
HAL Id: hal-00122981
https://hal.science/hal-00122981v3

Submitted on 5 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-deterministic Boolean Proof Nets
Virgile Mogbil

To cite this version:
Virgile Mogbil. Non-deterministic Boolean Proof Nets. First International Workshop Foundational
and Practical Aspects of Resource Analysis (FOPARA 2009), Nov 2009, Eindhoven, Netherlands. pp.
131-145, �10.1007/978-3-642-15331-0�. �hal-00122981v3�

https://hal.science/hal-00122981v3
https://hal.archives-ouvertes.fr

Non-deterministic Boolean Proof Nets
(rapport interne LIPN - Novembre 2009)

Virgile Mogbil

LIPN – UMR7030, CNRS – Université Paris 13, France
virgile.mogbil@lipn.univ-paris13.fr ?

Abstract. We introduce Non-deterministic Boolean proof nets to study
the correspondence with Boolean circuits, a parallel model of computa-
tion. We extend the cut elimination of Non-deterministic Multiplicative
Linear logic to a parallel procedure in proof nets. With the restriction of
proof nets to Boolean types, we prove that the cut-elimination procedure
corresponds to Non-deterministic Boolean circuit evaluation and recip-
rocally. We obtain implicit characterization of the complexity classes NP
and NC (the efficiently parallelizable functions).

1 Introduction

The proof nets [Gir87,DR89] of the Linear logic (LL) are a parallel syntax for
logical proofs without all the bureaucracy of sequent calculus. Their study is also
motivated by the well known Curry-Howard isomorphism: there is a correspon-
dence between proofs and programs which associates cut-elimination in proofs
and execution in functional programs. Proof nets were used in subsystems of
LL to give Curry-Howard characterizations of complexity classes. Usually this
is done in LL by reducing the deductive power of the exponentials connectives,
also known as modalities, controlling duplication in cut-elimination process. The
most known restrictions characterize P , the class of decision problems which can
be solved in polynomial time. E.g. it is the case of the Intuitionistic Light Affine
Logic (ILAL). By expressing non-determinism by an explicit rule to choose be-
tween proofs of the same formula, the Non-deterministic extension of ILAL char-
acterizes quite naturally NP [Mau03]. This sum rule is a logical counterpart to
non-deterministic choice in process calculi. With proof nets, other characteri-
zations were given by correspondence with models of parallel computation like
Boolean circuits as we shall see later. In this paper we make use of the sum rule
to extend those proof nets to a non-deterministic framework.

Boolean circuits are a standard models of parallel computation [Coo85,BS90]
[Vol99]. Several important complexity classes are defined in terms of Boolean cir-
cuits. E.g. NC can be thought of as the problems that can be efficiently solved
on a parallel computer just as the class P can be thought of as the tractable
problems. Because a Boolean circuit has a fixed input size, an infinite family
of Boolean circuits is needed to do computations on arbitrary inputs. With a
? Work partially supported by the french project Complice (ANR-08-BLANC-0211-01)

uniformity property, a family can be however regarded as an implementation
of an algorithm. The Boolean circuit depth is the time on a parallel computer
where the size is the number of processors. For instance NC is the set of Boolean
functions computable by uniform Boolean circuits of polynomial size and poly-
logarithmic depth.

By restricting proved formulas and with a logical depth notion, there is
a proofs-as-programs correspondence between proof nets and NC such that
both size and depth are preserved [Ter04]. In this setting, the proof nets al-
low among others to simulate gates by higher order. Here we consider a non-
deterministic extension of proof nets, to give a proof-as-programs correspondence
with NNC (k(n)), the class defined from NC Boolean circuits with O(k(n)) non-
deterministic variables. In particular NC = NNC (log n) and NP = NNC (poly).
So the Curry-Howard isomorphism for parallel model of computation gives us
new tools to study theoretical implicit complexity.

In section 2 we present MLLu, the multiplicative LL with arbitrary arity
This is the smallest fragment of LL that encodes the unbounded fan-in Boolean
circuits [Ter04]. We recall the reduction steps of the cut-elimination. We give
its non-deterministic extension nMLLu and proof nets for it as in [Mau03]. We
recall several size and depth notions used in the proofs, all are natural graph
theoretic notions. In section 3 we mostly analyze and define a new cut elimination
from a parallel point of view. We prove the central theorems which allow us to
establish the results on the complexity classes. In section 4 we recall Boolean
circuit definitions. They include uniformity of both proof net families and circuit
families as well as hierarchy of NC and NNC (). We introduce the Boolean proof
nets of nMLLu, i.e with sum-boxes, which generalize the Boolean proof nets
of MLLu. In section 5 we apply the previous theorems to our Boolean proof
nets with sum-boxes and we establish a proofs-as-programs correspondence with
NNC () Boolean circuits. They are translation and simulation theorems that
preserve both size and depth of the Boolean proof nets and Boolean circuits.
Finally in section 6 we summarize the obtained results via UBPN (), a hierarchy
of proof net complexity classes defined analogously to the NNC () hierarchy. The
classes UBPN (poly), UBPN (polylog) and UBPN (1) of uniform Boolean proof net
families with respectively nO(1), logO(1) n and O(1) sum-boxes are respectively
equal to NP , NNC (polylog) and NC.

2 Non-deterministic Linear logic

2.1 Formulas, Sequent calculus and cut-elimination

We write −→A (respectively ←−A) for an ordered sequence of formulas A1, . . . , An

(resp. An, . . . , A1).
The formulas of MLLu and nMLLu are built on literals by conjunction

�n(−→A) and disjunction On(←−A) of Multiplicative Linear logic but with unbounded
arities n > 1. The only difference with binary connectives is that this gives us
depth-efficient proofs [DR89]. The negation of a non-literal formula is defined by

2

De Morgan’s duality: (�n(−→A))⊥ =On(←−A⊥) and (On(−→A))⊥ = �n(←−A⊥) where
the negation applies to sequences of formulas as expected.

