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On the Stability by Union of Reducibility
Candidates

Colin Riba

INPL & LORIA?, Nancy, France
riba@loria.fr

Abstract. We investigate some aspects of proof methods for the termi-
nation of (extensions of) the second-order λ-calculus in presence of union
and existential types.
We prove that Girard’s reducibility candidates are stable by union iff they
are exactly the non-empty sets of terminating terms which are downward-
closed w.r.t. a weak observational preorder.
We show that this is the case for the Curry-style second-order λ-calculus.
As a corollary, we obtain that reducibility candidates are exactly the
Tait’s saturated sets that are stable by reduction. We then extend the
proof to a system with product, co-product and positive iso-recursive
types.

1 Introduction

Since their introduction in [17], union and existential types with type assignment
rules are present in many type systems. From a foundational perspective, they
are interesting as dual of respectively intersection and second-order types. The
paper [3] provides detailed investigations on syntactic as well as semantics issues
of union types. As a theoretical tool, they have been used in [8, 9] to prove
that a kind of Böhm trees, called Lévy-Longo trees, distinguishes pure λ-terms
exactly as does their observation in the lazy concurrent λ-calculus.

Interesting applications of union types are the XML processing languages
XDuce [14] and CDuce [11]. They describe types of XML documents by means
of regular expressions whose internal representation relies on union types.

Existentials and unions are also interesting tools for representing abstractions
of programs. In the context of strictness analysis, unions are used in [15] to
represent disjunctive properties of programs.

Frédéric Blanqui and the author proposed in [6] a termination criterion for
higher-order conditional rewriting that use constrained types. Existential con-
straints arise naturally, for example when proving that some implementations of
QuickSort preserves the size of its argument. This work relies on proof methods
for the termination of typed λ-calculus plus rewriting in presence of existential
types.
? UMR 7503 CNRS-INPL-INRIA-Nancy2-UHP, Campus Scientifique, BP 239, 54506
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Usual proofs of strong normalization (i.e. termination) for typed λ-calculi
assign to each type T a set of strongly normalizing terms JT Kρ (the interpretation
of T , with an assignment ρ of its free variables). Then, they use soundness of this
interpretation w.r.t. the type system: typable terms belong to the interpretation
of their types. But soundness requires that types are not interpreted by arbitrary
sets of terms. They must satisfy some closure conditions. The two most popular
ones are Girard’s reducibility candidates and Tait’s saturated sets. See [12] for a
detailed discussion and historical references. A comparison of Girard’s and Tait’s
closure conditions can also be found in [23].

In order to handle elimination rules of union and existential types, it is con-
venient to interpret these types by using unions of interpretations: JT1 ∪ T2Kρ =
JT1Kρ ∪ JT2Kρ and J∃X.T Kρ =

⋃
C∈ClJT Kρ[C/X] (Cl is the collection of closed

sets under consideration). This making requires stability by union of closed sets:
if C is a family of closed sets, then

⋃
C =def

⋃
C∈C C is closed. Approaches not

relying on stability by union are briefly discussed in Sec. 8.
It is well known (see e.g. [23]) that Tait’s saturated sets for β-reduction

are stable by union. However, their extension with additional computational
rules can by cumbersome. On the other hand, Girard’s reducibility candidates
are more adjustable, in particular for dealing with rewriting [5]. However, their
stability by union is known to be problematic [23].

In this paper, we prove the stability by union of reducibility candidates for
the polymorphic λ-calculus λ2. To our knowledge, this property was hitherto
unknown, and even often believed to be false. We extend the proof to λ2U+,
the extension of λ2 with product, co-product and positive iso-recursive types (it
is shown in [21] that it is a proper extension of λ2).

The key observation is that reducibility candidates are stable by union iff
they are exactly the non-empty sets of strongly-normalizing terms which are
downward-closed w.r.t. a weak observational preorder (see [16] for a presenta-
tion and references on related topics). This is a very simple structure compared
to the one appearing in the definition of reducibility candidates, which is not
trivial and somehow mysterious. Hence, studying stability by union of reducibil-
ity candidates reveals important facts on their fundamental nature.

We show that the above condition is equivalent to say that some terms,
called neutral, have a maximal reduct w.r.t. to that preorder. For the case of
λ2 and λ2U+, we prove it by using a simple syntactic property called weak-
standardization. It relies on the orthogonality of λ2 and λ2U+: computational
rules are non-ambiguous and left-linear (no equality tests between open terms).
As a by-product, we obtain that Girard’s sets correspond exactly to the Tait’s
sets that are stable by reduction.

We present the syntax of λ2 in Sec. 2, and reducibility in Sec. 3. Our analysis
of stability by union of reducibility candidates is presented in Sec. 4. Finally, the
system λ2U+ is presented in Sec. 6, and stability by union of its reducibility
candidates in Sec. 7.

We assume familiarity with λ-calculus and types, and refer to [13, 4] for
detailed introductions.
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2 The Polymorphic λ-Calculus λ2

The core language of the paper is the Curry-style second-order λ-calculus λ2,
as presented in [4]. We recall the main notations below, and then discuss union
and existential types.

Let X be a countable set of variables and Λ be the set of untyped λ-terms:

t, u ∈ Λ ::= x ∈ X | λx.t | t u .

