, t) ∈ σ × (0, 1)},

and

Jσ(uT , φT ) =
τκσ (uT )

dσ
(Dσφ)2d, (22)

with

Dσφ =

{

|φK − φL| if σ ∈ Eint, σ = K|L,
|φK | if σ ∈ Eext

(23)

We show in Theorem 3.1 below the existence of (φK)K∈T and (uK)K∈T solution to (17)–(22).
This entitles us to define the functions φT and uT ∈ X(T ) with respective values φK and uK on
cell K, along with the function JT (uT , φT ) ∈ X(T ) with value JK(uT , φT ) on cell K.

Remark 3.3 (Relation between the finite volume scheme (17)–(22) and the finite volume scheme
of [23]). The above finite volume scheme may be seen as slight modification of a scheme which
was first introduced in [23]; this scheme was based on the following integration by parts of the
right-hand-side of equation (3):

∫

K

κ(·, u)|∇φ|2dx =

∫

∂K

κ(·, u)∇φ · nKφd γ(x) −

∫

K

∇(κ(·, u)∇φ)φdx

=

∫

∂K

κ(·, u)∇φ · nKφd γ(x) +

∫

K

f(·, u)φdx,

where nK denotes the unit vector normal to ∂K, outward to K. This formulation suggests the
following approximation J̃K(uT , φT ) to 1

m(K)

∫

K
κ(·, u)|∇φ|2d x:

J̃K(uT , φT ) = fK(uK)φK −
1

m(K)

∑

σ∈EK

FκK,σ(φT )φσ, (24)

where FκK,σ(φT ) is defined by (18), fK(uK) is defined by (16), and φσ is an auxiliary value of
φT on the interface, which may be eliminated:

κK(uK)
φσ − φK

dK,σ
+ κL(uL)

φσ − φL

dL,σ
= 0, ∀σ = K|L, and φσ = 0, ∀σ ∈ Eext. (25)

An easy computation shows that in fact,

J̃K(uT , φT ) =
1

m(K)

∑

σ∈EK

m(DK,σ)J̃σ(φT ),



8 BRADJI AND HERBIN

with

J̃σ(φT ) =
τκσ (uT )

dσ
µK,σ(Dσφ)2d and µK,σ =

κL(uL)dσ
κL(uL)dK,σ + κK(uK)dL,σ

.

Therefore, J̃K(uT , φT ) = JK(uT , φT ) in the case of a homogeneous coefficient κ.

We show in Theorem 3.1 below the existence of (φK)K∈T and (uK)K∈T solution to (17)–(22).
This entitles us to define the functions φT and uT ∈ X(T ) with respective values φK and uK on
cell K, along with the function JT (uT , φT ) ∈ X(T ) with value JK(uT , φT ) on cell K.

3.3. Existence of a discrete solution. To prove the existence of a finite element solution
(φM, uM) to the Problem (8) and a finite volume solution (φT , uT ) to the Problem (17)-(22),
we use Brouwer’s theorem.

Theorem 3.1. Let (κ, λ, f) be three functions satisfying the Assumption 1.

1. Let M be a finite element simplicial mesh satisfying Assumption 2, and VM
0 be the linear

finite element space defined by (7). Then there exists at least a solution (uM, φM) ∈ (VM
0 )2

to the problem (8).

2. Let T be an admissible mesh in the sense of Definition 2. Let X(T ) be the finite volume
space defined by (11). Then there exists at least a solution (uT , φT ) ∈ (X(T ))2 to the
Problem (17)–(22).

Proof. The proof is based on the fixed point theorem. In fact, the existence of a solution to (6) was
proven in [25] using Schauder’s fixed point theorem; here, since the spaces are finite–dimensional,
we need only use Brouwer’s theorem. The proof is a rather easy adaptation of that of [25] and we
only outline it.

1. For uM ∈ V 0
M, let ūM = FM(uM) be the unique solution (thanks to the Lax-Milgram

lemma) to
∫

Ω

λ(x, uM(x))∇ūM(x) · ∇v(x) dx =

∫

Ω

κ(x, uM(x))|∇φM |2(x)v(x) dx, ∀v ∈ VM
0 ,

where φM ∈ VM
0 is the unique solution to:

∫

Ω

κ(x, uM(x))∇φM(x) · ∇ψM(x) dx =

∫

Ω

f(x, uM(x))ψM(x) dx, ∀ψM ∈ VM
0 . (26)

2. For uT ∈ X(T ), let ūT = FT (uT ) be the unique solution (thanks to the classical techniques
of [17]) to

∑

σ∈EK

τλ(uT )
σ (ūL − ūK) =

∑

σ∈EK

m(DK,σ)τ
κ(uT )
σ

(φL − φK)2

dK|L
d, ∀K ∈ T ,

where τ
λ(uT )
σ and τ

κ(uT )
σ are defined by (20), (Note that we have denoted σ = K|L if

σ ∈ Eint and if σ ∈ Eext∩EK , (ūL, φL) = (0, 0).), and let φT ∈ X(T ) be the unique solution
to:

∑

σ∈EK

τκ(uT )
σ (φL − φK) = m(K)fK , ∀K ∈ T . (27)



DISCRETIZATION OF OHMIC LOSSES 9

It is clear that if uM = FM(uM) (resp. uT = FT (uT )) then (uM, φM) (resp. (uT , φT )) is a
solution to (8) (resp. (17)-(21)), where φM (resp. φT ) is defined by (26) (resp. (27)).

