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Ribbon tableaux, ribbon rigged configurations and

Hall-Littlewood functions at roots of unity

Francois Descouens

Abstract: Hall-Littlewood functions indexed by rectangular partitions, specialized at prim-
itive roots of unity, can be expressed as plethysms. We propose a combinatorial proof of this
formula using A. Schilling’s bijection between ribbon tableaux and ribbon rigged configura-
tions.

1 Introduction

In [9, 10], Lascoux, Leclerc and Thibon proved several formulas for Hall-Littlewood func-
tions Q

′

λ(X; q) with the parameter q specialized at primitive roots of unity. This formula

implies a combinatorial interpretation of the plethysms l
(j)
k [hλ] and l

(j)
k [eλ], where hλ and

eλ are respectively products of complete and elementary symmetric functions, and l
(j)
k the

Frobenius characteristics of representations of the symmetric group Sk induced by a tran-
sitive cyclic subgroup of Sk. However, the combinatorial interpretation of the plethysms of
Schur functions l

(j)
k [sλ] would be far more interesting. This question led the same authors to

introduce a new basis H
(k)
λ (X; q) of symmetric functions, depending on an integer k ≥ 1 and

a parameter q, which interpolate between Schur functions, for k = 1, and Hall-Littlewood
functions Q

′

λ(X; q), for k ≥ l(λ). These were conjectured to behave similarly under special-
ization at root of unity, and to provide a combinatorial expression of the expansion of the
plethysm l

(j)
k [sλ] in the Schur basis for suitable values of the parameters. This conjecture

has been proved only for the stable case k = l(λ), which reduces to the previous result on
Hall-Littlewood functions, and k = 2, which gives the symmetric and antisymmetric squares
h2[sλ] and e2[sλ]. The proof given in [1] relies upon the study of diagonal classes of domino
tableaux, i.e. sets of domino tableaux having the same diagonals. Carré and Leclerc proved
that the cospin polynomial of such a class has the form (1 + q)aqb, and from this obtained

the specialization H
(2)
λ∪λ(X;−1).

In [15], Schilling defines ribbon rigged configurations and gives a statistic preserving bijec-
tion between this kind of rigged configurations and ribbon tableaux given by product of row
partitions. The aim of this note is to provide a similar proof for the stable case, that is, to
show that the result on Hall-Littlewood functions at roots of unity follows from an explicit
formula for the cospin polynomials of certain diagonal classes of ribbon tableaux, which turn
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out to have a very simple characterization through Schilling’s bijection.

Acknowledgment All the computation on ribbon rigged configurations, ribbon tableaux
and Hall-Littlewood functions are made with MuPAD-Combinat (see [4] for more details on
this MuPAD package).

2 Basic definitions

For a partition λ = (λ1, . . . , λp), we denote by l(λ) its length p, |λ| its weight
∑

i λi, and λ
′

its conjugate. A k-ribbon is a connected skew diagram of weight k which does not contain
a 2×2 square. The first (northwest) cell of a k-ribbon is called the head and the last one
(southeast) the tail. With λ is associated a k-core λ(k) and a k-quotient λ(k). The k-core is
the unique partition obtained by removing successively k-ribbons from λ, such that at each
step the remaining shape still be a partition. The k-quotient is a sequence of k partitions
derived from λ (see [5]). Let denote by P the set of all the partitions, P(k) the set of all
the k-cores (i.e all the partitions from which we can’t remove any k-ribbon) and P(k) the
cartesian product P × . . .× P of length k. The quotient bijection Φk is defined by

Φk : P −→ P(k) ×P
(k)

λ 7−→ (λ(k) , λ(k)) .

2.1 k-Ribbon tableaux

A k-ribbon tableau of shape λ and weight µ is a tiling of the skew diagram λ/λ(k) by labelled
k-ribbons such that the head of a ribbon labelled i must not be on the right of a ribbon
labelled j > i and its tail must not be on the top of a ribbon labelled j ≥ i. We denote by
Tab

(k)
λ,µ the set of all k-ribbon tableaux of shape λ and weight µ and by Tab

(k)
λ the set of all

the k-ribbon tableaux of shape λ and evaluation any composition of |λ|.

Example 1 A 3-ribbon tableau of shape (87651) and weight (3321)

2

3

1

4

2

3

1

1

2

.