They are considered equals modulo α-conversion. Terms come with the usual
notion of β-reduction, namely (λx.t)u 7→β t[u/x], where t[u/x] is the capture-
avoiding substitution of x by u in t. We let→ be the smallest rewrite relation on
Λ containing 7→β . In the following, we refer to 7→β as the top reduction and denote
by TNF the set of terms in 7→β-normal form. We let (t)→ =def {u | t→ u} and
(t)∗→ =def {u | t →∗ u}, where →∗ is the reflexive-transitive closure of →. We
write (t1, . . . , tn)→ (t′1, . . . , t

′
n) iff there is i such that ti → t′i and tj = t′j for all

j 6= i. A term t is strongly normalizing iff every reduction sequence issued from
t is finite. Let SN be the set of strongly-normalizing terms. Note that t ∈ SN
iff either t is not reducible or all its reducts are in SN . It follows that SN is the
smallest set such that for all t,

(∀u (t→ u ⇒ u ∈ SN )) ⇒ t ∈ SN .

Types are the formulas of second-order minimal logic, with variables in V:

T,U ∈ T ::= X ∈ V | T ⇒ U | ∀X.T .

We denote by X (t) (resp. V(T )) the set of free variables of t (resp. T ). An
environment Γ is a finite set of declarations x : A such that x 6= y whenever
(x : A), (y : B) ∈ Γ . Typing judgments are sequents of the form Γ ` t : A,
derived with the following rules:

(Ax)
Γ, x : T ` x : T

(⇒ I)
Γ, x : U ` t : T

Γ ` λx.t : U ⇒ T
(⇒ E)

Γ ` t : U ⇒ T Γ ` u : U

Γ ` tu : T

(∀ I)
Γ ` t : T

Γ ` t : ∀X.T
(X /∈ V(Γ )) (∀E)

Γ ` t : ∀X.T

Γ ` t : T [U/X]

Existential and Union Types. Our main point is to prove the soundness
(w.r.t. some closure operator) of elimination rules of union and implicit existen-
tial types. Such types are manipulated with type-assignment rules, in the spirit
of [17, 3]. Typical rules for these systems are:

(∃ I)
Γ ` t : T [U/X]

Γ ` t : ∃X.T
(∃E)

Γ ` t : ∃X.T Γ, x : T ` u : U

Γ ` u[t/x] : U
(X /∈ V(Γ, U))

(∪I)
Γ ` t : Ti

Γ ` t : T1 ∪ T2
(i ∈ {1, 2}) (∪E)

Γ ` t : T1 ∪ T2 ∀i ∈ {1, 2}, Γ, x : Ti ` u : U

Γ ` u[t/x] : U



4 Colin Riba

It is worth noting that such types are not subject to the Curry-Howard proposi-
tions-as-types isomorphism, in the sense that proofs trees do not corresponds to
terms. It would require to reflect all types constructions at the term level, and
this leads to use explicit constructs for disjunction and existential quantification,
as discussed for e.g. in [13].

This is precisely what we want to avoid in [6], where existential quantifi-
cations are used in a constrained type system. We want terms typed in this
system to be used in a constrained-free type system. Hence, constraints should
not appear at the term level, and we are thus interested in implicit existential
types.

On the other-hand, it is clear that the impredicative codings of unions and
existential quantification given in [13] do not define union and implicit existential
types. This motivates us to handle the soundness of rules (∪E) and (∃E) by tools
lying inside the reducibility framework. A first step is to study the behavior of
Girard’s reducibility candidates w.r.t. union. Since type quantifications of [6]
are not the usual ones, presented above, that operate on the type structure, we
study stability by union in a generic way, without committing to specific typing
rules.

3 Reducibility

Strong normalization proofs of λ2 usually interpret types T ∈ T as sets of
strongly normalizing terms JT Kρ ⊆ SN . Then strong normalization of typable
terms follows from the soundness of the interpretation:

If Γ ` t : T and σ(x) ∈ JAKρ for all (x : A) ∈ Γ , then σ(t) ∈ JT Kρ. (?)

As said in the introduction, (?) does not hold when types are interpreted by
arbitrary subsets of SN . In this section, we focus on a well-known collection of
suitable subsets of SN called Girard’s reducibility candidates.

Definition 3.1 (Neutral Terms). Terms not headed by an abstraction are
called neutral. Let N be the set of neutral terms.

Let HN , the set of hereditary neutral terms, be the smallest set such that for
all t ∈ N , (∀u (t→ u⇒ u ∈ HN ))⇒ t ∈ HN .

Note that HN ⊆ SN . Let elimination contexts be E[ ] ::= [ ] | E[ ]t. They
correspond to call-by-name evaluation contexts, dual to call-by-value evaluation
contexts of [10]. We borrowed from [1] their use in reducibility.

Remark 3.2. The general intuition behind neutral terms is linked to the duality
between introductions and eliminations in natural deduction. Since neutral terms
are not headed by introductions, they do not interact with elimination contexts:
if t ∈ N and E[t]→ v then v = E′[t′] with (E[ ], t)→ (E′[ ], t′). It follows that
for t ∈ N , we have E[t] ∈ N and E[t] ∈ SN as soon as {E[u] | t→ u} ⊆ SN .

Definition 3.3 (Reducibility Candidates). The set of reducibility candi-
dates, denoted by CR, is the set of all C ⊆ SN such that
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(CR0) if t ∈ C and t→ u then u ∈ C,
(CR1) if t ∈ N and (∀u (t→ u ⇒ u ∈ C)) then t ∈ C.

The definition of SN directly implies that SN ∈ CR. Now, let us see why CR
is stable by intersection (C ⊆ CR ⇒

⋂
C ∈ CR). Recall that a closure operator

on a partial order (D,≤) is a function · : D → D which is idempotent: X = X;
extensive: X ≤ X; and monotone: X ≤ Y ⇒ X ≤ Y . It is well-known that the
greatest lower bound of a family of closed elements is closed.

The shape of the clauses of CR is sufficient for the existence of a closure
operator · : P(SN ) → P(SN ) such that X is the least reducibility candidate
containing X. Indeed, clauses (CR0) and (CR1) are closure rules in the sense of
[19], p.17, and the existence of · is insured by Thm. 2.6, see pages 16–18 of [19].
We thus have X ∈ CR iff X = X.