We then remark that, thanks to Assumption 1, the mappings FM and FT map the spaces V 0
M

and X(T ) into a closed ball, and that they are continuous. Hence we may apply Brouwer’s theorem
which implies the existence of a solution to both schemes.

�

4. Convergence of the Finite Element Approximation

Let us start with the following easy result, which we shall use in the convergence proof:

Lemma 4.1. Under Assumption 1, let M be a finite element mesh in the sense of Definition 1.
Let uM =

∑

i∈I uiξi and vM =
∑

i∈I viξi be some functions of VM
0 ; then:

∫

Ω

λ(·, uM)∇uM · ∇vM dx =
∑

(i,j)∈V2

θλi,j(uM)(ui − uj)(vi − vj), (28)

where θλi,j(uM) is defined in (9). Of course, the same equality is true replacing λ by κ.

Proof. By definition of uM, vM and θλi,j(uM), one has:
∫

Ω

λ(·, uM)∇uM · ∇vM = −
∑

i∈I

∑

j∈I

θλi,j(uM)uivj .

Since
∑

j∈V θ
λ
i,j(uM) = 0 and ui = vj = 0, for all (i, j) ∈ B2, we obtain:

∫

Ω

λ(·, uM)∇uM · ∇vM = −
∑

i∈V

∑

j∈V

θλi,j(uM)ui(vj − vi).

Reordering the summations on i, j as a summation on the pairs (i, j), we then get that:
∫

Ω

λ(·, uM)∇uM · ∇vM =
∑

(i,j)∈V2

θλi,j(uM)(ui − uj)(vi − vj), (29)

which proves the Lemma. �

Let us define the usual interpolation operator:

Definition 3 (Finite element interpolator). Let M be a simplicial finite element mesh of Ω in the
sense of Definition 1. The interpolation operator into the finite element space VM

0 is defined by:

ΠMu =
∑

i∈I

u(xi)ξi,

for any u ∈ C(Ω) such that u = 0 on ∂Ω. Note that for any u ∈ C(Ω) such that u = 0 on ∂Ω, one
has:

‖ΠMu‖L∞(Ω) ≤ ‖u‖L∞(Ω). (30)

Lemma 4.2. Under Assumption 1, let M be a finite element mesh satisfying Assumption 2. Let
(φM, uM) be a solution of (17)-(21). Then the the following estimates hold:

‖∇φM‖L2(Ω) ≤ C1 (31)

‖κ(·, uM)∇φM · ∇φM‖L1(Ω) ≤ C2, (32)
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where

C1 =
Cp

α
‖f‖0,Ω,

and

C2 = C2
1‖κ‖L∞(Ω×R,R),

and Cp is the Poincaré’s constant.
Let ψ ∈ L∞(R) be an absolutely increasing continuous (that is almost everywhere derivable and

integral of its derivative). Define Ψ(s) =
∫ s

0

√

ψ′(t)dt. Then the following estimate holds:

‖∇ΠMΨ(uM)‖L2(Ω) ≤
C2

α
‖ψ‖∞, (33)

where the interpolation ΠM is defined in Definition 3.

Proof. Estimate (31) is clearly obtained by taking φM as a test function in the first equation of
(8). Using the fact that κ is bounded, one immediately gets (32).

Finally, noting that ΠMψ(uM) ∈ VM
0 , where ΠM is defined in Definition 3, we may take it as

a test function in the second equation of (8), which yields:
∫

Ω

λ(x, uM(x))∇uM(x) · ∇ΠM(uM)(x) dx =

∫

Ω

κ(x, uM(x))|∇φM|2(x)ΠMψ(uM)(x) dx.

Noting that ΠMψ(uM) =
∑

i∈I ψ(ui)ξi, where ui = u(xi) for any i ∈ I, and applying Lemma 4.1
yields

∑

(i,j)∈V2

θλi,j(uM)(ui − uj)(ψ(ui) − ψ(uj)) =

∫

Ω

κ(x, uM(x))|∇φM|2(x)ΠMψ(uM)(x) dx.

Now since ψ ∈ L∞(R), we get from (32) and (30) that
∑

(i,j)∈V2

θλi,j(uM)(ui − uj)(ψ(ui) − ψ(uj)) ≤ C2‖ψ‖L∞(R)

Now by the Cauchy–Schwarz inequality, we have:

(Ψ(a) − Ψ(b))2 ≤ (a− b)(ψ(a) − ψ(b)), ∀(a, b) ∈ R
2,

and therefore, since θλi,j(uM) ≥ 0 for any (i, j) ∈ I × V such that i 6= j (thanks to Assumption 2),

and Ψ(ui) = Ψ(uj) = 0, for all (i, j) ∈ B2, we get that:
∑

(i,j)∈V2

θλi,j(uM)(Ψ(ui) − Ψ(uj))
2 ≤ C2‖ψ‖L∞(R)