The sequents of nMLLu are of the form ` Γ , where Γ is a multiset of for-
mulas. The rules of the nMLLu sequent calculus are described in Fig.1. As in
Linear logic sequent calculus, MLLu and nMLLu admit a cut-elimination the-
orem (Hauptsatz) and implicit exchange. The cut-elimination steps of nMLLu

(a)

` Γ,A ` ∆,A⊥
` Γ,∆ cut ` A,A⊥

ax
(b)
` Γ · · · ` Γ

` Γ sum

` Γ1, A1 · · · ` Γn, An

` Γ1, . . . , Γn,�n(
−→
A)

�n
` Γ,An, . . . , A1

` Γ,On(
←−
A)

On

Fig. 1. Sequent calculus rules: (a) MLLu and (a+b) nMLLu

sequent calculus are n-ary versions of the Linear logic proofs rewriting: an axiom
cut (i.e. a cut rule with an axiom premise) rewrites without the axiom rule, and
the multiplicative cut (i.e. a cut rule between multiplicative formulas) rewrites in
sequence of cuts between premises. In Fig.2 we give the sum-rule cut-elimination
step as in [Mau03].

` Γ,A · · · ` Γ,A
` Γ,A sum ` ∆,A⊥

` Γ,∆ cut −→

` Γ,A ` ∆,A⊥
` Γ,∆ cut · · ·

` Γ,A ` ∆,A⊥
` Γ,∆ cut

` Γ,∆ sum

Fig. 2. nMLLu sum-rule cut-elimination step

2.2 Proof nets and reduction rules

We suppose the reader familiar with proof nets and more specifically with the
reduction rules corresponding to the cut-elimination steps [Gir96].

A proof net [Gir87,DR89] is a graph that just keeps the structure of sequent
calculus proofs without some computational irrelevant part. It is a set of con-
nected links that we build by inference from the sequent calculus rules. There

1

0

n & 1

0

n 1

0

n

0 0 &

1

0

1

0

2

2
3 &

1

0

1

0

2

2
3

b0 ≡ b1 ≡

Fig. 3. ax-link, �-link, O-link and �-link ; small proof nets

are several sorts of links: ax-link, �-link and O-link corresponding respectively

3

to MLLu rules. Every link has several ports numbered by convention as in Fig.3.
This numbering is omitted when there is no ambiguity. The conclusion port, also
called conclusion of the link, is the port numbered 0. We use a wire between two
conclusion ports rather than a cut-link that corresponds to sequent calculus cut-
rule. Now we focus us on the nMLLu proof nets which extend those of MLLu. As
we only consider proof nets inferred from sequent calculus, we can inductively
built them in a equivalent way from the ax-links with the constructors of Fig. 4.
The sequent calculus sum-rule corresponds to a box (Fig.4), called sum-box, en-
closing proof nets, called sub-nets, such that we associate one �-link for each
shared conclusion.

1

0

n & 1

0

n

0 0

P P1 n P

0 0 0 0

P Q

1

0

n

S

S

1

0

n

0 0

n

1

0 0

Fig. 4. Proof net constructors: �-link, O-link, cut and sum-box

Definition 1. A proof net is (i) a finite set L of links, (ii) a function σ :
L→ {•,�} ∪ {�n,On}n>1 giving the sort of each link, (iii) a symmetric binary
relation over L× N for each wire between two ports of distinct links, and (iv) a
function τ : L→ N which associates to each link a unique number corresponding
to the sum-box that encloses it.

A summand of a proof net is a proof net obtained by erasing all but one
sub-net in every sum-box.

In section 4 we give a Logspace description which extends this one. We call the
conclusions of a proof net the set of links whose conclusion ports are unrelated
with other link ports. We write proof nets either with graphs or just with the
link names. For instance the last proof net in Fig.4 is sum(S1, . . . , Sn).

Remark that in every summand of a proof net the �-links correspond to
superfluous sum-rules with only one premise. So every summand of a proof net
of nMLLu easily induces a proof net of MLLu.

Definition 2. The reduction rules1 for MLLu proof nets, called respectively ax-
reduction and m-reduction, are defined by:

cut(ax(A,A⊥), A) →ax A and cut(�n(−→A),On(←−A⊥)) →m {cut(Ai, A
⊥
i)}16i6n

For nMLLu proof nets there are moreover the reduction rules [Mau03], called re-
spectively merge-reduction and down-reduction, defined for an arbitrary context
C by:
1 Up to the order when they are not drawn

4

sum(sum(−→A),−→B)→merge sum(−→A,−→B)

sum(C[sum(−→A)],−→B) →down sum(sum(C[−→A]),−→B)

We define various notions of depth in a natural way: the box-depth associated
to sum-boxes, the depth of formulas and the logical depth associated to cuts.

Definition 3. The box-depth b(l) of a link l is the number of sum-boxes that
enclose it. The box-depth of a sum-box is the box-depth of its �-link links. The
box-depth b(P) of a proof net P is the maximal box-depth of its links.

The depth d(A) of a formula A in a sequent calculus derivation π is the
length of the longest sequence of rules in π since axioms until the introduction
of the formula A. The depth d(π) of a nMLLu sequent calculus derivation π is
the maximal depth of its cut formulas.

The logical depth c(P) of a proof net P is c(P) = min{d(π) | P is inferred
by the sequent calculus derivation π}. We write c(P) the logical depth without
counting the sum-rules.