It follows that (CR,⊆) has all greatest lower bounds, and they are given by⋂
. As a consequence, it has

⋂
CR as least element. It is thus an inf-semi lattice

with greatest element SN , hence a complete lattice.

Proposition 3.4. HN is the least element of CR.

Proof. We obviously have HN ⊆ C for all C ∈ CR, hence HN ⊆
⋂
CR. For the

converse, it suffices to remark that HN ∈ CR. ut

We now define the interpretation of arrow types.

Proposition 3.5 (Arrow Type Constructor). The arrow type constructor
⇒: P(Λ) × P(Λ) → P(Λ), defined as A ⇒ B =def {t | ∀u(u ∈ A ⇒ tu ∈ B)},
maps reducibility candidates A and B to a reducibility candidate.

Proof. Strong normalization and stability by reduction follows directly from that
of B. For (CR1), we have to show that if t ∈ N , then (t)→ ⊆ A ⇒ B implies
t ∈ A ⇒ B, i.e. u ∈ A ⇒ tu ∈ B. The crucial point is given by Rem. 3.2: since
tu ∈ N and t does not interact with the context [ ]u, we are done with (CR1)
applied to B, using an induction on (t, u) ∈ SN × SN . ut

Now, given ρ : V → CR, we can interpret types T ∈ T as reducibility can-
didates JT Kρ ∈ CR, with JXKρ =def ρ(X), JU ⇒ T Kρ =def JUKρ ⇒ JT Kρ and
J∀X.T Kρ =def

⋂
{JT Kρ[C/X] | C ∈ CR}. We can then prove soundness (?), and

strong normalization is a consequence of X ⊆ HN and Prop. 3.4. See [13, 12].

4 A General Study of Stability by Union of CR

We have seen that stability by intersection of CR is a consequence of the shape of
the clauses (CR0) and (CR1). Such shallow observations do not imply stability by
union, which must therefore be proved through a deeper analysis of CR. Indeed,
given C ⊆ CR, in order to get

⋃
C ∈ CR we must show that if t is a neutral term

with (t)→ ⊆
⋃
C, then every one-step reduct of t must be in the same C ∈ C.

We begin by stability by union of closure operators. In the next Proposition,
we assume given a set D and a closure operator · : P(D)→ P(D). Write x for
{x} and P(D) for {X | X ⊆ D}.
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Proposition 4.1 (Topological Closure of · ). Given a closure operator · :
P(D)→ P(D), let Ω be the set of non-empty X ⊆ D such that X =

⋃
{x | x ∈

X}. Then Ω is the smallest set such that P(D) ⊆ Ω and C ⊆ Ω ⇒
⋃
C,

⋂
C ∈ Ω.

Proof. For all X ∈ P(D) we have X =
⋃
{x | x ∈ X} since for all x ∈ X, x ⊆ X

and x ∈ x. It follows that P(D) ⊆ Ω. If C ⊆ Ω, then C =
⋃
{x | x ∈ C} for

all C ∈ C. Hence
⋃
C =

⋃
{x | x ∈

⋃
C}, and

⋃
C ∈ Ω. Moreover, if t ∈

⋂
C,

then for all C ∈ C, t ∈ C hence t ⊆ C. Therefore t ⊆
⋂
C, and it follows that⋂

C =
⋃
{t | t ∈

⋂
C}, i.e.

⋂
C ∈ Ω.

Now, let Ω ⊇ P(D) be stable by union and intersection. If X ∈ Ω then
X =

⋃
{x | x ∈ X}. But {x | x ∈ X} ⊆ Ω, hence

⋃
{x | x ∈ X} ∈ Ω. ut

In other words, (D,Ω ∪ {∅}) is a topological space where the set of opens
Ω∪{∅} contains all · -closed sets. Proposition 4.1 implies that it is moreover the
coarser topology with this property: if Ω is a collection of opens that contains
· -closed sets, then Ω ⊆ Ω. We now use these facts to study the stability by
union of reducibility candidates.

Since we are concerned with properties independent from the calculus, we
work with an extension λext of λ2. We assume that every term typable in λ2 is
typable in λext and that λext is equipped with a rewrite relation, denoted by
→, that is finitely branching and contains 7→β . Notations of Sec. 2 are imported
in λext. Finally, we assume given a set of neutral terms of λext, still denoted
by N , that contains the neutral terms of λ2.

Definition 4.2 (λext-Reducibility Candidates). The set of λext-reduci-
bility candidates, denoted by CR, is the set of all C ⊆ SN such that
(CR0) if t ∈ C and t→ u then u ∈ C,
(CR1) if t ∈ N and (∀u (t→ u ⇒ u ∈ C)) then t ∈ C.

As with λ2, CR is the set of closed sets for a closure operator · : P(SN )→
P(SN ). An explicit inductive definition of · is useful:

Lemma 4.3 (The Closure Operator · of CR). Given X ⊆ SN , let X0 =def

(X)∗→, and for all i ≥ 0, Xi+1 =def Xi ∪ {t ∈ N | (t)→ ⊆ Xi}. Then, for all
X ⊆ SN , X =def

⋃
i≥0 Xi is the smallest reducibility candidate containing X.

Proof. First, we show that X ∈ CR.
(CR0) Let t→ v and t ∈ Xi with i as small as possible. If i = 0, then t ∈ (X)∗→,

hence v ∈ (X)∗→ = X0. Otherwise, i = j + 1, and v ∈ Xj .
(CR1) Let t ∈ N such that for all v ∈ (t)→, there is iv with v ∈ Xiv

. Since → is
finitely branching, there is a j greater than every iv, thus t ∈ Xj+1.

