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Non deterministic Linear logic: application to

Boolean circuits

Virgile Mogbil

LIPN – UMR7030, CNRS – Université Paris 13,
99 av. J-B Clément, F–93430 Villetaneuse, France

Abstract. Subsystems of Linear logic (LL) are used to give Curry-
Howard characterizations of complexity classes as P . By expressing the
non-determinism by an explicit rule to sum up, one characterizes NP

[Mau03]. Following the Curry-Howard isomorphism but for parallel model
of computation we study the proof nets of the non-deterministic multi-
plicative LL. Considering NNC (poly) i.e. NC (the efficiently paralleliz-
able functions) with a polynomial amount of non-deterministic inputs,
we define nmBN (poly) the uniform families of multiplicative Boolean
proof nets with polynomial amount of explicit non-determinism. Finally
nmBN (poly) is a Curry-Howard characterization of the complexity class
NP = NNC (poly).

1 Introduction

The proof nets [Gir87,DR89] of the Linear logic (LL) are a parallel syntax for
logical proofs without all the bureaucracy of the sequent calculus. Their study
is also motivated by the well known Curry-Howard isomorphism: there is a cor-
respondence between proofs and programs which associates cut-elimination in
proofs and execution in programs. Proof nets were used in subsystems of LL
to give Curry-Howard characterizations of complexity classes. Usually this is
done in LL by reducing the deductive power of the exponentials, also known as
modalities, which are in charge of controlling duplication in the cut-elimination
process. The most known restrictions characterize P . One of them, the Intuition-
istic Light Affine Logic (ILAL), just to name it, corresponds to P . By expressing
the non-determinism by an explicit rule to sum up, the non deterministic ex-
tension of ILAL characterizes quite naturally NP [Mau03]. This sum rule is a
logical counterpart to non-deterministic choice in process calculi. From proof
nets other characterizations were given by correspondence with models of par-
allel computation. We do the same with explicit non-determinism.

Boolean circuits (see [Vol99,BS90] for instance) are a standard models of
parallel computation. Several important complexity classes are defined in terms
of Boolean circuits. E.g. NC can be thought of as the problems that can be
efficiently solved on a parallel computer just as the class P can be thought of as
the tractable problems. Because a circuit has a fixed input size, an infinite family
of circuits is needed to do computations on arbitrary inputs. With a uniformity



condition on each circuit, a family can be regarded as an implementation of an
algorithm. The circuit depth is the time on a parallel computer where the size
is the number of processors. For instance NC is the set of Boolean functions
computable by uniform Boolean circuits of polynomial size and polylogarithmic
depth.

By restricting the proved formulae and with a logical depth notion, there
is a proofs-as-programs correspondence between the proof nets and NC s.t. it
preserves both the size and the depth of the models [Ter04] (and [MR06] for uni-
formity preservation). We use the same tools for proof nets in a uniform setting:
the logical depth, an higher order gate simulation and small proof nets for dupli-
cation managing arbitrary fan-out simulation, for conditional i.e. if-then-else and
for composition of proof nets. We give a proof-as-programs correspondence with
NNC (k(n)), the class defined from NC circuits with O(k(n)) non-deterministic
variables. NNC (polylog) was introduced as a candidate for a class separating
NC = NNC (log n) and NP = NNC (poly) by showing that it contains an al-
gorithm for the quasigroup isomorphism problem not known to be in P or be
NP -complete [Wol94]. Another motivation to obtain a characterization of NP
comes from the separation with P which holds if NP is not a subset of P/poly
(the non-uniform NC circuits without depth restriction). P/poly is character-
ized by non-uniform Boolean proof net families [Ter04] from which our study is
a variation. So the Curry-Howard isomorphism for parallel model of computation
gives us new tools for studying theoretical implicit complexity. The approach of
Boolean proof nets is more than just a circuit reformulation because for e.g. it
allows higher order gates and the proof net cut-elimination is a proper method.