Remark that by definition all �-links of the same sum-box are at same box-
depth. When a proof net is induced by a sequent calculus proof, he keeps traces
of sequentialization by the sum-boxes. This corresponds to a stratification by
the box-depth that we use in our reduction strategy.

The size |P | of a proof net P is the number of links in P such that we count
boxes but not the �-links.

3 Parallel reductions

Like the cut-elimination of sequent calculus the reduction of proof net is ter-
minating. Even if the reduction of proof nets has the Church-Rosser property,
reductions cannot be done in parallel as there is critical pairs. A critical pair
arises when redexes of reduction rules overlap. In order to have efficient proof
net reductions we consider all possible critical pairs. E.g. a cut between two
distinct axioms has two overlapping redexes depending on if we consider one or
the other axioms. This is solved for MLLu in [Ter04] by introducing a tightening
reduction: one reduces each maximal alternating chain of cuts and axioms in
only one global step leading to what is expected by sequential reduction steps.
Here is an example where the maximal chain starts with a cut and finishes with
an axiom:

0
0 0 0 0 0 0

0

We define various notions of depth in a natural way: the box-depth associated
to sum-boxes, the depth of formulae and the logical depth associated to cuts.

Definition 3. The box-depth b(l) of a link l is the number of sum-boxes that
enclose it. The box-depth of a sum-box is the box-depth of its �-link links. The
box-depth b(P) of a proof net P is the maximal box-depth of its links.

The depth d(A) of a formula A in a sequent calculus derivation π is the
length of the longest sequence of rules in π since axioms until the introduction
of the formula A. The depth d(π) of a nMLLu sequent calculus derivation π is
the maximal depth of its cut formulas.

The logical depth c(P) of a proof net P is c(P) = min{d(π) | P is inferred
by the sequent calculus derivation π}. We write c(P) the logical depth without
counting the sum-rules.

Remark that by definition all �-links of the same sum-box are at same box-
depth. If we consider stratification of boxes then the depth and the logical depth
can be decomposed in partial depths. We write it with indexes for the box-depths
as follows: d(l) =

�
0�x�b(P) dx(l)

The size |P | of a proof net P is the number of links in P such that we count
boxes but not the �-links. The partial size |P |x of a proof net P for a sum-box
x is the size of P restricted by the box-depth x: |P | =

�
0�x�b(P) |P |x.

3 Parallel reductions

Like the cut-elimination of sequent calculus the reduction of proof net is ter-
minating. Even if the reduction of proof nets has the Church-Rosser property,
reductions cannot be done in parallel as there is critical pairs. A critical pair
arises when redexes of reduction rules overlap. In order to have efficient proof
net reductions we consider all possible critical pairs. E.g. a cut between two
distinct axioms has two overlaping redexes depending on if we consider one or
the other axioms. This is solved for MLLu in [Ter04] by introducing a tightening
reduction: one reduces each maximal alternating chain of cuts and axioms in
only one global step leading to what is expected by sequential reduction steps.
Here is an example where the maximal chain starts with a cut and finishes with
an axiom:

0

0 0 0 0 0 0

t 0

−→t

Remark that by maximality, no critical pairs can be tightening redexes. So such
reductions can be done in parallel. We denote t-reduction a tightening reduction
and we write it →t. We write ⇒t the parallel →t reductions. As →m redexes
are never critical pairs we write ⇒m the parallel →m reductions. In the rest of
the paper we write ⇒k for k parallel reduction steps (⇒t or ⇒m) in MLLu.

5

Remark that by maximality, no critical pairs can be tightening redexes. So such
reductions can be done in parallel. We denote t-reduction a tightening reduction
and we write it →t. We write ⇒t for the simultaneous application of all the
→t reductions that can be fired in a given proof net. As →m redexes are never

5

critical pairs we also write ⇒m for the simultaneous →m reductions. In the rest
of the paper we write ⇒k for k parallel reduction steps (⇒t or ⇒m) in MLLu.

In this section we introduce new reduction rules to answer the parallelization
question for nMLLu such that reduction is confluent. We will give a bound on
the number of reductions to normalize a proof net (theorem 1).

3.1 Parallel reductions of merged sum-boxes

The merge rules applied to distinct sum-boxes immediately within a same sum-
box are not really a conflict case even if it is a critical pair. We could merge
them in parallel if the sum-box itself would not be merged at the same time.
Because the merge-rule is confluent one can consider a global rewriting rule by
merging sum-boxes as expected. This corresponds to a sort of innermost sequen-
tial strategy. We define a new reduction →M whose redex is a maximal tree of
successively nested sum-boxes. So the root of the tree of sum-boxes is an outer-
most sum-box that cannot be merged further. The →M reduction merges this
tree in the root sum-box as it is mimicked in Fig.5. We do not draw neither wires
between the �-links nor the sub-nets which are not sum-boxes. By maximality
this reduction has no critical pairs, so we can do simultaneously→M reductions.

In this section we introduce new reduction rules to answer the parallelization
question for nMLLu such that reduction is confluent. We will give a bound on
the number of reductions to normalize a proof net (theorem 1).

3.1 Parallel reductions of merged sum-boxes

Applications of merge rules in distinct summands of the same sum-box are not a
conflict case. We can apply merge rules in parallel on them if the sum-box itself
would not be merged at the same time. Because the merge-rule is confluent one
can easily consider a global rewriting rule by merging sum-boxes as expected. We
reduce a sub-net composed of maximal successive sum-boxes in only one step:
the sub-net starts with a tree of sum-boxes and is disjoint of all other merge
redexes by maximality. The reduction merges this sum-box tree. We write it
→M . To simplify the presentation we symbolically describe the corresponding
rule in Fig.5 where we write only the links of one sum-box with a simple square.