The spin of a k-ribbon R is defined by sp(R) = h(R)−1
2

, where h(R) is the height of R. The
spin of a k-ribbon tableau T is the sum of the spin of all its ribbons, and the cospin is the
associated co-statistic into Tab

(k)
λ,µ, i.e

cosp(T ) = max
(
sp(T

′

), T
′

∈ Tab
(k)
λ,µ

)
− sp(T ) .
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We define the cospin polynomial G̃
(k)
λ,µ(q) as the generating polynomial of Tab

(k)
λ,µ with respect

to the cospin statistic

G̃
(k)
λ,µ(q) =

∑

T∈Tab
(k)
λ,µ

qcosp(T ) .

Example 2 For Tab
(3)
87651,3321, the cospin polynomial is

G̃
(3)
(87651),(3321)(q) = 3q5 + 17q4 + 33q3 + 31q2 + 18q + 5 .

2.2 k-tuples of Young tableaux

Let T ◦ = (T ◦1, . . . , T ◦k) be a k-tuple of semi-standard Young tableaux T ◦i of shape λ◦i

and evaluation µ◦i. We call shape of T ◦, the sequence of shapes λ◦ = (λ◦1 , . . . , λ◦k) and
evaluation of T ◦, the vector µ = (µ1, . . . , µp) defined by µi =

∑k
j=1 µ

◦j

i .

Definition 1 Let s be a given cell in T ◦,

- pos(s) is the integer such that the cell s is in the tableau T ◦pos(s),

- T ◦(s) is the label of the cell s,

- row(s) and col(s) represent the row and the column of s in T ◦pos(s),

- and diag(s) is the content of s, i.e diag(s)=col(s)-row(s).

Let denote by Tabλ◦, µ the set of all the k-tuple of Young tableaux T ◦ of shape λ◦ =
(λ◦1 , . . . , λ◦k) and evaluation µ. In [16], Stanton and White extend the bijection Φk to a
correspondence Ψk between the set of k-ribbon tableaux of shape λ and evaluation µ, and
the set of k-tuples of semi-standard Young tableaux of shape λ(k) and evaluation µ.

Example 3 Ψ3 send the 3-ribbon tableau of example 1 to the 3-tuple of tableaux

2( ), ,
2 3

1 32 1 1 4
.

Definition 2 ([14]) Let T ◦ = (T ◦1, . . . , T ◦k) be a k-tuple of semi-standard Young tableaux
and t and s two cells in T ◦. The couple (s, t) is an inversion if the following conditions hold

1- diag(s) = diag(t) and pos(s) < pos(t)
or
diag(s) = diag(t)−1 and pos(s) > pos(t),

2- row(s) ≤ row(t),

3- T (t) < T (s) < T (t↑), where t↑ is the cell directly above t and T (t↑) =∞ if t↑ 6∈ λ◦.
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The statistic of inversions on T ◦, written inv(T ◦), is the number of couples which form an
inversion in T ◦. This statistic permits to extend the correspondence Ψk to a bijection which
preserve the statistic (see [14]), i.e

∀ T ∈ Tab
(k)
λ,µ , inv (Ψk(T )) = cosp(T ) .

Let Ĩλ◦,µ(q) be the generating polynomial of Tabλ◦, µ with respect to the inversions statistic

Ĩλ◦,µ(q) =
∑

T ◦∈Tabλ◦,µ

qinv(T ◦) .

Proposition 1 The bijection Ψk implies the equality between the two generating polynomials

G̃λ,µ(q) = Ĩλ(k),µ(q) . (1)

In [3], Haglund, Haiman, Loehr, Remmel and Ulyanov define an other notion of inversions
on k-tuples of tableaux. This statistics is equal to inv(T ◦) up to a constant and gives a

combinatorial interpretation for the powers of q of the Macdonald polynomials H̃λ(X; q, t)
expanded on the monomials.

3 Hall-Littlewood functions at roots of unity

The Hall-Littlewood functions Q
′

λ(X; q) are the symmetric functions obtained by

Q
′

λ(X; q) =
∏

i<j

(1− qRij)
−1sλ(X) ,

where Rij is the raising operator such that Rij · sλ = sRij ·λ, with

Rij · λ = (λ1, . . . , λi + 1, . . . , λj − 1, . . . , λp) .