In the section 2 we present MLLu, the multiplicative LL with arbitrary arity,
introduced to simplify relationship with the unbounded fan-in circuits [Ter04].
We give its non-deterministic extension nMLLu and consider proof nets for it.
We recall the reduction steps of the cut-elimination. We define several size and
depth notions used in the proofs, all are natural graph theoretic notions. In the
section 3 we mostly study the cut elimination from a parallel point of view.
We give the central theorems which allow us to establish the results on the
complexity classes. In the section 4 we recall the Boolean circuit definitions
and properties. It includes, the uniformity both of proof nets and circuits, the
hierarchy of NC and NNC (). We define the Boolean proof nets of nMLLu i.e
with sum-boxes which generalize the ones of MLLu. In the section 5 we apply
the previous theorems to Boolean proof nets with sum-boxes and we establish
a proofs-as-programs correspondence with NNC () circuits. I.e. the translation
and simulation theorems preserve both size and depth of the models. Finally in
section 6 we summarize the obtained results via nmBN (), a hierarchy of proof
net complexity classes defined analogously to the NNC () hierarchy. The classes
nmBN (poly), nmBN (polylog) and nmBN (1) of uniform Boolean proof net
families with respectively nO(1), logO(1) n and O(1) sum-boxes are respectively
equal to NP , NNC (polylog) and NC.
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2 Non deterministic Linear logic

– Formulae, Sequent calculus and cut-elimination –

The formulae of MLLu and nMLLu are built on literals by multiplicative
conjunction and disjunction: the usual multiplicative connectives � and O but
with unbounded arities. There are no differences with binary connectives as the
usual fragments of linear logic except that this gives us depth-efficient proofs
[DR89]. The negation of a non-literal formula is defined by de Morgan’s duality:

(�n(
−→
A ))⊥ =O(

←−
A

⊥

) and (On(
−→
A ))⊥ = �(

←−
A

⊥

) for
−→
A ≡ A1, . . . , An and

←−
A ≡

An, . . . , A1. The negation applies to the sequences of formulae as we can expect
it.

The sequents of nMLLu are of the form ⊢ Γ , where Γ is a multiset of formulae.
The rules are described in Fig.1. As it is usual in Linear sequent calculus, MLLu

and nMLLu admit the cut-elimination theorem (Hauptsatz) and implicit ex-
changes in sequents. We recall in the Fig.2 the sum-rule reduction step [Mau03].

(a)

⊢ Γ, C ⊢ ∆, C⊥

⊢ Γ, ∆
cut

⊢ A, A⊥
ax

(b)
⊢ Γ · · · ⊢ Γ

⊢ Γ
sum

⊢ Γ1, A1 · · · ⊢ Γn, An

⊢ Γ1, . . . , Γn, �n(
−→
A )

�
n
⊢ Γ, An, . . . , A1

⊢ Γ, On(
←−
A )

O
n

Fig. 1. Sequent calculuses: (a) MLLu and (a+b) nMLLu

⊢ Γ, A · · · ⊢ Γ, A

⊢ Γ, A
sum

⊢ ∆, A⊥

⊢ Γ, ∆
cut
−→

⊢ Γ, A ⊢ ∆, A⊥

⊢ Γ, ∆
cut

· · ·

⊢ Γ, A ⊢ ∆, A⊥

⊢ Γ, ∆
cut

⊢ Γ, ∆
sum

Fig. 2. nMLLu sum-rule reduction step

– Proof nets and cut-elimination –

We suppose the reader is a little bit familiar with the proof nets of the Linear
logic and more specially with the cut-elimination [Gir96].

A proof net [Gir87,DR89] is a kind of graph that just keep the structure of
proofs without what is irrelevant for computation. It is a set of interconnected
links that we build by inference from the rules of the sequent calculus. There
are several sorts of links: the ax-link, the �-link and the O-link corresponding
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respectively to the MLLu rules. Every link has several ports numbered by con-
vention as in the Fig. 3, so we can abusively omit them. We note with zero the
conclusion of a link which is also called principal port. We represent the cut-rule
by connecting two principal ports rather than with a link.
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Fig. 3. ax-link, �-link, O-link and �-link ; small proof nets

For the sum-rule we use one box, so-called sum-box (Fig. 4), delimiting a
part of the graph such that we associate one �-link for each common conclusion
of every sub-net. In a proof net a summand is a proof net obtained by erasing all
but one sub-net in every sum-box. So in a proof net of nMLLu every summand
is a proof net of MLLu.