Second, by induction on i, we prove that if C ∈ CR and X ⊆ C, then Xi ⊆ C.
We have X0 = (X)∗→ ⊆ C by (CR0). For i ≥ 0, if t ∈ Xi+1 \Xi, then t ∈ N and
by induction hypothesis, (t)→ ⊆ Xi ⊆ C. Hence t ∈ C by (CR1). ut

Thanks to Lem. 4.3, we have an explicit definition of the closure operator of
CR, denoted by · . Now, Prop. 4.1 gives us Ω, which is the topological closure
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of · . We let CR =def Ω. Proposition. 4.1 implies that CR ⊆ CR and that CR is
stable by union iff CR = CR.

Before studying what insures the equality of CR and CR, let us have a look
on the structure of the latter. We begin by a characterization of the membership
t ∈ u that uses the weak observational preorder v.

Definition 4.4. Let t v u iff for all v /∈ N , t→∗ v ⇒ u→∗ v. We denote by
vSN the restriction of v to SN .

Observational preorders where introduced to characterize behavioral equiv-
alence: two pieces of programs are observationally equivalent iff when plugged
in a program context, the obtained programs both diverges or evaluates to the
same value. Contexts are arbitrary terms with a hole, including those of the form
t[ ] and λx.[ ]. With closed terms, thanks to Milner’s Context Lemma, this is
equivalent to observation in applicative contexts (our elimination contexts). Of
course, this fails for open terms. See [18, 16] for a presentation and references
on the subject.

In λ2, non-neutral terms are abstractions, hence closed non-neutral terms
correspond to the usual notion of value. Moreover, we have t v u iff for all E[ ],
for all v /∈ N , (E[t]→∗ v ⇒ E[u]→∗ v). Thus, with v we observe the reduction
to values of open terms plugged in elimination contexts. Hence the name weak
observational preorder. We generalize these ideas to the system λ2U+ in Sec. 7.

In order to characterize t ∈ u with v, we need a few properties. First, note
that t→ u implies u v t.

Proposition 4.5. Let X ⊆ SN . Then t ∈ X iff either t ∈ (X)∗→ or (t ∈ N and
(t)→ ⊆ X).

Proof. The ”if” direction directly follows from (CR0) and (CR1). Conversely, let
i be as small as possible such that t ∈ Xi. Thus, either i = 0 and t ∈ (X)∗→ or
i = j + 1, t ∈ Xj+1 \Xj and by definition t ∈ N and (t)→ ⊆ Xj . ut

As a consequence, all non-neutral terms of X are in (X)∗→. In other words,
the values of X are entirely determined by X.

Proposition 4.6. Let t ∈ N ∩ SN and X ⊆ SN . Then (t)→ ⊆ X iff for all
v /∈ N , t→∗ v ⇒ v ∈ (X)∗→.

Proof. For the ”only-if” direction, we reason by induction on t ∈ SN . Assume
that (t)→ ⊆ X and let t →∗ v′ /∈ N . Since t ∈ N , we have t → v →∗ v′ with
v ∈ X. If v /∈ N , then by Prop. 4.5 we have v ∈ (X)∗→, hence v′ ∈ (X)∗→.
Otherwise, since (v)→ ⊆ X we can apply the induction hypothesis and get
v′ ∈ (X)∗→.

For the converse, we also reason by induction on t ∈ SN . If t ∈ (X)∗→ then
we are done since (t)→ ⊆ (X)∗→ ⊆ X. Assume that t /∈ (X)∗→. Let v ∈ (t)→. If
v /∈ N , then by assumption v ∈ (X)∗→, hence v ∈ X. Otherwise, using (CR1) it
suffices to show that (v)→ ⊆ X. But by assumption, every v′ ∈ (v)∗→ \N belongs
to (X)∗→. Hence by induction hypothesis (v)→ ⊆ X. ut
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Thanks to Proposition 4.6, each t is in fact an initial segment w.r.t. vSN .

Lemma 4.7. For all t ∈ SN , t = {u | u vSN t}.

Proof. By Prop. 4.6, u ∈ t iff t, u ∈ SN and either t →∗ u or u ∈ N and
(u)∗→ \ N ⊆ (t)∗→. But this is exactly u vSN t. ut

This gives a nice straight structure to the elements of CR.

Theorem 4.8. Let O be the set of non empty subsets of SN which are downward
closed w.r.t. vSN , i.e. X ∈ O iff ∅ 6= X ⊆ SN and for all t, u, if t ∈ X and
u vSN t then u ∈ X. Then we have CR = O.

Proof. Thanks to Lem. 4.7, we have X ∈ CR iff it is a non-empty subset of SN
such that X =

⋃
{t | t ∈ X} = {u | ∃t(u vSN t ∧ t ∈ X)}, i.e. X ∈ O. ut

It is surprising that we can give such a simple structure to CR. The most
important, however, is the consequence on the stability by union of CR.

Corollary 4.9. CR is stable by union iff CR = O.

The structure of reducibility candidates is at a first sight not trivial and
somehow mysterious. It is therefore extremely interesting to understand what
allows CR = O, giving them a so simple structure. Hence the question of their
stability by union reveals important facts on their fundamental nature.

The next step is to characterize what implies CR = O. Recall that Thm. 4.8
says that CR ⊆ O.

Proposition 4.10. O ⊆ CR iff for all t ∈ N ∩ SN , there is u ∈ (t)→ such that
t vSN u.