We shall need the Q̃
′

λ version of the Hall-Littlewood functions defined by

Q̃
′

λ(X; q) = qη(λ)Q
′

λ(X; q−1),

where η(λ) =
∑

i≥1(i− 1)λi.
Let λ = (λ1, . . . , λk) be a partition of length k, we denote by kλ the partition (kλ1, . . . , kλk).
In [11], Lascoux, Leclerc and Thibon showed that Hall-Littlewood functions can be expressed
in terms of ribbon tableaux

Q̃
′

λ(X; q) =
∑

T∈Tab
(k)
kλ

qcosp(T )XT =
∑

µ⊣|λ|

G̃
(k)
kλ,µ(q) mµ ,
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where XT is Xµ1
1 . . .X

µp
p with µ the evaluation of the ribbon tableau T .

We can remark that in the special case of a partition λ of length k, the k-core of kλ is empty
and the k-quotient of kλ is the product of single row partitions

(kλ)(k) = ((λk), . . . , (λ1)) .

Proposition 2 By equation 1, the Hall-Litllewood functions can be expressed as

Q̃
′

λ(X; q) =
∑

µ⊣|λ|

Ĩ(kλ)(k),µ(q) mµ .

This proposition means that Hall-Littlewood functions can be expressed in terms of all the
k-tuples of Young tableaux with shape a product of single row partitions.

Example 4 The Hall-Littlewood function Q̃
′

222 on the Schur basis is given by

Q̃
′

222(X, q) = q6s222 + (q5 + q4)s321 + q3s33 + q3s411 + (q4 + q3 + q2)s42 + (q2 + q)s51 + s6 .

Let denote by Λq the vector space of symmetric functions over the field C(q). Let k be a
positive integer and λ a partition, the plethysm of the powersum pλ by the powersum pk is
defined by

pk ◦ pλ = pkλ . (2)

As the powersums form a basis of the vector space Λq, the plethysm by a powersum pk is
defined on any symmetric function f .

Theorem 1 ([9]) Let n and k be two positive integers and ζ a primitive k-th root of unity.
The specialization of the parameter q at ζ in the Hall-Littlewood function indexed by the
rectangular partition nk, gives the following formulas

Q
′

nk(X; ζ) = (−1)(k−1)npk ◦ hn(X) , (3)

Q̃
′

nk(X; ζ) = pk ◦ hn(X) . (4)

In [9], Lascoux, Leclerc and Thibon only give an algebraic proof of this theorem. We shall
give a combinatorial proof of this formula using the bijection between ribbon tableaux and
ribbon rigged configurations given in [15].

Example 5 The Hall-Littlewood function Q̃
′

222(X; q) with q specialized at j = e
2iπ
3 is

Q̃
′

222(X; j) = s222 − s321 + s33 + s411 − s51 + s6 (5)

=
1

2
(p33 + p6) = p3 ◦

(
1

2
p11 +

1

2
p2

)
(6)

= p3 ◦ h2(X) . (7)
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4 Ribbon rigged configurations and diagonal classes

Let first recall some basic definitions about q-analogues of factorials and binomial coefficients.
Let n be a positive integer, we define the q-factorial (q)n by

(q)n =
n∏

i=1

(1 + q + . . . + qi−1) . (8)

Let a and b be two positive integers. A q-analogue of the binomial coefficient
(

a+b
a,b

)
can be

given by [
a + b
a, b

]
=

(q)a+b

(q)a (q)b
. (9)

4.1 Ribbon rigged configurations

In this subsection, we briefly recall some basic statements on ribbon rigged configurations
introduced by Schilling in [15]. Let ν =

(
ν(1), . . . , ν(p)

)
be an increasing p-tuple of partitions,

i.e the diagram of ν(i) is included in the diagram of ν(i+1). Let J be a sequence of sequences
of partitions such that

1- for all a in {1, . . . , p− 1}, J (a) is a l(ν(a))-tuple of partitions J (a) =
(
J

(a)
1 , . . . , J

(a)

l(ν(a))

)
,

2- for all a in {1, . . . , p− 1} and for all i ≤ l(ν(a)), we have 0 ≤ l(J
(a)
i ) ≤ ν

(a)
i − ν

(a)
i+1,

3- and each part of J
(a)
i (called quantum number) satisfy

0 ≤ J
(a)
i,j ≤ ν

(a+1)
i − ν

(a)
i (called vacancy number).