Applying Lemma 4.1 once more, we finally get that:
∫

Ω

λ(·, u)|∇ΠMΨ(u)|2 ≤ C2‖ψ‖L∞(R) (34)

which concludes the proof of the Lemma, since λ is bounded by below. �

¿From the above Lemma, one deduces that (33) is true for the function ψ defined by ψ(s) =
∫ s

0
dt

1+|t|θ for some given θ > 1; hence if one could get rid of the interpolator ΠM in (33), then one

could apply the result of [7] to get that uM is bounded in W
1,q
0 (Ω). However, this does not seem

straightforward in general; hence, in order to get some compactness, one may adapt the technique
of [4], as performed in [9, Theorem 3.1] to show that (33) implies that uM is bounded in W 1,q

0 (Ω).
¿From this compactness result, we get the convergence Theorem 4.1 (given below).
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Remark 4.1. In the two dimensional case, under the assumption that the mesh M satisfies
Delaunay and “non degeneracy” conditions (see [24]), it is possible to prove that uM is bounded in

W
1,q
0 (Ω) by using finite volume techniques.

4.1. Convergence result.

Theorem 4.1. Let Ω be a convex polygonal open subset of R
d, d = 2 or 3, and κ, λ and f be three

functions satisfying Assumption 1. Let (Mn)n∈N be a sequence of finite element simplicial meshes
satisfying Assumption 2, such that hMn

→ 0, as n → ∞. Then, there exists a subsequence, still
denoted by (Mn)n∈N and a solution (φMn

, uMn
) to (8), such that (φMn

, uMn
) converges to a weak

solution (φ, u) ∈ H1
0 (Ω) × ∩p< d

d−1
W

1,p
0 (Ω) of (6), in the following sense:

1. φMn
converges to φ in H1

0 (Ω) as n→ +∞.

2. uMn
converges to u weakly in W

1,p
0 (Ω), for all p ∈ [1, d

d−1 ).

Furthermore,

κ(·,Mn
)∇φMn

· ∇φMn
→ κ(·, u)∇φ · ∇φ in L1(Ω) as n→ +∞. (35)

Proof. Let ψ and v be two functions in C∞
c (Ω) (that is the space of infinitely differentiable functions,

with compact support on Ω). Let ψn = ΠMn
ψ and vn = ΠMn

v, (see Definition 3). Since

ψn ∈ VMn

0 and vn ∈ VMn

0 , we may take them as test functions in (8) (for M = Mn). Hence φn
and un satisfy:











∫

Ω

κ(·, un)∇φn · ∇ψn dx =

∫

Ω

f(·, un)ψn dx,
∫

Ω

λ(·, un)∇un · ∇vn dx =

∫

Ω

κ(·, un)|∇φn|
2vn dx.

(36)

¿From Estimate (31), we get by Rellich’s theorem that φn tends (up to a subsequence) to some
function φ ∈ H1

0 (Ω) in L2(Ω) as n → +∞. ¿From estimate (33) and Theorem 3.1 of [9], we

get that un tends (up to a subsequence) to some function u ∈ W
1,q
0 (Ω) weakly in W

1,q
0 (Ω) as

n → +∞. Furthermore, ψn → ψ and vn → v in W 1,∞(Ω), as n → +∞. Thanks to Assumption
1, κ and f are bounded, so that, by the Lebesgue dominated theorem, up to a subsequence,
κ(·, un)∇ψn → κ(·, u)∇ψ in L2(Ω), and f(·, un)ψn → f(·, u)ψ in L1(Ω), as n → +∞ (these two
previous convergences also hold in Lp(Ω), for any p ∈ [1,∞)). We may therefore pass to the limit
in the first equation of (36), to obtain that u and φ satisfy:

∫

Ω

κ(·, u)∇φ · ∇ψ dx =

∫

Ω

f(·, u)ψ dx. (37)

Since ψ is arbitrary in (37), then, thanks to the density of C∞
c (Ω) in H1

0 (Ω), we get
∫

Ω

κ(·, u)∇φ · ∇ψ dx =

∫

Ω

f(·, u)ψ dx, ∀ψ ∈ H1
0 (Ω). (38)

Now, by Assumption 1, κ is bounded by below, and we get that:

α

∫

Ω

|∇(φn − φ)|2 dx ≤

∫

Ω

κ(·, un)∇(φn − φ) · ∇(φn − φ) dx = T
n
1 + T

n
2 + T

n
3 , (39)

with:

T
n
1 =

∫

Ω

κ(·, un)∇φn · ∇φn dx,

T
n
2 = −2

∫

Ω

κ(·, un)∇φn · ∇φdx,
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and

T
n
3 =

∫

Ω

κ(·, un)∇φ · ∇φdx.

Since (φn, un) is a solution to (8), one could take φn as a test function in the first equation of (8):

T
n
1 =

∫

Ω

f(·, un)φn dx→

∫

Ω

f(·, u)φdx, as n→ +∞. (40)

Hence, since φ and u satisfy (38), the previous limit becomes as:

T
n
1 →

∫

Ω

κ(·, u)∇φ · ∇φdx, as n→ +∞. (41)

Furthermore, by Lebesgue’s theorem, κ(·, un)∇φ → κ(·, u)∇φ in (L2(Ω))2; since ∇φn → ∇φ
weakly in L2(Ω), one gets that

T
n
2 → −2

∫

Ω

κ(·, u)∇φ · ∇φdx, as n→ +∞. (42)

It is then clear that we also have T
n
3 →

∫

Ω
κ(·, u)∇φ · ∇φdx as n→ +∞, this with (39), (41) and

(42) imply that φn tends to φ in H1
0 (Ω) as n→ +∞. We then immediately obtain (35).