Fig. 5. →M is the global reduction by merging

−→M

3.2 Parallel down-reductions

According to the context C, the pattern sum(C[sum(−→A)],−→B) can be a critical
pair for the down rule. For example under a sum-box cut(sum(−→A), sum(−→B))
reduces to sum(sum(cut(−→A,

−→
B))) in two →down steps. The same holds for a

more general context C but remains convergent. To simplify the notations, we
use the notion of section of indexed family of elements.

Definition 4. Let B be a sum-box and let S be a summand of B. Let {Bi}i∈I

be the family of sum-boxes of S such that b(Bi) = b(B) + 1 for all i ∈ I. Let
C be the context of the Bi with relation to S i.e. S = C[{Bi}i∈I]. Let Bi be
the family of summands of Bi i.e. Bi = sum(Bi). The section A�F of a family
F = {Bi}i∈I is a family A = {ai}i∈I such that for all i ∈ I we have ai ∈ Bi.
We defined the reduction of a summand S = C[{sum(Bi)}i∈I] of a sum-box by:

sum(−→X,C[{sum(Bi)}i∈I]) →B sum(−→X, {C[A] | A�{Bi}i∈I})

We abusively use a set to denote the reduct but the corresponding family is
easily obtained from the implicit order associated to sections.

6

Fig. 5. →M is the global reduction by merging

3.2 Parallel down-reductions

According to the context C, the pattern sum(C[sum(−→A)],−→B) can reveal a criti-
cal pair for the down rule. E.g. within a sum-box cut(sum(A1, A2), sum(B1, B2))
reduces to sum(sum({cut(Ai, Bj)}16i,j62))) in four→down steps. The same holds
for a more general context C but remains convergent. So we define a new re-
duction rule based on the mathematical notion of section of indexed family of
elements.

Definition 4. Let B be a sum-box and let S be a sub-net of B, i.e. B =
sum(−→X,S). Let {Bi}i∈I be the family of nested sum-boxes of B in S, i.e. Bi ⊂ S
and b(Bi) = b(B) + 1 for all i ∈ I. Let C be the context of the Bi with re-
lation to S, i.e. S = C[{Bi}i∈I]. We write Bi the family of sub-nets of Bi,
i.e. Bi = sum(Bi). The section A/F of a family F = {Bi}i∈I is a family
A = {ak}k∈I such that for all k ∈ I we have ak ∈ Bi. We define →B the
reduction of a sub-net of a sum-box B by:

sum(−→X,C[{sum(Bi)}i∈I]) →B sum(−→X, {C[A] | A/{Bi}i∈I})

6

We abusively use a set to denote the reduct but the corresponding family is
easily obtained from the implicit order associated to sections.

The intuition is to reduce in one (parallelizable) reduction step the sum-boxes
Bi of one sub-net S, merging only affected sum-boxes: the result is a set of sub-
nets which are the combination of all the contents of the Bi and the context
outside the Bi. So the sum-boxes Bi go down whereas contexts go up. Remark
that if the family of Bi is such that each Bi contains exactly one sub-net then
by definition the context C applies on this set of sub-nets.

We give an example: let B1 = sum(a1, a2) and B2 = sum(b1, b2), let C be a
context without other sum-boxes than B1 and B2. We have:
sum(−→X,C[B1, B2]) →B sum(−→X,C[a1, b1], C[a1, b2], C[a2, b1], C[a2, b2]).

Remark that the affected sum-boxes were merged by our reduction, but just
to have a more readable definition. This reduction rule is a generalization of
the case of context composed only with cut sum-boxes: in such case we need
to reduce at fixed box-depth after all other reductions at this box-depth. But
without this generalization we are not able to decrease at the same time the
logical depth.

We redefine now →B as the previous reduction extended to all sub-nets of
the same sum-box B. This reduction is well defined as sub-nets are disjoints.
We write⇒Dx such reductions applied in parallel to every sum-box at the same
box-depth x − 1. By this way the sum-boxes at box-depth x go down. We do
this in order to have no conflicts. For a given proof net P , we write ⇒D

b(P)

the reduction sequence⇒Db(P) · · ·⇒D1. So with our new reduction rule and our
strategy we have the following remarkable properties:

Lemma 1. Let P be a proof net such that b(P) > 0.
If sum(P)⇒Db(P)sum(P ′) then b(P ′) = b(P)− 1 and c(P ′) = c(P).

Proof. Let S be a sub-net of a sum-box B of box-depth b(P)− 1 in sum(P).
We have b(S) = 1. By definition each link in the reduct of S by →B has the
box-depth b(P) − 1. It is the same for all sub-nets of B by →B reduction. By
definition the ⇒Db(P) reduction applies to all sum-boxes of box-depth b(P)− 1
in sum(P). So the conclusion follows. �

The above Lemma implies the following:

Lemma 2. Let P be a proof net such that b(P) > 0.
If sum(P)⇒Db(P) · · ·⇒D1 ⇒M sum(P ′) then we have:

i) c(P ′) = c(P) and b(P ′) = 0 i.e. P ′ is sum-box free.
ii) For all choice of summand si for i ∈ I, si(sum(P ′))⇒c(P) Pi cut-free.

Theorem 1. There is a sequence of O(c(P) + b(P)) parallel reductions which
reduces a nMLLu proof net P in a cut-free one.

Proof. Let P ′ defined from P as in lemma 2. Because all the summands si for
i ∈ I are pairwise disjoint we have ∪i∈Isi(sum(P ′)) ⇒c(P) ∪i∈IPi cut-free. So
sum(P)⇒b(P)

D ⇒1
M sum(P ′)⇒c(P) sum({Pi}i∈I) gives a cut-free proof net. �

7

4 Boolean circuits and Boolean proof nets

In this section we recall the definitions and some properties of Boolean circuits
and Boolean proof nets. We give also certain relationships between complexity
classes associated to Boolean circuits [Coo85,All89,Wol94,Par89]. The novelties
concern only the Boolean proof nets of nMLLu that extend those of MLLu.