Definition 3 A ribbon rigged configuration of shape ν and evaluation J , written (ν, J), is
the filling of the top cells of each column of the partition ν(a) which are in the i-th line with
the parts of the partition J

(a)
i .

The graphical representation of a ribbon rigged configuration corresponds to the filling of
the top cells of each column of each partition with the numbers of the partition J

(a)
i and the

filling of the i-th row of the frontier of ν(a) with the vacancy numbers ν
(a+1)
i − ν

(a)
i .

Example 6 This is the graphical representation of the ribbon rigged configuration corre-
sponding to the shape ((21), (31), (32), (331)) and the evaluation (((1), ()), ((), (1)), ((1), (2, 1))).

01 0

1 20

1

0 2 1 2

1 10 .
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For two partitions δ and µ = (µ1, . . . , µp), we denote by RC(µ, δ), the set of all the ribbon
rigged configurations (ν, J) such that

1- the last partition of the sequence ν = (ν1, . . . , νp) satisfy ν(p) = δ
′

,

2- and for all a in {1, . . . , p}, we have |ν(a)| = µ1 + . . . + µa.

Let denote by Γµ,δ(ν) the set of all rigged configurations in RC(µ, δ) with shape ν and by
Γµ,δ the set of all the Γµ,δ(ν).

There exists a cocharge statistic on the ribbon rigged configurations defined by

c̃(ν, J) = α(ν) +
∑

1≤a≤n−1
1≤i≤µ1

|J
(a)
i | , (10)

where α(ν) is a constant associated to each form of ribbon rigged configurations given by

α(ν) =
∑

1≤a≤n−1
1≤i≤µ1

ν
(a)
i+1(ν

(a+1)
i − ν

(a)
i ) . (11)

By enumerating all the elements in RC(µ, δ), we can express the generating polynomial of

ribbon rigged configurations S̃µ,δ(q) with respect to the cocharge using q-binomial coefficients

S̃µ,δ(q) =
∑

(ν,J)∈RC(µ,δ)

qc̃(ν,J) (12)

=
∑

ν

qα(ν)
∏

1≤a≤n−1
1≤i≤µ1

[
ν
(a+1)
i −ν

(a)
i+1

ν
(a)
i −ν

(a)
i+1, ν

(a+1)
i −ν

(a)
i

]
, (13)

where ν describe the set of all the shape which appear in RC(µ, δ).

Let denote by S̃µ,δ(q, ν) the cocharge polynomial S̃µ,δ(q) restricted to the subset of ribbon
rigged configurations in RC(µ, δ) with shape ν

S̃µ,δ(q, ν) = qα(ν)
∏

1≤a≤n−1
1≤i≤µ1

[
ν
(a+1)
i −ν

(a)
i+1

ν
(a)
i −ν

(a)
i+1, ν

(a+1)
i −ν

(a)
i

]
.

Theorem 2 ([15]) Let λ be a partition with an empty k-core and a k-quotient λ(k) =
(λ◦1 , . . . , λ◦k), a sequence of single row partitions. Let δ be a partition such that δi = |λ◦i|
and µ a partition of weight |λ|/k. In this special case, there exists a bijection Θk, between
Tabλ(k), µ and RC(µ, δ) which preserves the statistics, i.e

∀ T ◦ ∈ Tabλ(k),µ , c̃ (Θk(T
◦)) = inv(T ◦) . (14)
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Let us just recall the steps of the algorithm which permits to compute Θk(T
◦).

Algorithm 1 ([15])
Input: T ◦ = (T ◦1, . . . , T ◦k) a k-tuple of Young tableaux of shape the sequence of single row
partitions λ◦ = (λ◦1 , . . . , λ◦k) and evaluation µ = (µ1, . . . , µp).

Initialization: ν ←− a sequence of p empty partitions.

For i from k down to 1 do

For j from 1 to l(λ◦i) do

1- For k from T ◦i

j to p do

Add a box in the j-th row in the partition ν(k)

EndFor

2- Recompute all the vacancy numbers,

3- Fill the new cells coming from step 1

with the vacancy number of their row,

4- Remove a maximal number in the (j-1)-th row

of the partitions which have a new box from step 1 in the j-th row.