Let us then pass to the limit in the second equation of (36) to show that (φ, u) is a solution to
(6). ¿From (35), we immediately get that:

∫

Ω

κ(·, un)|∇φn|
2vn dx→

∫

Ω

κ(·, u)|∇φ|2v dx. (43)

Since un converges to u weakly in W
1,p
0 (Ω), again using the Lebesgue theorem, we may pass to

the limit (up to a subsequence) in the left–hand–side of the second equation of (36) and using (43)
obtain that:

∫

Ω

λ(·, u)∇u · ∇v dx =

∫

Ω

κ(·, u)|∇φ|2v dx.

This conludes the proof of Theorem 4.1. �

Remark 4.2. Note that our convergence result does not require the usual regularity condition on
the mesh which assumes that the ratio supT∈M

hT

ρT
, where hT and ρT are respectively the diameter

of T and the diameter of the ball inscribed in T , be bounded independently on the mesh. This is due
to the fact that in the proof, we pass to the limit directly in the scheme, without using the classical
finite element error estimates which are known in the variational setting. However, this condition
is required in order to obtain error estimates by interpolation, see [12, 9].

5. Convergence of the finite volume approximation

5.1. The convergence result. In this section, we shall prove that a solution of (17)-(22) con-
verges, as hT = sup{diam(K),K ∈ T } tends to 0, towards a solution of (6), as stated in the
following theorem:

Theorem 5.1. Under Assumption 1, let (Tn)n∈N be a sequence of admissible meshes in the sense
of Definition 2. Let (φn, un) be a solution of the system (17)–(22) for T = Tn, and let J n(un, φn)
be defined by (21). Assume that hn = sup{diam(K),K ∈ Tn} → 0, as n → ∞, and that there
exists ζ > 0 (not depending on n), such that:

dσ ≤ ζdK,σ, ∀σ ∈ En, ∀K ∈ Tn. (44)
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Then, there exists a subsequence of (Tn)n∈N, still denoted by (Tn)n∈N, such that (φn, un) converges

to a solution (φ, u) ∈ H1
0 (Ω) × ∩q< d

d−1
W

1,q
0 (Ω) of (6), as n→ ∞, in the following sense:

‖φn − φ‖L2(Ω) → 0, as n→ +∞, (45)

‖un − u‖Lp(Ω) → 0, as n→ +∞, for all p <
d

d− 2
. (46)

Moreover,
∫

Ω

J n(un, φn)(x) dx→

∫

Ω

κ(x, u(x))|∇φ|2(x) dx as n→ +∞. (47)

Proof. For the sake of clarity, we only list here the main steps of the proof and refer to the lemmata
proven below for the details.

Let (φn)n∈N ⊂ L2(Ω) and (un)n∈N ⊂ L2(Ω) be such that, for any n ∈ N, the pair (φn, un) ∈
(X(Tn))2 is a solution of (17)–(22), with T = Tn (recall that this solution exists by Theorem 3.1).

(1) A priori estimates. We first show in Lemma 5.1 below that the sequences (φn)n∈N and
(un)n∈N are bounded for respectively, the L2 norm and the Lp norm, with p < d

d−2 . Note

that the condition (44) is required when using the discrete Sobolev inequality, see e.g. [13],

to obtain the uniform bound of (un)n∈N in an Lq norm from a discrete W 1,p
0 estimate.

(2) Estimates on the space translates. Following [17, Lemma 9.3 page 770 ], [18, Lemma 4] or
[26], one may then easily, using (54) and (57), get some uniform estimates on the translates
of φn in the L2 norm and of un in the Lp norm.

(3) Relative compactness. We may therefore use a discrete Rellich theorem (see e.g. [18,
Theorem 1]) to obtain that the sequences (φn)n∈N and (un)n∈N are relatively compact in,
respectively, L2(Ω) and Lp(Ω), for p < d

d−2 . The estimates on the tranlations also yield

the regularity of the limit, that is, if φ is a limit of the sequence (φn)n∈N in L2(Ω), then φ ∈
H1

0 (Ω); similarly, if u is a limit of the sequence (un)n∈N in Lp(Ω), then u ∈ ∩q< d
d−1

W
1,q
0 (Ω).

(4) Passage to the limit in the scheme. ¿From step (3), for any sequence (Tn)n∈N of admissible
meshes satisfying (44) and such that size(Tn) → 0, as n→ ∞, there exists a subsequence,
still denoted by (Tn)n∈N, such that:

(a) un converges to some u ∈ ∩q< d
d−1

W
1,q
0 (Ω) in Lp(Ω), for all p < d

d−2 , as n→ ∞.

(b) φn converges to some φ ∈ H1
0 (Ω), in L2(Ω), as n→ ∞.