4.1 Boolean circuits

A basis is a finite set of sequences of Boolean functions. The standard basis are
B0 = {¬,∧,∨} and B1 = {¬, (∧n)n∈N, (∨n)n∈N}. The circuits over basis with
an infinite sequence of Boolean functions (resp. without) are called unbounded
fan-in (resp. bounded fan-in) circuits. We extend the basis with a stCONN2 gate
to test the strong connectivity of an edge set given in input. As in [Ter04] we
will use this gate to simulate the tightening reduction of proof nets.

Definition 5. A deterministic Boolean circuit with n inputs over a basis B is a
directed acyclic graph with n + 1 sources or inputs (vertices with no incoming
edges) and one sink or output (a vertex with no out-going edges). Sources are
labeled by literals from {x1, . . . , xn}∪{1} and nodes of in-degree k are labeled by
one of the k-ary Boolean functions of B. Non-inputs nodes are called gates, and
in-degree and out-degree are called fan-in and fan-out respectively. Let Fn be the
set of all Boolean functions f : {0, 1}n → {0, 1} for some n ∈ N. A deterministic
circuit computes a function in Fn (or accepts a set X ⊆ {0, 1}n) in a natural
way.
A non-deterministic Boolean circuit C with n inputs over a basis B with k non-
deterministic variables [Wol94,Par89] is a circuit with n+ k + 1 sources labeled
by {x1, . . . , xn}∪{y1, . . . , yk}∪{1} s.t. it computes a function f ∈ Fn as follows:
for x ∈ {0, 1}n, f(x) = 1 iff ∃y ∈ {0, 1}k a witness s.t. C(x, y) evaluates to 1.
A family of circuits C = (Cn)n∈N computes a function f : {0, 1}∗ → {0, 1}
(or accepts a set X ∈ {0, 1}∗) if for every n ∈ N the circuit Cn computes the
restriction of f to Fn.
The size of a circuit is the number of gates and the depth is the length of a
longest directed path.

4.2 Boolean proof nets

Boolean values are represented with the type B =O3(α⊥, α⊥,�2(α, α)). The
non-deterministic Boolean values are represented with the same type ! Let us
consider the following proof nets of type B: the non-deterministic Boolean rep-
resented by b2 ≡ sum(b0, b1) where b0 and b1 are the two cut-free proof nets of
MLLu respectively called false and true given in Fig.3.

Definition 6 ([Ter04]). A Boolean proof net with n inputs −→p = p1, . . . , pn,
one output and k(n) sum-boxes is a proof net P (−→p) of nMLLu of type:

` p1 : B⊥[A1], . . . , pn : B⊥[An], q : �m+1(B,−→C)

8

with k(n) a function of n, and some −→A ≡ A1, . . . , An and −→C ≡ C1, . . . , Cm

where we denote B[A] the formula B where all occurrences of α are substituted
by A. Given −→x ≡ bi1 , . . . , bin we write P (−→x) the proof net where we cut every
bi with pi.

Without loss of generality we can always set sum(P) for P : if a Boolean proof
net P is without sum-boxes then sum(P) is a sum-box with only one summand
in MLLu. This generalizes uniform MLLu Boolean proof nets. We often omit
this initial sum-box for the sake of simplicity.

Following the definition, for a given −→x ≡ bi1 , . . . , bin , a Boolean proof net
sum(P (−→x)) is of type �m+1(B,−→C) and reduces in a unique cut-free proof net
of the same type (e.g. by the reduction sequence of the previous section). We
say that sum(P (−→x)) evaluates to 1 iff one of its summands is b1 with some
garbage −→C . There is an asymmetry between 1 and 0 as for non-deterministic
Turing machines.

Definition 7 ([Ter04]). A Boolean proof net P (−→p) with n inputs computes a
function f : {0, 1}n → {0, 1} (or accepts a set X ⊆ {0, 1}n) if P (−→x) evaluates
to bf(x) for every −→x ≡ bi1 , . . . , bin

corresponding to x ≡ i1 · · · in ∈ {0, 1}n.

The Boolean proof net encoding of K. Terui [Ter04] of functions as negation,
conditional, disjunction, composition, duplication, and so on, is trivially valid in
the extended setting of nMLLu. We give some of them in the Appendix.

4.3 Uniformity and complexity classes

The given notions are used for Boolean circuit families and for nMLLu proof
net families. Both are denoted by F = (Fn)n∈N. From an algorithmic point of
view the uniformity is an important issue because only a uniform family can be
regarded as an implementation of an algorithm.

Definition 8 ([Ruz81]). A family F = (Fn)n∈N is called L-uniform (respec-
tively P -uniform) if there is a function which computes a description of Fn from
1n (unary numeral) in space O(log |Fn|)) (respectively in time |Fn|O(1)).

A description means all informations about elements like sort, predecessors, ...
Usually the description is also chosen according to the uniformity notion used.
Because we work with NP the P -uniformity is sufficient [All89]. Nevertheless
if we want to study a property in NC then we use the L-uniformity with the
following notion of description where links and sorts are identified by binary
numbers. Let W be the set of binary words and let x be the binary representation
of the integer x.

Definition 9 ([Ruz81]). The direct connection language LDC(C) of a Boolean
circuit family C = (Cn)n∈N over basis B is the set of tuples 〈y, g, w, b〉 ∈ W 4,
where for y = n we have g is a gate in Cn labeled by the function b from B if
w = ε else b is the wth predecessor gate of g. In case of input, b is not a function
but a sort (deterministic input or non-deterministic variable).