EndFor

EndFor

For a from 1 to p-1 do

For i from 1 to µ1 do

Replace each number β in the row ν
(a)
i by ν

(a+1)
i − ν

(a)
i − β

EndFor

EndFor.

This algorithm is implemented in the MuPAD package MuPAD-Combinat.

Proposition 3 Let k be a positive integer and λ and µ two partitions such that k|µ| =
|λ|. Let λ(k) = (λ◦1, . . . , λ◦k) be the k-quotient of λ and δ the partition (|λ◦1|, . . . , |λ◦k |).
Combining the bijection Θk and Ψk, we have

G̃
(k)
λ,µ(q) = Ĩλ(k),µ(q) = S̃µ,δ(q) =

∑

ν

qα(ν)
∏

1≤a≤n−1
1≤i≤µ1

[
ν
(a+1)
i −ν

(a)
i+1

ν
(a)
i −ν

(a)
i+1, ν

(a+1)
i −ν

(a)
i

]
. (15)

Using this theorem, we have an explicit formula for the coefficients of the transition matrix
between the Hall-Littlewood functions and the monomials.

Corollary 1 Let λ be a partition. Let λ̃l(λ) = (λ̃◦1 , . . . , λ̃◦l(λ)) be the l(λ)-quotient of the

partition l(λ)λ and δ = (δ1, . . . , δl(λ)) be the partition defined by δi = |λ̃◦i |. Then, the Hall-
Littlewood function can be expressed as

Q̃
′

λ(X; q) =
∑

µ⊣|λ|

S̃µ,δ(q)mµ . (16)
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The ribbon rigged configurations we considered are different from the rigged configurations
defined in [6, 7, 8] which give the expansion of the Hall-Littlewood functions on the Schur

basis and correspond to highest weights in crystals of type A
(1)
n .

4.2 Diagonal classes of ribbon tableaux

Let T ◦ = (T ◦1 , . . . , T ◦k) be a sequence of Young tableaux with shape λ◦ a sequence of single
row partitions. Let define two constants m1 and m2 by

m1 = max (l(λ◦i), i = 1 . . . k) and m2 = max (λ◦i

1 , i = 1 . . . k) .

For all i ∈ {−m1 + 1, . . . , m2}, we call di the i-th diagonal of T ◦ defined by

di = {T ◦(s) such that diag(s) = i} ,

and we call diagonal vector of T ◦ the vector dT ◦ = (d−m1+1, . . . , dm2).

Two k-tuples of Young tableaux T ◦ and T ◦′ in Tabλ◦,µ are equivalent if and only if for
all i in {−m1 + 1, . . . , m2}, the i-th set in dT ◦ and dT ◦′ are the same. A diagonal class in
Tabλ◦,µ is a set Dλ◦,µ(d) of all equivalent k-tuples of tableaux with a diagonal vector d. The

set of all diagonal classes is denoted by Dλ◦,µ . We also define Ĩλ◦,µ(q, d) as the inversion

polynomial Ĩλ◦,µ(q) restricted to the diagonal class Dλ◦,µ(d)

Ĩλ◦,µ(q, d) =
∑

T ◦∈Dλ◦,µ(d)

qinv(T ◦) .

Similarly, the same diagonal classes can be defined on k-ribbon tableaux throught the bi-
jection Ψ−1

k . In [1], Carre and Leclerc give a combinatorial construction of diagonal classes
using a notion of labyrinths in the case of domino tableaux (i.e k = 2) and proved that
cospin polynomials of diagonal classes are of the form qa(1 + q)b with a and b two positive
integers. The combinatorial construction of diagonal classes for k > 2 still an open problem.

4.3 A matricial recoding of the bijection

In the following, we shall therefore propose a simpler but similar algorithm for finding the
shape of ribbon rigged configurations.

Let p and q be two integers andMp,q the set of all (p× q)-matrices with integer coefficients.
We define the operator AE onMp,q by

AE : Mp,q −→ Mp,q

M = (mi,j)i,j 7−→ N =

{
ni,1 = mi,1

ni,j =
∑

1≤k≤j mi,k , for 2 ≤ j ≤ q .
(17)
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Let T ◦ be a k-tuple of Young tableaux of shape λ◦, evaluation µ and diagonal class d. Let
Θk(T

◦) = (νT ◦ , JT ◦) be the ribbon rigged configuration corresponding to T ◦ by Θk. We
construct a (m2 × l(µ))-matrix MT ◦

using the following rule

MT ◦

i,j = number of cells labelled j in di+1 .