As in the proof of [18, Theorem 2], we first multiply the first equation of (17) by ψ(xK),
with ψ ∈ C∞

c (Ω); thanks to a discrete summation by parts, we obtain:
∑

K∈Tn

∑

σ∈EK

m(σ)

dK,σ
κK(unK) (φnK − φnσ)(ψ

n
K − ψnσ ) =

∑

K∈Tn

m(K)fK(uK)ψ(xK), (48)

with ψnK = ψ(xK), where ψnσ is defined by:
{

ψnσ =
dK,σψ(xL)+dL,σψ(xK)

dσ
if σ = K|L ∈ Eint,

ψnσ = 0 if σ ∈ Eext.
(49)

and φnσ is defined by:






κK(unK)
φnσ − φnK
dK,σ

+ κL(unL)
φnσ − φnL
dL,σ

= 0 if σ = K|L ∈ Eint,

φnσ = 0 if σ ∈ Eext.
(50)

Now thanks to the assumptions on f , using the Lebesgue dominated theorem, we get that
∑

K∈Tn
m(K)fK(uK)ψ(xK) →

∫

Ω
f(u, ·)ψ dx. Then, by Lemma 5.2 given below (with

vn ≡ 1), the left-hand-side of (48) tends to
∫

Ω κ(u, ·)∇φ · ∇ψ dx. Hence the function
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φ ∈ H1
0 (Ω) is the (unique, for the considered function u) weak solution of the first equation

of (6), that is:
∫

Ω

κ(x, u(x))∇φ(x) · ∇ψ(x) dx =

∫

Ω

f(x, u(x))ψ(x) dx, ∀ψ ∈ H1
0 (Ω).

In order to prove (45) and (46), there now only remains to show that u satisfies the second equation
of (6). In order to do so, we proceed in a now classical way, that is, we multiply the second equation
of the scheme (17) by ψ(xK) where ψ in C∞

c (Ω) (the set of infinitely differentiable functions, with
compact support on Ω), we sum over K ∈ Tn, and obtain:

∑

K∈T

∑

σ∈EK

m(σ)τλσ (un)(unK − unL)ψ(xK) =
∑

K∈T

m(K)J n
K(un, φn)ψ(xK) (51)

Let us now pass to the limit as n → +∞. Applying Lemma 5.2 given below with v ≡ 1, we get
that the left hand side of (51) tends to

∫

Ω
λ(x, u(x))∇u(x) · ∇ψ(x) dx, as n→ +∞. Moreover, we

show in Lemma 5.3 below that the right hand side of (51) tends to
∫

Ω κ(x, u(x))|∇φ|
2(x)ψ(x) d x,

so that, by density of C∞
c (Ω) in W 1,q

0 (Ω), we get that u satisfies
∫

Ω

λ(x, u(x))∇u(x) · ∇ψ(x) dx =

∫

Ω

κ(x, u(x))|∇φ|2(x)ψ(x) d x, ∀ ψ ∈ ∪q>dW
1,q
0 (Ω). (52)

The proof of (47) then follows by an adaptation of the proof of the convergence of the discrete
H1

0 norm in [17] (Theorem 9.1, proof page 776): see Lemma 5.4 below. This concludes the proof
of the theorem. �

In the following sections, we shall derive the estimates and the intermediate convergence results
which were used in the above proof.

5.2. Estimate on the approximate solutions and compactness. Recall that the approximate
finite volume solutions are piecewise constant; hence they are not, in general, in the spaces W 1,p,
and we need therefore to define a discrete W 1,p norm (see also [13, 17]) in order to obtain some
compactness results.

Definition 4 (Discrete W 1,p norm). Let Ω be an open bounded subset of R
d, d = 2 or 3, and let

T be an admissible finite volume mesh in the sense of Definition 2. For uT ∈ X(T ) (defined in
(11)), uT =

∑

K∈T uK1K , and p ∈ [1,+∞),

‖uT ‖1,p,T =

(

∑

σ∈E

m(σ)dσ(
Dσu

dσ
)p

)
1
p

,

with the notation

Dσu =

{

|uK − uL| if σ ∈ Eint, σ = K|L,
|uK | if σ ∈ Eext ∩ EK

To prove the convergence of (φT , uT ), we prove at first some estimates on φT and uT .

Lemma 5.1. Under Assumption 1, let T be an admissible mesh in the sense of Definition 2, and
let ζT > 0 be such that:

dσ ≤ ζT dK,σ, ∀σ ∈ E , and for any K ∈ T . (53)

Let (φT , uT ) be a solution of (17)–(22). Then there exists (C3, C4, C5) ∈ (R⋆+)3, only depending
on Ω, ‖f‖L∞(Ω×R,R), ‖κ‖L∞(Ω×R,R) and α such that

‖φT ‖1,2,T ≤ C3, (54)
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‖φT ‖L2(Ω) ≤ C4, (55)

and

‖JT (uT , φT )‖L1(Ω) ≤ C5. (56)