9

This definition adapted to MLLu proof nets [MR07] is here extended analogously
to nMLLu proof nets:

Definition 10. The direct connection language LDC(P) of a nMLLu proof net
family P = (Pn)n∈N is the set of tuple 〈y, l, w, b, s〉 ∈ W 5 where for y = n we
have l is a link in Pn of sort b if w = ε else the wth premise of l is the link b.
The link l is also enclosed by the sth sum-box.

Remark that the length of all identifiers of such family P is bounded by log |P |.
We finish this section recalling the complexity classes defined with uniform

families of Boolean circuits ([Coo85,All89,Vol99] and [Wol94,Par89] for non-
deterministic Boolean circuits). All dimensions are defined w.r.t the length of
the input, which we write everywhere n. We use abusively the words poly for
nO(1) and polylog for logO(1) (n).

The classes NCi and ACi for i > 0 are the functions computable by uniform
families of polynomial size, O(login) depth circuits over B0 and B1 respectively.
We add the suffix (stCONN2) to classes if we extend basis with a stCONN2 gate.
The class NNCi(k(n)) (resp. NACi(k(n))) are the functions computable by NCi

(resp. ACi) circuit families with O(k(n)) non-deterministic variables. We write
NC, NNC (k(n)), AC and NAC (k(n)) the respective unions over the exponents of
the depth. Relationships between complexity classes follow: ∀i ∈ N and ∀j ∈ N∗

AC0 (NC1 ⊆ L ⊆ NL ⊆ AC1 ⊆ NC2 ⊆ . . . ⊆ AC = NC ⊆ P

ACi ⊆ ACi(stCONN2) ⊆ ACi+1

NNCj(log n) = NCj , and then NNC (log n) = NC

NNCj(poly) = NNC (poly) = NACi(poly) = NAC (poly) = NP

5 Translation and simulation

5.1 Logspace translation

Let C = (Cn)n∈N be a uniform Boolean circuit family over the basis B1(stCONN2)
with non-deterministic variables. The intermediate proof nets we build are called
modules.

First of all without distinguishing the inputs, we associate a uniform Boolean
proof net family P = (Pn)n∈N to C using uniformity. After what we consider
non-deterministic variables. Indeed the uniformity function of Boolean circuits
builds the uniformity function of Boolean proof nets in the same way as in
[MR07]. The main idea is already given in [Ter04]. Starting from LDC(C):

- For each n-fan-in gate labeled f(n) read in LDC(Cn) we give a polysize
module computing f(n). If the gate is a non-deterministic variable we cut
the corresponding input with the proof net b2 ≡ sum(b0, b1),

- For each n-fan-out gate read in LDC(Cn) we make a polysize duplication,
- For each edge read in LDC(Cn) we joint modules and duplications.

10

Just parsing the LDC(Cn) for i = 0 to |Cn| we detail a Logspace translation into
LDC(Pn): everything is identified with a binary number

1. For each 〈n, i, ε, b〉 we build the module associated to the function b of the
basis of the family (or to the sort b in case of inputs). It is a subset of
LDC(Pn) where relationships between links and sorts are given.

2. If there are several 〈n, i, k, j〉 (i.e. j is the k-th predecessor of i) for fixed n and
j then the fan-out of j is multiple. We build the corresponding duplication.
It is again a subset of LDC(Pn).

3. For each 〈n, i, k, j〉 (i.e. j is the k-th predecessor of i) we build 〈n, a, b, c, 0〉
(i.e. an edge from (a, 0) to (b, c)) where a is the link associated to the output
of the module (step 1) corresponding to j and b is the link associated to the
c-th input of the module corresponding to i, modulo added duplications.

The novelty is the translation of non-deterministic variables into cuts with b2 ≡
sum(b0, b1). Only in this case the last bit of the description is not null.

Theorem 2. For every uniform family C of unbounded fan-in Boolean circuit of
size s and depth c over the basis B1(stCONN2) and with k(n) non-deterministic
variables, there is a uniform family of Boolean proof nets of nMLLu of size sO(1)

and logical depth O(c) and with k(n) sum-boxes, which accepts the same set as
C does.
Proof. Let Cn ∈ C and Pn ∈ P the Boolean proof net obtained by translation.
By translation b(Pn) = 1. Every gate is translated by a module of size O(s4) and
constant depth, and only the composition of these modules increases linearly the
depth [Ter04]. Let x ∈ {0, 1}n an input of Cn and −→x corresponding to x as in def-
inition 7. By theorem 1 proof we have: sum(Pn(−→x))⇒1

D1 ⇒1
M sum({Pi}i∈I)⇒c

sum({Qi}i∈I) is an O(c) steps reduction such that sum({Qi}i∈I) is cut free and
there is a witness y ∈ {0, 1}k(n) such that Cn(x, y) evaluates to 1 if and only if
Pn(−→x) evaluates to 1 (i.e. ∃i ∈ I such that Qi = b1). �

By translation c = O(c), so we have the same result for logical depth O(c).

5.2 Simulation of parallel reductions

Let P = (Pn)n∈N be a uniform Boolean proof net family of nMLLu with k(n)
sum-boxes. We associate a uniform Boolean circuit family C = (Cn)n∈N to P in
two big steps based on the reduction sequence of theorem 1:

– We both initialize the circuit descriptions and simulate all the parallel down
reductions with a polysize and constant depth circuit, using uniformity,

– As in [Ter04] we simulate all the ⇒ reductions of all summands using
stCONN2 gates for ⇒t simulation and then we check the result of the last
configuration.