Proof. Let C ∈ O. Since it is stable by reduction, it suffices to check that if
t ∈ N and (t)→ ⊆ C, then t ∈ C. But there is u ∈ (t)→ such that t vSN u, and
u ∈ C implies t ∈ C. Therefore, C ∈ CR. Conversely, assume that O ⊆ CR. Let
t ∈ N ∩ SN and X =def

⋃
{u | t → u}. By Lem. 4.7, we have X ∈ O ⊆ CR,

hence t ∈ X since t ∈ N and (t)→ ⊆ X. It follows that there is some u ∈ (t)→
such that t vSN u. ut

The property of SN neutral terms expressed in Prop. 4.10 is that a reduct u
of a neutral term t such that t vSN u is in some sense a principal reduct of t: the
values of t are exactly those of u. Moreover, u ∈ maxvSN (t)→, i.e. a principal
reduct is maximal among all possible reducts.

For λ2, this has to be linked with call-by-name languages, in which terms to
be evaluated are neutral, and the evaluation preserves possible values.

Definition 4.11. A term u ∈ (t)→ is a principal reduct (written p.r.) of t iff
t v u and t is said to have the principal reduct property (written p.r.p.) when
either such a u exists or t is a normal form.

We reduce the stability by union of CR to the principal reduct property for
neutral terms.
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Corollary 4.12. We have C ⊆ CR ⇒
⋃
C ∈ CR iff every t ∈ N ∩ SN has the

principal reduct property.

As pointed out by Prop. 3.5, in order for t ∈ N to belong to C ∈ CR, C
uses information on the behavior of t in elimination contexts. This information
is given by the values of t, and clause (CR1) relies on the fact since t ∈ N , its
values are that of (t)→. But if t vSN u, the values of t are also values of u. That
is, if u ∈ C and t vSN u then t ∈ C, and it follows that t vSN u implies t ∈ u.
Moreover, Lem. 4.7 says that this exactly characterizes u: if it contains t, then
the values of t are values of u.

Now, recall that given C ⊆ CR, in order to get
⋃
C ∈ CR we must show that

if t ∈ N has (t)→ ⊆
⋃
C, then every v ∈ (t)→ must be in fact the same C ∈ C.

This amounts to say that (t)→ contains an u such that t vSN u, hence that t
has a principal reduct.

5 Stability by Union of CR in λ2

In this section, we show the p.r.p. for λ2. This leads to observe that reducibility
candidates are exactly the Tait’s saturated sets which are stable by reduction.
We do not give the proofs that are subsumed by those for λ2U+, presented in
Sec. 7.

The p.r.p. is a consequence of the standardization theorem of λ2. However,
since we only need this property on SN terms, it can be proved using a weaker
property, called weak standardization.

This property was coined in [2] as a consequence of standardization. However,
it admits a much direct proof, which rely on the orthogonality of the calculus.
By the way, it is less a weak standardization property than a standardization for
the weak head reduction, which corresponds to reduction in elimination contexts.

Definition 5.1 (Weak Head Reduction). The relation →H of weak head
reduction is defined as t→H u iff t = E[t′], t′ 7→β u′ and E[u′] = u. We denote
by HNF the set of terms in →H-normal form.

Lemma 5.2 (Weak Standardization). Let t 7→β u and assume that E[t]→ v
with v 6= E[u]. Then v = E′[t′] with (E[ ], t)→ (E′[ ], t′) and there exists u′ such
that t′ 7→β u′ and E[u]→∗ E′[u′].

In order to show that strongly normalizing neutral terms have the p.r.p.,
we use in addition the fact that HNF ∩ N (i.e. the set of terms of the from
E[x]), is stable by reduction. We then obtain stability by union of CR, thanks
to Cor. 4.12.

Lemma 5.3 (Principal Reduct Property). Let t ∈ N ∩ SN . If there is u
such that t→H u then it is a p.r. of t, otherwise every u ∈ (t)→ is a p.r. of t.

Theorem 5.4. If C ⊆ CR then
⋃
C ∈ CR.
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The principal reduct property of neutral terms corresponds to the fact that
reducibility candidates are stable by strongly normalizing weak head expansions.

Lemma 5.5 (Weak Head Expansion and Reducibility Candidates). Let
C ∈ CR. If E[s] ∈ C, t 7→β s and t ∈ SN then E[t] ∈ C.

Weak head reduction is the main notion of the Krivine Abstract Machine,
and stability by weak head expansion is the main property required by truth
values of Krivine and Danos [7].

Thanks to Cor. 4.9, we have shown that CR = O, thus giving a nice straight
structure to CR. Moreover, Lem. 5.3, 4.7 and 5.5 imply that for all C ∈ CR,
(SAT 1) if E[x] ∈ SN then E[x] ∈ C; and
(SAT 2) if E[s] ∈ C, t 7→β s and t ∈ SN , then E[t] ∈ C.

Subsets of SN satisfying (SAT 1) and (SAT 2) are Tait’s saturated sets.

Definition 5.6. Let SAT be the set of all subsets S ⊆ SN satisfying (SAT 1)
and (SAT 2). We denote by SAT→ the collection of S ∈ SAT that are stable by
reduction: If t ∈ S and t→ u then u ∈ S (SAT 0).

The definition makes sense since in (SAT 1) we have E[x] ∈ SN , and, in
(SAT 2) we have E[t] ∈ SN by Lem. 5.5.

The stability by union of CR is therefore linked with the fact that every
C ∈ CR is saturated. This inclusion has been coined in [12]. The converse is
false, as shown by a counter-example given in [23] (Lem. 3.16 pp. 87–88). It
relies on the fact that saturated sets are not stable by reduction. However, we can
show that saturated sets that are stable by reduction are exactly the reducibility
candidates. This seems to have not been remarked before.

Theorem 5.7. SAT→ = CR.

Proof. The inclusion CR ⊆ SAT has been coined in [12]. It is a direct conse-
quence of Lem. 5.5 and the stability by reduction of head-normal forms.