Moreover, for all p ∈ [1, d
d−1 ), there exists a constant C6 ∈ R

⋆
+ only depending on Ω, ‖f‖L∞(Ω×R,R),

‖κ‖L∞(Ω×R,R), ‖λ‖L∞(Ω×R,R), ζT , p and α such that

‖uT ‖1,p,T ≤ C6, (57)

and a constant C7 ∈ R
⋆
+ only depending on Ω, ‖f‖L∞(Ω×R,R), ‖κ‖L∞(Ω×R,R), ‖λ‖L∞(Ω×R,R), ζT ,

p, α and d such that

‖uT ‖Lp∗ ≤ C7, (58)

where p∗ = pd
d−p

Proof. The proof of (54) follows [17, Lemma 9.2 page 768] and the estimate (55) is then obtained
by the discrete Poincaré inequality [17, Lemma 9.1 page 765]. Let us then prove the L1 estimate
(56). Indeed, by definition of JT (uT , φT ),

‖JT (uT , φT )‖L1(Ω) =
∑

K∈T

∑

σ∈EK

m(DK,σ)Jσ(φT ) (59)

=
∑

σ∈E

m(Dσ)Jσ(φT ), (60)

where Dσ denotes the “diamond cell” around σ, that is Dσ = DK,σ ∪ DL,σ if σ = K|L ∈ Eint, and
Dσ = DK,σ if σ ∈ Eext ∩ EK . From the definition of Jσ(φT ), noting that m(Dσ) = 1

d
m(σ)dσ , and

using Assumption 1, one then obtains that:

‖JT (uT , φT )‖L1(Ω) =
∑

σ∈E

m(σ)τκσ (uT )|Dσφ|
2

≤
∑

σ∈E

m(σ)dσ
‖κ‖2

L∞(Ω×R,R)

α
(
Dσφ

dσ
)2

≤
‖κ‖2

L∞(Ω×R,R)

α
‖φT ‖1,2,T ,

which proves (56). Thanks to L1 estimate (56), one obtains (57) by a straightforward adaptation
of [26, Lemma 1] (see also [15, Theorem 2.2]). The estimate (58) follows from a discrete Sobolev
inequality [13]. �

5.3. Passage to the limit. Let us begin by a technical lemma which is used for the convergence
of various terms in the passage of the limit.

Lemma 5.2. Under Assumption 1, let (Tn)n∈N be a sequence of admissible meshes in the sense
of Definition 2, such that hn = sup{diam(K),K ∈ Tn} → 0, as n → ∞. Let (un, φn, vn)n∈N ⊂
L2(Ω)3, with (un, φn, vn) ∈ X(Tn)3 ∀n ∈ N and let φ ∈ H1

0 (Ω), v ∈ L2(Ω) and u ∈ Lp(Ω), be such
that:

(φn, vn, un) → (φ, v, u) in L2(Ω) × L2(Ω) × Lp(Ω), ∀p <
d

d− 2
, as n→ +∞.

Moreover, assume that there exists C > 0 such that ‖φn‖1,Tn
≤ C, for all n ∈ N. Let ψ ∈ C∞

c (Ω)
and ψn ∈ X(Tn) be defined by:
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ψn(x) = ψ(xK), for a.e. x ∈ K, ∀K ∈ Tn. (61)

Define In(φn, vn, un, ψ) by:

In(φn, vn, un, ψ) =
∑

K∈Tn

∑

σ∈EK

m(σ)

dK,σ
κK(unK) (φnσ − φnK)(ψnσ − ψnK)vnK ,

where ψnσ is defined by (49) and φnσ by (50). Then

In(φn, vn, un, ψ) →

∫

Ω

κ(., u)∇φ · ∇ψ v dx as n→ +∞.

Proof. Let Gn(φn) ∈ (L2(Ω))d be the piecewise constant function equal to
φnσ − φnK
dK,σ

dnK,σ on

the half diamond DK,σ. Let ∇Tn
ψn ∈ (L2(Ω))d be the piecewise constant function equal to

ψnσ − ψnK
dK,σ

nK,σ + (∇ψ · tσ). tσ on the half diamond DK,σ, where tσ denotes a unit tangent vector

to σ. Noting that m(DK,σ) = 1
d
m(σ)dK,σ , we may write In(φn, vn, un, ψ) in the following way:

In(φ
n, vn, un, ψ) =

∫

Ω

Gn(φn)(x) · ∇Tn
ψn(x) κn(x, un(x)) vn(x)d x.

(Recall that κn(·, un(·)) ∈ X(T ) and κn(x, un(x)) = κK(unK), a.e. x ∈ K, for any K ∈ Tn.)
By assumption, the sequence (ϕn)n∈N converges to ϕ ∈ H1

0 (Ω) in L2(Ω) and is bounded in the
discrete H1 norm; therefore, we get from Lemma 2 in [19]:

Gn(φn) →n→+∞ ∇φ weakly in (L2(Ω))d. (62)

Thanks to the definition (49) of ψnσ , the differential quotient
ψn

K−ψn
σ

dK,σ
is a consistent approximation

(in the finite difference sense) of ∇ψ · nK,σ; therefore, the function ∇Tn
ψn converges to ∇ψ in

(L∞(Ω))d. Hence, since un → u in the Lp norm for p < d
d−2 and since κ is bounded, we obtain

from the Lebesgue dominated theorem that:

κn(·, un) vn∇Tn
ψn→κ(·, u) v∇ψ in (L2(Ω))d as n→ +∞.