Proposition 4 The j-th column of the matrice AE

(
MT ◦)

is equal to the j-th partition of
νT ◦.

Proof: Let T ◦ be a k-tuple of single row tableaux and Θk(T
◦) = (νT ◦ , JT ◦). In the algorithm

1, we observe that boxes which appear in the i-th line of a partition ν
(j)
T ◦ only come from

elements of the i-th diagonal of T ◦ which are smaller than j. And by definition of the
operator AE, the entry (i, j) of the matrix AE(MT ◦

) corresponds to the number of cells less
than j in the i-th diagonal. �

Example 7 Let consider the following 3-tuple of single row tableaux T ◦

1 4 1 21 2 3 3 ,,( )
.

In this case, the matrices MT ◦

and AE(MT ◦

) are

MT ◦

=




3 0 0 0
0 2 0 1
0 0 1 0
0 0 1 0


 and AE(MT ◦

) =




3 3 3 3
0 2 2 3
0 0 1 1
0 0 1 1


 .

The shape of the rigged configuration Θk(T
◦) is

,

as can be read from AE(MT ◦

).

4.4 A combinatorial proof of the specialization

Proposition 5 Let λ◦ be a given sequence of single row partitions (λ◦1 , . . . , λ◦k), µ a parti-
tion of weight

∑
i |λ

◦i| and δ the partition (|λ◦1|, . . . , |λ◦k |). For all diagonal vectors d which
appears in Tabλ◦,µ, there exists a sequence of partitions ν, such that

Θk(Dλ◦,µ(d)) = Γµ,δ(ν) .

10



Hence, the explicit expression for the inversion polynomial of a diagonal class Dλ◦,µ(d) is

Ĩλ◦,µ(q, d) = S̃µ,δ(q, ν) = qα(ν)
∏

1≤a≤n−1
1≤i≤µ1

[
ν
(a+1)
i −ν

(a)
i+1

ν
(a)
i −ν

(a)
i+1, ν

(a+1)
i −ν

(a)
i

]
, (18)

where ν is the shape corresponding to the diagonal vector d.

Proof: Let d be a diagonal vector and T ◦, T ◦′ two elements in the diagonal class Dλ◦,µ(d).
These two k-tuples of tableaux differ only from a permutation of cells which are in a same

diagonal di. By construction, this property implies MT ◦

= MT ◦′

and by proposition 4,
Θk(T

◦) has the same shape ν than Θk(T
◦′). Consequently, as Θk is a bijection, Dλ◦,µ(d) is

embedded into Γµ,δ(ν). Conversely, let T ◦ and T ◦′ be two k-tuples of tableaux in Tabλ◦,µ

which are not in the same diagonal class. This implies that MT ◦

6= MT ◦′

and consequently
the shape of their corresponding ribbon rigged configurations are not the same. Finally, we
conclude that

Θk(Dλ◦,µ,(d)) = Γµ,δ(ν) .

The expression of inversion polynomials of diagonal classes in terms of q-supernomial coef-
ficients follows immediately from the invariance of the statistics under Θk. �

In the following, we consider k-tuples of tableaux of shape λ◦ = ((n), . . . , (n)) for some
n ≥ 1 and the next corollary characterize in this special case diagonal classes with only one
element.

Corollary 2 Let λ◦ = (λ◦1 , . . . , λ◦k) be a sequence of single rows partitions and µ a partition
of weight

∑k
i=1 |λ

◦i |. Let us describe the diagonal classes with only one element depending
on the evaluation µ.

- If each part of µ is divisible by k,

1- there is an unique diagonal class Dλ◦,µ(d) with only one element T ◦ = (T ◦1 , . . . , T ◦k),

2- the i-th position of each tableau T ◦j is filled with the same value,

3- inv(T ◦) = 0, i.e Ĩλ◦,µ(q, d) = 1.

- if one part of µ is not divisible by k, there is no diagonal classes with only one element.