The converse, SAT→ ⊆ CR, does not seem to have been published before.
Let S ∈ SAT→. It satisfies (CR0) thanks to (SAT 0). As for (CR1), let v ∈ N
such that (v)→ ⊆ S. Thus v ∈ SN . If v ∈ HNF , then v = E[x] ∈ S by (SAT 0).
Otherwise, v = E[t] with t 7→β u and E[u] ∈ S by assumption. Hence v ∈ S by
(SAT 2). ut

6 The System λ2U+ of Product, Co-Product and Positive
Iso-Recursive Types

We now extend results of the previous section by applying Cor. 4.12 to a sys-
tem with more elaborated types. The system considered, called λ2U+, features
product, co-product, positive iso-recursive types and the final type 1. It is a
proper extension of λ2 [21]. Our presentation is inspired by that of [1]. Types
are extended with:

T,U ∈ T ::= . . . | T × U | T + U | µX.T | 1
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where, in µX.T , X occurs only positively in T : any path from the root of T to an
occurrence of X chooses the left argument of ⇒ an even number of times. The
syntax of terms is enriched with corresponding introductions and eliminations:

s, t ∈ Λ ::= . . . | ()
| 〈t, u〉 | πit i ∈ {1, 2}
| inji t | case (u, x1.t1, x2.t2) i ∈ {1, 2}
| in t | out t

We consider the following extension of β-reduction:

πi〈t1, t2〉 7→β ti case (inji u, x1.t1, x2.t2) 7→β ti[u/xi] out (in t) 7→β t .

We let→ be the smallest rewrite relation on Λ containing 7→β . The type system
is enriched with the following additional rules:

(1 I)
Γ ` () : 1

(×I)
Γ ` t1 : T1 Γ ` t2 : T2

Γ ` 〈t1, t2〉 : T1 × T2
(×E)

Γ ` t : T1 × T2

Γ ` πit : Ti
(i ∈ {1, 2})

(+I)
Γ ` t : Ti

Γ ` inji t : T1 + T2
(i ∈ {1, 2}) (+E)

Γ ` t : T1 + T2 Γ, x : Ti ` ti : U

Γ ` case (t, x1.t1, x2.t2) : U

(µI)
Γ ` t : T [µX.T/X]

Γ ` in t : µX.T
(µE)

Γ ` t : µX.T

Γ ` out t : T [µX.T/X]

Example 6.1. Our motivation to consider λ2U+ is that it is a very atomic
calculus for inductives types. For example, polymorphic lists can be encoded as
follows:

List =def ∀Y.µX.1 + Y ×X
nil =def in (inj1 ())

cons (x, xs) =def in (inj2 〈x, xs〉)
In [21], it is shown that higher-order primitive recursion can be defined using
iso-recursives types and the rule out (in t) 7→β t, and moreover that this rule can
not be simulated in λ2 by means of β-reductions.

7 Reducibility and Stability by Union for λ2U+

We now introduce tools for reducibility in λ2U+. We then prove the p.r.p. and
equivalence of CR and a suitable version of SAT→.

We define the top reduction as 7→β , and still denote by TNF the set of terms
in top-normal form. It is convenient to factorize the introduction-elimination
duality of natural deduction with the following atomic contexts: atomic elim-
inations contexts (aec) denoted by ε[ ] and atomic introduction contexts (aic)
denoted by ι[ ] are defined as follows:

ε[ ] ::= [ ]t | π1[ ] | π2[ ] | case ([ ], x1.t1, x2.t2) | out [ ] ;

ι[ ] ::= λx.[ ] | 〈[ ], t〉 | 〈t, [ ]〉 | inj1 [ ] | inj2 [ ] | in [ ] | () .
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Note that the introduction context for the terminal type constructor is not
linear. The columns of the above array define a relation written ε[ ] ⊥ ι[ ]. We
have ε[ ] ⊥ ι[ ] when ε[ι[ ]] is a β-redex, except for the product, where we let

π1[ ] ⊥ 〈[ ], t〉 and π2[ ] ⊥ 〈t, [ ]〉
but π2[ ] 6⊥ 〈[ ], t〉 and π1[ ] 6⊥ 〈t, [ ]〉 .

Then, to each aec ε[ ] corresponds the set ε[ ]⊥ of aic ι[ ] such that ε[ ] ⊥ ι[ ], and
conversely, ι[ ]⊥ is the set of aec ε[ ] such that ε[ ] ⊥ ι[ ]. In the following, we will
sometime write unambiguously ι[ ] ⊥ ε[ ] instead of ε[ ] ⊥ ι[ ]. The extension of
elimination contexts E[ ] is obvious: E[ ] ::= [ ] | ε[E[ ]].

Proposition 7.1. If E[ε[t]]→ v, then v = E′[t′] with (E[ ], ε[t])→ (E′[ ], t′).

Proof. By structural induction on E[ ]. The case E[ ] = [ ] is obvious. In the
other cases, we have E[ ] = ε′[F [ ]]. First, the reduction ε′[F [ε[t]]] → v can not
be a top reduction. Hence we have v = ε′′[v′] with (ε′[ ], v)→ (ε′′[ ], v′), and by
induction hypothesis v′ = F ′[t′] with (F [ ], t)→ (F ′[ ], t′). Take E′[ ] = ε′′[F ′[ ]].

ut

Definition 7.2. We say that terms not of the form ι[t] are neutral and denote
by N the set of neutral terms.

Hence, the terms nil and cons(x, l) of Ex. 6.1 are not neutral. This strengthen
our intuition that non-neutral terms corresponds to values. Note that elimina-
tion contexts are a generalization of applicative contexts to product, coproduct
and iso-recursive types. We can now substantiate our claim that v is a weak
observational preorder.