This, together with (62), concludes the proof of the Lemma. �

Lemma 5.3 (Right-hand-side of the heat equation). Under Assumption 1, let (Tn)n∈N be a
sequence of admissible meshes in the sense of Definition 2. Let (φn, un) be a solution of the
system (17)-(21) for T = Tn, and let J n(un, φn) ∈ X(Tn) be defined by (21). Assume that
hn = max{diam(K),K ∈ Tn} → 0, as n → ∞, and that there exists ζ > 0, not depending on n,
such that (44) holds. Assume that

1. un converges to some u ∈ ∩q< d
d−1

W
1,q
0 (Ω) in Lp(Ω), for all p < d

d−2 , as n→ ∞.

2. φn converges to some φ ∈ H1
0 (Ω), in L2(Ω), as n→ ∞.

For any ψ ∈ C∞
c (Ω) (the set of infinitely differentiable functions with compact support on Ω), let

ψn ∈ X(Tn) be defined by (61). Then:
∫

Ω

J n(un, φn)(x)ψn(x) dx →

∫

Ω

κ(x, u(x))|∇φ|2(x)ψ(x) d x as n→ +∞. (63)
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Proof. Noting that m(DK,σ) = 1
d
m(σ)dK,σ , one has:

∫

Ω

J n (un, φn)(x)ψn(x) d x =
∑

K∈T n

∑

σ∈EK

m(σ)dK,στ
κ
σ (un)

(Dσφ
n)2

dσ
ψ(xK)

= T
n
4 + T

n
5 , (64)

where

T
n
4 =

∑

K∈Tn

∑

σ∈EK

m(σ)dK,στ
κ
σ (un)

(Dσφ
n)2

dσ
ψ(xL), (65)

and

T
n
5 =

∑

K∈Tn

∑

σ∈EK

m(σ)dK,στ
κ
σ (un)

(Dσφ
n)2

dσ
(ψ(xK) − ψ(xL)), (66)

where we have denoted ψ(xL) = 0 if σ ∈ Eext ∩ EK). Since |ψ(xK) − ψ(xL)| ≤ 2 hn‖∇ψ‖(L∞(Ω))d

and τκσ (un) ≤
‖κ‖2

L∞(Ω×R,R)

αdσ
, we have

|Tn5 | ≤ 2
‖κ‖2

L∞(Ω×R,R)

α
hn‖∇ψ‖(L∞(Ω))d‖φ

n‖2
1,2,X(T ).

Using (54) we then obtain that:

|Tn5 | → 0, as n→ +∞. (67)

We turn now to the term T
n
4 , reordering the sum on the edges in the right hand side of (65), we

get

T
n
4 =

∑

σ∈E

m(σ)τκσ (un)(Dσφ
n)2ψnσ ,

where ψnσ is defined by (49). We may then decompose T
n
4 = T

n
6 + T

n
7 , with

T
n
6 = −

∑

σ∈E

m(σ)τκσ (un)(φnL − φnK)(φnKψ
n
K − φnLψ

n
L), (68)

and

T
n
7 = −

∑

σ∈E

m(σ)τκσ (un) ((φnL − φnK)φnK(ψnσ − ψnK) − (φnL − φnK)φnL(ψnσ − ψnL)) . (69)

(where we have denoted ψnK = ψ(xK), for any K ∈ Tn). We shall show below that

T
n
6 →

∫

Ω

κ(x, u(x))|∇φ|2(x)ψ(x)dx +

∫

Ω

κ(x, u(x))∇φ(x) · ∇ψ(x)φ(x) dx, as n→ +∞, (70)

and that

T
n
7 → −

∫

Ω

κ(x, u(x))∇φ(x) · ∇ψ(x)φ(x) dx as n→ +∞, (71)

from which it is easy to see that
∫

Ω

J n (un, φn)(x)ψn(x) →

∫

Ω

κ(x, u(x))|∇φ|2(x)ψ(x)dx,

which proves (63). To conclude the proof of the Lemma, there only remains to prove (70) and (71).

Let us first prove (70). Reordering the sum of the right hand side of (68) on the control volumes
and using the fact that φn is the solution of the first equation of the finite volume scheme (17) ,
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we get

T
n
6 = −

∑

K∈Tn

∑

σ∈EK

m(σ)τκK|L(un)(φnL − φnK)φnKψ(xK)

=
∑

K∈Tn

m(K)fK(unK)φnKψK

=

∫

Ω

f(x, un(x))φn(x)ψn(x)dx.

Now un converges to u ∈ ∩q< d
d−1

W
1,q
0 (Ω) in Lp(Ω), for all p < d

d−2 , as n → ∞, so that, by the

Lebesgue theorem, f(·, un) → f(·, u) in L2(Ω) as n → +∞. Moreover, φn tends to φ in L2(Ω).
Finally, it is clear that ψn → ψ in L∞(Ω). Hence we get that

T
n
6 →

∫

Ω

f(x, u(x))φ(x)ψ(x)d x, as n→ ∞.