We give a description of a proof net by a finite set L of link, a function
σ : L → {•,�} ∪ {�n,On}n>1, a symetric relation on L × N and a function
τ : L → N for sum-boxes (with indices). We only consider a proof net to be a
description inferred from sequent calculus or equivalently inductively build from
the ax-links with the constructors of Fig. 4. In the section 4 we shall give a
logspace description which extend this one.
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Fig. 4. Proof net constructors: �-link, O-link, cut and sum-box

The reduction rules for MLLu proof nets are the following one respectively
called ax-reduction and m-reduction: ∀ 0 6 i 6 n

cut(ax(A,A⊥), A) →ax A and cut(�n(
−→
A ),On(

←−
A

⊥

)) →m cut(Ai, A
⊥
i )

We give the reduction rules for the sum-boxes in Fig.5 [Mau03]: the merge-rule
(associativity), the down-rule (linearity) and the down’-rule (selection) apply
for an arbitrary context C and i0 ∈ I. The down’-rule introduced in [Mau03]
is redundant and useful in a sequential setting to reach a polynomial bound of
reduction.
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sum(R0, sumi∈I(Ri)) →merge sumi∈I∪{0}(Ri)

sum(D, C[sumi∈I(Ri)]) →down sum(D, sumi∈I(C[Ri]))

sum(D, C[sumi∈I(Ri)]) →down′ sum(C[Ri0 ], sum(D, C[sumi∈I−{i0}(Ri)]))

Fig. 5. Sum-box reduction rules

We define various concepts of depth in a natural way: box-depth w.r.t.1 the
sum-boxes, link-depth and logical depth w.r.t. the cuts. The box-depth b(l) of
a link l is the number of sum-boxes that encapsulate it. We will say in the
same way for the box-depth of a box. The box-depth b(P ) of a proof net P is
maximal box-depth of its links. The depth or link-depth d(l) of a link l is 1 +
max{d(p)|p premise of l}. The link-depth d(P ) of a proof net P is the maximal
link-depth of its links. The logical depth c(P ) of a proof net P is the maximal
link-depth of its cuts. We denote c(P ) the logical depth without counting the
�-links. The link-depth and the logical depth can be decomposed by the box-
depths by thinking that boxes form layers. That gives partial depths denoted by
indices for the box-depths as follows: d(l) = Σ06x6b(P )dx(l)

We also define a size of proof nets and a partial size w.r.t. the box-depth.
The size |P | is the number of links in P where a box (and not the �-links) is
counted as 1. The partial sizes |P |x is the size of P restricted to the box-depth
x: |P | = Σ06x6b(P )|P |x.

3 Parallel cut-elimination

A critical pair arises when the reduction rules overlap to give two different proof
nets. Convergence of all critical pairs insures the weak confluence but not the
parallelization of the reduction. Indeed critical pairs are the conflict cases to
apply reductions in parallel. It is already the case in MLL: one introduces a new
reduction rule called tightening reduction [Ter04]. Next we study the parallel
sum-box reductions. Notice however that every critical pair in MLLu (only ax-
reductions) are convergent then MLLu is confluent and a cut between two sum-
boxes is a convergent critical pair then nMLLu is confluent.

– Tightening reduction –

A cut between two axioms cannot be eliminated in parallel: one eliminates
each maximum alternating chain of cuts/axioms in only one global step. Such
step is called a tightening reduction step (t-reduction) and is denoted →t. After
that there is no critical pairs in MLLu. We denote by ⇒t the parallel →t reduc-
tions and⇒m the parallel→m reductions. In the rest of the paper we denote⇒
for one parallel reduction step in MLLu ( i.e. ⇒t or ⇒m).