Proposition 7.3. t v u iff ∀E[ ] (E[t]→∗ ι[h] ⇒ E[u]→∗ ι[h]).

Proof. Obviously, ∀E[ ] (E[t] v E[u]) implies t v u (take the empty context).
Conversely, assume that t v u. If E[t] →∗ ι[h], we are in the case that E[t] →∗

E′[ι′[h′]]→∗ ι[h] with (E[ ], t)→∗ (E′[ ], ι′[t′]). Since t v u, we have u→∗ ι′[h′],
hence E[u]→∗ E′[ι′[h′]]→∗ ι[h]. ut

We obtain CR by instantiating Def. 4.2 with λ2U+ and N . Notions of weak
head reduction and weak head normal forms are directly adapted from Sec. 5,
with the obvious update of elimination contexts. Recall that u ∈ HNF iff for all
E[ ], t such that u = E[t], we have t ∈ TNF . It follows that untyped terms in
HNF ∩ N need not to be of the form E[x]. However, stability by reduction of
HNF ∩N still holds.

Proposition 7.4. If t ∈ HNF ∩N and t→ u, then u ∈ HNF ∩N .

Proof. We reason by structural induction on t. The case t ∈ X is trivial. Assume
t = ε[t1] and let t → t′. Since t ∈ HNF , we have t′ = ε′[t′1] with (t1, ε[ ]) →
(t′1, ε

′[ ]), hence t′ ∈ N . If t1 ∈ N , then t1 ∈ N ∩ HNF and by induction
hypothesis t′1 ∈ N∩HNF . It follows that t′ = ε′[t′1] ∈ HNF . Otherwise, t1 = ι[t2]
with ε[ ] 6⊥ ι[ ]. Hence, t′1 = ι′[t′2] with (t2, ι[ ])→ (t′2, ι

′[ ]), and ε′[ ] 6⊥ ι′[ ]. Hence
t′ = ε′[ι′[t′2]] ∈ HNF . ut
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We now turn to weak standardization. It is stated and used for λ2U+ in [1].

Proposition 7.5. If t 7→β u and t → v, then either v = u or there exists u′

such that v 7→β u′ ←∗ u.

Proof. By cases on t 7→β u.
t = (λx.t1)t2. In this case, u = t1[t2/x] and if v 6= u, then v = (λx.t′1)t

′
2 with

(t1, t2)→ (t′1, t
′
2), and v 7→β t′1[t

′
2/x]←∗ u.

t = πi〈t1, t2〉. In this case, u = ti, and if v 6= u, then v = πi〈t′1, t′2〉 with (t1, t2)→
(t′1, t

′
2), and v 7→β t′i ←∗ u.

t = case (inji r, x1.t1, x2.t2). In this case, u = ti[r/xi] and if v 6= u, then v =
case (inji r′, x1.t

′
1, x2.t

′
2) with (r, t1, t2)→ (r′, t′1, t

′
2) and v 7→β t′i[r

′/xi]←∗ u.
t = out (in r). In this case, u = r and if v 6= u, then v = out (in r′) with r → r′

and v 7→β r′ ← u.
ut

Lemma 7.6 (Weak Standardization). If t 7→β u and E[t] → v, then either
v = E[u] or v = E′[t′] for some E′[ ], t′ such that (E[ ], t)→ (E′[ ], t′) and there
exists u′ such that t′ 7→β u′ and E[u]→∗ E′[u′].

Proof. Let E[t] → v with v 6= E[u]. Since t 7→β u, t is an elimination and by
Prop. 7.1, v = E′[t′] where (E[ ], t) → (E′[ ], t′). The case E[ ] → E′[ ] with
t = t′ is trivial. Otherwise, we have t→ t′ with E′[ ] = E[ ] and we conclude by
Prop. 7.5. ut

It follows that strongly normalizing neutral terms have the p.r.p..

Lemma 7.7 (Principal Reduct Property). Let t ∈ N ∩ SN . If there is u
such that t→H u, then it is a p.r. of t, otherwise every u ∈ (t)→ is a p.r. of t.

Proof. Let t ∈ N ∩ SN . If t ∈ HNF , since HNF ∩N is stable by reduction by
Prop. 7.4, t never reduces to a non-neutral term. It follows that t vSN u for all
u ∈ (t)→. Otherwise, t →H u and by induction on t ∈ SN , we show that u is
the p.r. of t. If t →∗ v /∈ N , since t ∈ N , there is t′ such that t → t′ →∗ v. By
Lem. 7.6, if t′ 6= u, there is u′ such that t′ →H u′ ←∗ u. Therefore, t′ ∈ N ∩SN
and by induction hypothesis t′ vSN u′, hence u→∗ u′ →∗ v. ut

Using Cor. 4.12, we have thus proved:

Theorem 7.8. If C ⊆ CR then
⋃
C ∈ CR.

As in Sec. 5, we get stability of reducibility candidates by weak head expansion.

Lemma 7.9 (Weak Head Expansion and Reducibility Candidates). Let
C ∈ CR. If E[s] ∈ C, t 7→β s and t ∈ SN , then E[t] ∈ C.

Proof. We obtain easily that E[t] ∈ SN , using Lem. 7.6 and an induction on
(E[ ], t) ∈ SN × SN . It suffices to show that (E[t])→ ⊆ SN . Given v ∈ (t)→,
if v 6= E[s], then by Prop. 7.6, v = E′[t′] with (E[ ], t) → (E′[ ], t′) and there
is s′ such that t′ 7→β s′ and E[s] →∗ E′[s′]. Since E′[s′] ∈ SN , by induction
hypothesis E′[t′] ∈ SN .