Proof: A diagonal class Dλ◦,µ(d) has an unique element if and only if there is an unique way
to fill λ◦ according to the vector d. This implies that, for all i in {1, . . . , n}, all letters of di−1

are the same. For filling identically each position in di, the weight µ must be of the form
µ = (ks1, . . . , ksp). On the other hand, if one part of µ is not divisible by k, this implies that
for any filling T ◦ of λ◦, there exist two tableaux T ◦a and T ◦b in T ◦ which have two different
values in one position. By transposition of these two cells, we obtain an other filling T ◦′

which is in the same diagonal class than T ◦. Consequently, for this kind of evaluation, all
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diagonal classes have more than 2 elements.
Let d be a diagonal vector such that the diagonal class Dλ◦,µ(d) contains only one element
T ◦ and λ be the partition such that λ(k) = λ◦. The inverse image of T ◦ by Ψk is a k-ribbon
tableaux in Tab

(k)
λ,µ, which only contains (k × k)-blocks of the form

i

i

i

i

Such k-ribbon tableaux have maximal spin in Tab
(k)
λ,µ. Consequently, cospins of such k-

ribbon tableaux are equal to zero. Finally, as Ψk preserve the statistics, this implies that
the inversions of the corresponding k-tuple of tableaux are also equal to zero. By definition
of the bijection Ψk, the length of the partition λ is k because λ◦ is a k-tuple of single row
partitions. Consequently, due to the increasing condition in the definition of a k-ribbon
tableau, there is an unique way to build a k-ribbon tableau of shape λ with the previous
blocks. This implies the uniqueness of the diagonal classes with only one element for a given
evaluation. �

Corollary 3 Let λ◦ a k-tuple of partitions and µ a partition of weight
∑k

i=1 |λ
◦i | and satis-

fying the condition µ = (ks1, . . . , ksp) for some positive integers s1, . . . , sp. Let Dλ◦,µ(d) be
a diagonal class with only one element T ◦ and Θk(T

◦) = (νT ◦ , JT ◦) the corresponding ribbon
rigged configuration. The i-th partition of the shape νT ◦ is the rectangular shape (ks1+...+si).

Proof: Let T ◦ ba a k-tuple of tableaux with the same values at the same positions of each
tableau. The corresponding matrix MT ◦

is

MT ◦

=




k 0 . . . . . . . . . 0
...

...
...

k 0 . . . . . . . . . 0
0 k 0 . . . . . . 0
...

...
...

...
0 k 0 . . . . . . 0
...

...
0 . . . . . . . . . 0 k
...

...
...

0 . . . . . . . . . 0 k




,

where k occurs si times in the i-th column. This implies that the shape is given by the
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matrix

AE(MT ◦

) =




k k . . . . . . . . . k
...

...
...

k k . . . . . . . . . k
0 k k . . . . . . k
...

...
...

...
0 k k . . . . . . k
...

...
0 . . . . . . . . . 0 k
...

...
...

0 . . . . . . . . . 0 k




.

Then, the i-th partition in the shape νT ◦ is the rectangular partition (ks1+...+si). �

Proposition 6 All k-th primitive roots of unity are roots of the inversions polynomials of
diagonal classes with strictly more than one element.

Proof: Let T ◦ be a k-tuple of tableaux in a diagonal class Dλ◦,µ(d) with strictly more than one
element and let ν = (ν(1), . . . , ν(p)) be the shape of the ribbon rigged configuration Θk(T

◦),
which is the same for all the k-tuples of tableaux in this diagonal class (see proposition 5).
Let h be the last position such that the h-th diagonal dh has at least two different elements.
Then, the (h + 1)-th partition in νT ◦ is a rectangular partition of width k and height s ≤ r.

As the last part of ν(h) = (ν
(h)
1 , . . . , ν

(h)
l ) is equal to a with a < h, the following coefficient

appears in the inversions polynomial Ĩλ◦,µ(q, d)

[
ν
(h+1)
l

−ν
(h)
l+1

ν
(h)
l

−ν
(h)
l+1, ν

(h+1)
l

−ν
(h)
l

]
=

[
k

a−0, k−a

]
.

By definition, all k-th primitive roots of unity are roots of the q-binomial coefficient
[

k
a, k−a

]
.

Finally for all ζ , k-th primitive root of unity,

Ĩλ◦,µ(ζ, d) = 0 .