In more detail, from the description of a proof net Pn ∈ P we build Θ0 an initial
set of Boolean values representing the proof net to simulate. A configuration
Θ ∈ Conf(Pn) is the set of the following Boolean values: alive(l), sort(l, s),

11

box(l, i) and edge(l, 0, l′, i′). These values are initialized to 1 respectively iff a
link l ∈ L is in Pn, l is of sort s, l is enclosed by the sum-box numbered i,
and the conclusion port of l is in relation with the i′th port of a link l′ ∈ L.
In other terms our initial configuration Θ0 is the description itself extended to
alive values. Every reduction step simulation is made by a small circuit which
modifies a configuration in the other. All of this can be done in Logspace.
The parallel reduction strategy is simulated as follows: this is the tricky part

Lemma 3. There is an unbounded fan-in circuit C of size O(|Pn|3) and constant
depth over B1 with non-deterministic variables, which computes in Logspace Θ ∈
Conf(P ′) from Θ0 ∈ Conf(Pn) whenever Pn(bi1 , . . . , bin) ⇒b(Pn)

D ⇒1
M P ′ from

given inputs i1, . . . , in.
Proof. Like in the translation we parse the configuration of Pn(bi1 , . . . , bin

)
without taking care of sum-boxes to build partially LDC(C) in Logspace. From
Conf(Pn), we complete LDC(C) in Logspace and compute Conf(P ′) as follows:
The simulation of one k-ary sum-box t which corresponds to k summands/choices,
uses log(k) non-deterministic variables {Gt}. Let l be a link of box-depth b(l),
i.e. l is enclosed in exactly b(l) sum-boxes {ti}i∈I . Let ki be the arity of the
sum-box ti. So the link l simulation depends on Σi∈I log(ki) non-deterministic
gates. We initialize the value of the corresponding edges with the conjunction
of the values of these non-deterministic gates ∪i∈I{Gti} like in Fig. 6. Globally
this constant depth initialization uses one conjunction gate by edge in Conf(Pn)
and one negation gate by non-deterministic gates. �

edge edge edge edge
1 2 3 4

edge' edge' edge' edge'
1 2 3 4

Gt G' t

Fig. 6. 22-ary sum-box simulation where edge′i is in the ith summand

Lemma 4. [Ter04] There is an unbounded fan-in circuit C over B1(stCONN2)
of size O(|P |3) and constant depth such that whenever a configuration Θ ∈
Conf(P) is given as input and P ⇒ P ′, C outputs a Θ′ ∈ Conf(P ′).

Theorem 3. For every uniform family P of Boolean proof nets of nMLLu of
size s and logical depth c, with k(n) sum-boxes of maximal arity k, there is a
uniform family of unbounded fan-in Boolean circuit over the basis B1(stCONN2)
of size sO(1) and depth O(c) and with O(k(n).log(k)) non-deterministic variables,
which accepts the same set as P does.

12

Proof. By theorem 1, i1 · · · in is accepted by P if and only if b1 ∈ {Qi}i∈I

where Pn(bi1 , . . . , bin)⇒b(P)
D ⇒1

M P ′ ⇒c(P) sum({Qi}i∈I). By lemma 3 we build
from Pn a uniform polysize constant depth circuit with O(k(n).log(k)) non-
deterministic variables. For each of the ⇒c(P) reductions we apply the same
construction as in Terui’s lemma starting from our previous configuration. At
the end we easily build a polysize constant depth circuit to check if the last
configuration represents b1 or not. �

6 Proof net complexity

We define a hierarchy of complexity classes based on proof nets:

Definition 11. For i ∈ N, the classes UBPN i(k(n)) and UBPN i are func-
tions computable by uniform families of polynomial size, O(login) depth Boolean
proof nets of respectively nMLLu with O(k(n)) sum-boxes and MLLu. We write
UBPN (k(n)) and UBPN the respective unions over the exponents of the depth.

From theorem 2 and theorem 3 we have:

Theorem 4. For all i ∈ N,
NACi(k(n))(stCONN2) ⊆ UBPN i(k(n)) ⊆ NACi(k(n)× log n)(stCONN2)

Proof. For a Boolean proof net of size s the arity k of a sum-box is O(s)
in the worst case. By theorem 2 we have O(s) = nO(1). So O(k(n).log k) =
O(k(n)× log n). �

Corollary 1. For all i, j ∈ N,

1. UBPN i(poly) = NACi(poly)(stCONN2) = NP ,
2. NACi(logj n)(stCONN2) ⊆ UBPN i(logj n) ⊆ NACi(logj+1 n)(stCONN2),
3. UBPN (1) = UBPN = NC,
4. UBPN (log n) ⊇ NC,
5. UBPN (polylog) = NNC (polylog),
6. UBPN (poly) = NNC (poly) = NP .

Proof. Point 1. O(nO(1) × log n) = O(nO(1)).
Point 3. NAC (1)(stCONN2) = NC = NNC (log n) = NAC (log n)(stCONN2).
Point 5. by union over i and j from Point 2.
Point 6. by union over i from Point 1. �

Remark that UBPN (1) = UBPN is what we expect: a constant number of
sum-boxes corresponds to nO(1) summands/choices in the worst case, and so it
can be simulated with a disjunction of a polynomial number of circuits of the
same depth. I.e. it corresponds to NNC (log n) = NC.