Now, by Lem. 4.7, E[t] ∈ E[s] iff E[t] vSN E[s]. But this follows from
Lem. 7.7, and we get E[t] ∈ E[s] ⊆ C. ut
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Unlike reducibility candidates, saturated sets are modified. They use elimi-
nation contexts in an essential way. The new clauses for SAT are the following:
(SAT 1) HNF ∩ SN ∩ N ⊆ S.
(SAT 2) If s ∈ S, t→H s and t ∈ SN then t ∈ S.
As in Def. 5.6, we denote by SAT→ the collection of saturated sets that are stable
by reduction (axiom (SAT 0)).

Non-emptiness of SAT follows from Lem. 7.9. The clauses given for SAT are
not common. They are usually replaced by:
(SAT 1′) If E[x] ∈ SN then E[x] ∈ S.
(SAT 2′) If E[s] ∈ S, t 7→β s and t ∈ SN then E[t] ∈ S.
First, according to Lem. 7.9, (SAT 2′) is equivalent to (SAT 2). Second, for the
strong normalization proof, (SAT 1′) is sufficient. But for the correspondence
with Girard sets we use (SAT 1). The following suggests that (SAT 1′) would
have been sufficient if CR and SAT→ have consists of well typed terms only.

Proposition 7.10. Well typed terms in N are the terms of the form E[t] where
either t ∈ X or t /∈ TNF .

Theorem 7.11. SAT→ = CR.

Proof. We begin by showing that CR ⊆ SAT→. Let C ∈ CR. (SAT 0) follows
from (CR0). For (SAT 1), we can reason by induction on →, since by Prop. 7.4,
HNF ∩N ∩SN is stable by reduction. Finally, the satisfaction (SAT 2) directly
follows from Lem. 7.9.

Conversely, we show that SAT→ ⊆ CR. Let S ∈ SAT→. As above, (CR0)
follows from (SAT 0). For (CR1), we have to show that for every neutral term v
such that (v)→ ⊆ S, then v ∈ S. First, v ∈ SN since (v)→ ⊆ S ⊆ SN . Thus, we
conclude by (SAT 1) if v ∈ HNF . Otherwise, v = E[t] with t 7→β s and E[s] ∈ S.
Thus v ∈ S by (SAT 2). ut

8 Conclusion and Related Works

Related Works. There are interesting alternatives approaches, which may not
rely on stability by union. Using bi-orthogonality (see [7]), Melliès and Vouillon
present a semantic of types that is not stable by union, and instead relies on a
closer adequation between the interpretations and the typing rules [22].

Without unions and existentials, bi-orthogonals work well for strong normal-
ization, especially for classical logic [20]. With non-ambiguous left-linear calculus,
it is not unreasonable to expect that they can deal with existentials and union
types, but the proof would rely on non-trivial properties of the calculus.

Concluding Remarks. We have shown that, with some well-behaved calculi, Gi-
rard’s reducibility candidates are stable by union. This was commonly believed
to be false. Moreover, and maybe more important, we have shown that their def-
inition hide a very simple structure, namely that candidates are exactly the non
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empty subsets of SN that are downward-closed w.r.t. the weak observational
preorder vSN .

This shed new light on the semantics of strong normalization. In particular,
we hope that this can lead to precise comparisons of bi-orthogonal and candi-
dates. A related question is to know when the soundness of elimination rules of
union and existentials types can be proved without stability by union of some
type interpretation.

Acknowledgments. The author thanks Frédéric Blanqui and Claude Kirchner for
useful advices, support and comments, and Marco Gaboardi for a plenty of in-
teresting discussions. Antoine Reilles suggested interesting improvements in the
presentation, and the anonymous referees made interesting insightful comments.

References

[1] A. Abel. Termination Checking with Types. RAIRO – Theoretical Informatics
and Applications, 38(4):277–319, 2004. Special Issue (FICS’03). 4, 10, 13

[2] T. Altenkirch. Constructions, Inductive Types and Strong Normalization. PhD
thesis, University of Edinburgh, 1993. 9

[3] F. Barbanera, M. Dezani-Ciancaglini, and U. de’Liguoro. Intersection and Union
Types: Syntax and Semantics. Information and Computation, 119:202–230, 1995.
1, 3

[4] H. Barendregt. Lambda Calculi with Types. In S. Abramsky, D.M. Gabbay,
and T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, volume 2.
Oxford University Press, 1992. 2, 3

[5] F. Blanqui, J.-P. Jouannaud, and M. Okada. Inductive-Data-Types Systems.
Theoretical Computer Science, 271, 2002. 2

[6] F. Blanqui and C. Riba. Combining Typing and Size Constraints for Checking the
Termination of Higher-Order Conditional Rewrite Systems. In LPAR’06, LNCS,
2006. 1, 4

[7] V. Danos and J.-L. Krivine. Disjunctive Tautologies as Synchronisation Schemes.
In CSL’00, volume 1862 of LNCS, pages 292–301, 2000. 10, 14

[8] M. Dezani-Ciancaglini, U. de’ Liguoro, and P. Piperno. A Filter Model for Con-
current Lambda-Calculus. Siam Journal on Computing, 27(5):1376–1419, 1998.
1

[9] M. Dezani-Ciancaglini, J. Tiuryn, and P. Urzyczyn. Discrimination by Parallel
Observers. In LICS’97, 1997. 1

[10] M. Felleisen and R. Hieb. The Revised Report on the Syntactic Theories of
Sequential Control and State. Theoretical Computer Science, 103(2):235–271,
1992. 4

[11] A. Frisch, G. Castagna, and V. Benzaken. Semantic Subtyping. In LICS’02, 2002.
1

[12] J.H. Gallier. On Girard’s ”Candidats de Reducibilité”. In P. Odifredi, editor,
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