Since φψ ∈ H1
0 (Ω), one may take it as a test function in the first equation of (6), which gives

∫

Ω

f(x, u(x))φ(x)ψ(x)dx =

∫

Ω

κ(x, u(x))∇φ(x) · ∇ (ψφ) (x) dx

=

∫

Ω

κ(x, u(x))|∇φ|2(x)ψ(x) dx +

∫

Ω

κ(x, u(x))∇φ(x) · ∇ψ(x)φ(x)dx,

which proves (70). Finally, reordering the sum of T
n
7 on the edges of the control volumes, we get

T
n
7 =

∑

K∈Tn

∑

σ∈EK

m(σ)

dK,σ
κK(unK) (φnσ − φnK)(ψnK − ψnσ)φnK ,

where φnσ is defined by (50). Using Lemma 5.2 with v = φ, we obtain (71), which concludes the
proof. �

For the sake of completeness, we then prove the convergence of the ohmic losses.

Lemma 5.4 (Ohmic losses). Under the assumptions of Lemma 5.3, let J n(un, φn) be defined by
(21) for T = Tn, then J n(un, φn) satisfies (47), that is:

∫

Ω

J n(un, φn)(x) dx→

∫

Ω

κ(x, u(x))|∇φ|2(x) dx as n→ +∞,

and therefore, J n(un, φn) → κ(·, u)|∇φ|2 as n → +∞ for the weak ⋆ topology of (C(Ω))
′

, where
C(Ω) denotes the set of continuous functions on Ω.

Proof. By definition of J n, and again noting that m(DK,σ) = 1
d
m(σ)dK,σ , one has:

∫

Ω

J n (un, φn)(x) dx =
∑

K∈Tn

∑

σ∈EK

m(σ)dK,στ
κ
σ (un)

(Dσφ
n)2

dσ

=
∑

K∈Tn

m(K)fK(unK)φnK

=

∫

Ω

f(x, un(x))φn(x) dx.
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Since un converges to u ∈ ∩q< d
d−1

W
1,q
0 (Ω) in Lp(Ω), for all p < d

d−2 , as n → ∞, and φn → φ ∈

H1
0 (Ω) in L2(Ω), we get that

∫

Ω

J n (un, φn)(x) dx →n→+∞

∫

Ω

fφdx;

hence, thanks to the fact that φ satisfies (6), J n (un, φn) satisfies (47).

Now from Lemma 5.3, we get that
∫

Ω

J n (un, φn)ψ dx→n→+∞

∫

Ω

κ(·, u)|∇φ|2ψ dx for any ψ ∈ C∞
c (Ω).

This, together with (47), yields, by classical results in measure theory, that:
∫

Ω

J n (un, φn)ψ dx→n→+∞

∫

Ω

κ(·, u)|∇φ|2ψ dx for any ψ ∈ C(Ω),

which concludes the proof of the lemma. �

6. Conclusion and perspectives

We proved here the convergence of a cell centred finite volume method and the linear finite
element method for the coupled heat and potential equation; the condition on the considered
meshes is such that the discrete maximum priniciple holds. Indeed, the technique of proof mimics
the tools used for the existence the continuous case, which requires the monotonicity of the operator.
In the case of the cell centred finite volume, the scheme satisfies the maximum principle for any
admissible mesh. These include triangles and rectangles in two space dimensions, and Voronöı
meshes in any dimension.

In two space dimensions, the linear finite element method satisfies the discrete maximum prin-
ciple for triangular meshes under the Delaunay condition. It is easy to show that under this
condition, the matrix of the scheme is identical to that of the cell-centred finite volume on the dual
Voronöı mesh. Therefore, the convergence of the finite element scheme may be obtained from that
of the finite volume scheme, as explained in [24].

In three space dimensions, there is no known way to build a Voronöı mesh from a tetrahedral
one, and therefore one must proceed directly with the finite element interpolation operator, as in
section 4 above, and in [9] in the case of a linear diffusion operator. In the three–dimensional case,
a known sufficient condition for the maximum priniciple to hold on a tetrahedral meshes is that
all angles of all the faces be strictly acute. Unfortunately, there does not seem to be an easy way
to construct such meshes in practise [3, 16], so that our convergence result for the finite element
scheme in 3D remains quite academic.

Let us also note that the proof of convergence for the finite element uses the strong convergence
in H1 of the gradient of the approximate solutions (item 1. of Theorem 4.1), which is quite easy
to prove. In the case of the cell centred method presented here, we could also have used a discrete
gradient that converges strongly, as in [20], but the natural implementation which was performed
in [23] leads to a weakly converging gradient as introduced in [19].

Another open problem concerns anisotropic problems. Indeed, if the diffusion coefficients are
tensors, no practical sufficient condition is known for the maximum principle to hold, neither for
the finite element method, nor for the finite volume one: in fact, finite volume schemes built with
a strongly converging gradient exist, either for admissible meshes [20], or for general meshes [1].
However, the stencil of these schemes is wider than the one considered here, and they do not, in
general, satisfy the discrete maximum principle. Hence work is required to prove their convergence
for an irregular (L1 or measure) right–hand–side.
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[4] L. Boccardo and T. Gallouët, Nonlinear elliptic and parabolic equations involving measures Data, J. of
Functional Analysis, 87 (1), 149–169, 1989.
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[17] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of Numerical Analysis. P.
G. Ciarlet and J. L. Lions (eds.), VII (North-Holand, Amsterdam), 723–1020, 2000.
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