13

7 Conclusion

Our study generalizes the work of K. Terui [Ter04] to non-deterministic exten-
sion as follows. We have defined new parallel reductions of proof nets of Non-
deterministic Multiplicative Linear logic, nMLLu. We have defined the uniform
Boolean proof nets with an amount of explicit non-determinism analogously to
the uniform Boolean circuits of NNC (), the non-deterministic NC class. By the
way we give a proof-as-programs correspondence between this model of paral-
lel computation and the uniform Boolean proof nets, preserving both size and
depth. We define in a standard way the classes of uniform Boolean proof nets
families UBPN () and we establish the following results:

NC = UBPN (1) ⊆ UBPN (log n) ⊆ UBPN (polylog) ⊆ UBPN (poly) = NP
q q q

UBPN NNC (polylog) NNC (poly)

Remark that the proofs of translation and simulation theorems could apply for
Boolean circuits without depth constraint. Such a Boolean circuit is simply called
a polynomial size circuit and the corresponding class equal P . So there is a chain
from P to NP for families of uniform polynomial size Boolean proof nets.

There is a reduction which replaces a sequence of⇒D in our theorem in only
one step: our circuit simulating parallel down reductions made it in lemma 3.
The same thing could be done by parsing the sub-nets without reducing sum-
boxes (only k(n).log(n) bits are used) but with our theorem reduction we do fully
parallel computation. Ad-hoc Boolean proof net classes can be given to have a
more strictly correspondence with NNC (), using only binary �-links. Then the
encoding are no more constant depth but O(k(n)) depth: it corresponds to NC
with O(log n) sum-boxes. Remark that if we use a bigger uniformity notion then
the descriptions are easier: e.g. for sum-boxes a relationship between the �-links
is sufficient.

Acknowledgments. I would like to thank the reviewers for their remarks and
the improvements which they suggested.

References

[All89] Eric W. Allender. P-uniform circuit complexity. Journal of the Association
for Computing Machinery, 36(4):912–928, 1989.

[BS90] R. B. Boppana and M. Sipser. The complexity of finite functions. MIT Press,
1990.

[Coo85] Stephen A. Cook. A taxonomy of problems with fast parallel algorithms. Inf.
Control, 64(1-3):2–22, 1985.

[DR89] V. Danos and L. Regnier. The structure of multiplicatives. Archive for Math-
ematical Logic, 28(3):181–203, 1989.

[Gir87] Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50(1):1–102, 1987.

[Gir96] Jean-Yves Girard. Proof-nets : the parallel syntax for proof theory. Logic and
Algebra, 180, 1996.

14

[Mau03] F. Maurel. Nonderministic light logics and NP-time. In Proceedings of In-
ternational Conference on Typed Lambda Calculus and Applications, volume
2701 of LNCS, pages 241–255. Springer-Verlag, 2003.

[MR07] V. Mogbil and V. Rahli. Uniform circuits, & boolean proof nets. In Proceedings
International Symposium on Logical Foundations of Computer Science, volume
4514 of LNCS, pages 401–421. Springer, 2007.

[Par89] I. Parberry. A note on nondeterminism in small, fast parallel computers. IEEE
Transactions on Computers, 38(5):766–767, 1989.

[Ruz81] W. Ruzzo. On uniform circuit complexity. J. of Computer and System Science,
21:365–383, 1981.

[Ter04] K. Terui. Proof nets and boolean circuits. In Proceedings IEEE Logic in
Computer Science, pages 182–191, 2004.

[Vol99] H. Vollmer. Introduction to Circuit Complexity – A Uniform Approach. Texts
in Theoretical Computer Science. Springer Verlag, 1999.

[Wol94] Marty J. Wolf. Nondeterministic circuits, space complexity and quasigroups.
Theoretical Computer Science, 125(2):295–313, 1994.

A Appendix: functions in Boolean proof nets

The ports of the proof nets are labeled by letters rather than numbers, so that
proof nets described only by the name of their links are more readable. For a
given link l, we denote lp1,...,pn

q if its conclusion port is q and the other ports are
respectively p1, . . . , pn in this order. Axiom link are more simply denoted axp.

The conditional (if-then-else) is the base of the Terui’s gates translations:
given two proof nets P1 and P2 of types ` Γ, p1 : A and ` ∆, p2 : A resp., one
can build a proof net condp1,p2

r [P1, P2](q) of type ` Γ,∆, q : B[A]⊥, r : A � A
(Fig.7(b)). Given a cut between bi and q we have:

condp1,p2
r [P1, P2](b1)→∗ tensorp1,p2

r (P1, P2)
condp1,p2

r [P1, P2](b0)→∗ tensorp2,p1
r (P2, P1).

&

1

0

1

0

2

2
3 &

1

0

1

0

2

2
3

b0 ≡ b1 ≡ 1

0

P2

P1

2

3

0

Fig. 7. (a) The Boolean b0, b1 and (b) The conditional Boolean proof net

Disjunction, conjunction and duplication are based on the conditional:
let n > 2 be an integer and C ≡ �(B[A1], . . . ,B[An]), we have:

or(p1, p2) ≡ cond[b1, axp1](p2) of type ` p1 : B⊥, p2 : B[B]⊥, q : B�B,
and(p1, p2) ≡ cond[axp1 , b0](p2) of type ` p1 : B⊥, p2 : B[B]⊥, q : B�B,

15

copyn(p) ≡ cond[tensor(−→b1), tensor(−→b0)](p) of type ` p : B⊥[C], q : C � C.

The composition of two translated circuits is defined by:
let Γ ≡ p′1 : A′1, . . . , p

′
n : A′n and ∆ ≡ q′1 : B′1, . . . , q

′
n : B′m, let P (

−→
p′) and

Q(
−→
q′) be proof nets of type ` Γ, p : �2(B,−→C) and ` q : B⊥[A], ∆, r : �2(B,−→D),

respectively. Then we have:

compp,q,r
s [P,Q](

−→
p′ ,
−→
q′)

is of type ` Γ [A], ∆, s : �2(B,−→D,−−→C[A]). With this composition one can construct
n-ary versions of conjunction and disjunction.

16