�

Corollary 4 Let λ◦ = (λ◦1 , . . . , λ◦k) be a k-tuple of single row partitions and µ a partition of
weight

∑k
i=1 |λ

◦i | and ζ a k-th primitive root of unity. We have the following specializations
for the inversions polynomials

- if all the parts of µ are divisible by k,

Ĩλ◦,µ(ζ) = 1 ,

13



- if there exists a part of µ which is not divisible by k,

Ĩλ◦,µ(ζ) = 0 .

Proof: Using the partition of Tabλ◦,µ into diagonal classes, the inversions polynomial Ĩλ◦,µ(q)
can be expressed as

Ĩλ◦,µ(q) =
∑

d

Ĩλ◦,µ(q, d) ,

where d describe the set of all the diagonal vectors which appears in Tabλ◦,µ. By splitting
the index set with respect to the cardinality of the diagonal classes and specializing q at ζ ,
we obtain

Ĩλ◦,µ(q) =
∑

d/#Dλ◦,µ(d) = 1

Ĩλ◦,µ(q, d) +
∑

d/#Dλ◦,µ(d) > 1

Ĩλ◦,µ(q, d) , (19)

Ĩλ◦,µ(ζ) =
∑

d/#Dλ◦,µ(d) = 1

Ĩλ◦,µ(ζ, d) +
∑

d/#Dλ◦,µ(d) > 1

Ĩλ◦,µ(ζ, d) . (20)

Using the result of corollary 2, we conclude that the first factor of the equation 20 gives 1
if all the parts of µ are dvisible by k and 0 otherwise. By proposition 6, the second factor
always gives 0 and we obtain the result. �

Now, we are able to give a combinatorial proof of the specialization of Hall-Littlewood
functions given in theorem 1. Let n and k be two positive integers. Let denote by Λk

p the
set of all partitions of weight p with all parts divisible by k. Using results of corollary 4,

Q̃
′

nk(X; ζ) =
∑

µ⊣nk

Ĩ((n),...,(n)),µ(ζ) mµ (21)

=
∑

µ∈Λk
nk

mµ =
∑

µ∈Λk
nk

pk ◦mµ/k , (22)

where µ/k denote the partition (µ1

k
, . . . , µp

k
). By the linearity of the plethysm, we obtain

Q̃
′

nk(X; ζ) = pk ◦




∑

µ∈Λk
nk

mµ/k


 , (23)

and by definition of the complete function, we conclude that

Q̃
′

nk(X; ζ) = pk ◦ hn(X) .

In the rectangular case, the constant η
(
nk

)
is equal to

η
(
nk

)
= n

k∑

i=1

(i− 1) =
nk(k − 1)

2
.
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This implies that ζη(nk) = (−1)(k−1)n and the specialization for Q
′

nk(X; ζ).

Remark In the case where λ◦ is a k-tuple of single column partitions ((1n), . . . , (1n)), there
is a similar bijection between k-tuples of Young tableaux of shape λ◦ and ribbon rigged
configurations (see [15]). That permits to prove, with the same method, the following spe-
cialisation

Q
′

knk(X; ζ) = (−1)(k−1)npk ◦ en(X) .
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in Algebraic Combinatorics Séminaire Lotharingien de Combinatoire 51 (2004).
http://mupad-combinat.sourceforge.net/

[5] G. D. James, A. Kerber, The representation theory of the symmetric group,
Addison-Wesley, 1981.

[6] S.V. Kerov, A.N. Kirillov, N.Y Reshetikhin, Combinatorics, the Bethe ansatz
and representations of symmetric group, J. Soviet Math 41 (1988), 916-924.

[7] A.N. Kirillov, N.Y Reshetikhin, The Bethe ansatz and the combinatorics of
Young tableaux, J. Soviet Math 41 (1988), 925-955.

[8] A.N. Kirillov, N.Y Reshetikhin, Representations of Yangians and multiplicities
of the inclusion of the irreductible components of the tensor product of representations
of simple Lie algebras, J. Soviet Math 52 (1990), 3156-3164.

[9] A. Lascoux, B. Leclerc, J.-Y. Thibon, Fonctions de Hall-Littlewood et poly-
nomes de Kostka-Foulkes aux racines de l’unité C.R. Académie des sciences de Paris
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Université de Marne-la-Vallée
77454 Marne-la-Vallée Cedex 2, France
email: francois.descouens@univ-mlv.fr

16