1 With relation to
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– Parallel reductions of merged sum-boxes –

Critical pairs of merge rules in distinct summands of the same sum-box are
not a conflict case. We can apply merge rules in parallel on them. But we cannot
merge in a summand that would be merged at the same time. Because the merge-
rule is confluent one can easily consider a global rewriting rule by merging sum-
boxes as expected. We consider the maximal sub-graphs of a proof-net which
are composed only of successive sum-boxes. Each sub-graph is a tree which one
can reduced in only one step that we denote →M . We symbolically describe the
corresponding rule in Fig.6 by noting only the links of one sum-box by a simple
square

Fig. 6. →M is the global reduction by merging

– The fixed box-depth reduction of the sum-boxes –

A cut between two sum-boxes is a critical pair for the down reduction rules
but is convergent. The common reduct is a sum-box whose summands are the
combination of all the summands of one sum-box with the summands of the
other. However to apply in parallel the rules to this critical pair causes a conflict.

We choose a first strategy by reducing the cuts of depth zero until they
become of depth one, then starting again with the following depth. For that
one chooses the maximum entanglement of cut sum-boxes (as for the chains of
cuts/axioms). The rule used, denoted →fbd, is described in Fig.7: for the shake
of simplicity in the figure we omit the cut-free conclusions of sum-boxes in the
redex and in the reduct. The result is a sum-box whose summands are all the
combinations of the summands of distinct sum-boxes. Because there is no cycle
of such entangled sum-boxes, each maximal entanglement is just a (rootless) tree
of cut sum-boxes of same depth.

Thus we reduce in the same time all the cuts between sum-boxes of fixed
depth. But it remains to reduce cuts between �-link and another link.That
duplicates a part of the cut structures and in the bad case that increases the
depth of the proof net ! However to reduce such cuts, a fine study of the partial
sizes shows that we obtain the same result if one reduces them at the same time
as →fbd or later. Indeed it does not improve the bound on the step number to
eliminate cuts at given depth. We thus generalize the →fbd reduction rule to the
case of the cuts where one premise is a sum-box s.t. the duplication is done only
for the links of the fixed depth.

This strategy is so-called the fixed box-depth reduction of the sum-boxes.
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Fig. 7. →fbd is the global fixed box-depth reduction

Let ⇒fbdx
one parallel reduction step composed by all the possible →fbd

reductions at fixed box-depth x.

Lemma 1. Let P ∈ nMLLu and let x be the minimal box-depth of the cuts in
P . If P ⇒∗

x P ′⇒fbdx
P ′′ then we have:

– Every cut c ∈ P ′ of box-depth x is a sum-box cut, and the box-depth of c
strictly increases in P ′′,

– There is no more a cut of depth x, and b(P ) = b(P ′) = b(P ′′).

Proof. Minimality of x implies that after the cloture of⇒x every cut c is a sum-
box cut (and b(P ) = b(P ′)). By definition the ⇒fbdx

reduces such a cut possibly
with a lot of duplications according to whether the cut is a �/�-cut or not. If
c is a �/�-cut then ⇒fbdx

reduces c s.t. the link-depth of c strictly decreases in
P ′′ without it duplicates other links of depth x. Else because combinations are
made only of links at box-depth least x + 1 and that the duplicated links are
only of box-depth x, the box-depth of P ′ does not increase by ⇒fbdx

. �

Theorem 1. There is a sequence of O(c(P ).b(P )) parallel reductions which re-
duces a nMLLu proof net P in a cut-free one. In the worst case such sequence
is of length O(|P |2).

Proof. From the box-depth 0, we apply ⇒∗
0;⇒fbd0 the parallel reduction se-

quence of lemma 1. We can apply each parallel reductions ⇒∗
x at most c(P )

time. The global sequence of reductions strictly decreases the box-depth, then
we apply it b(P ) time. The duplicated multiplicative links are reduced in each
summand in parallel in some next sequence of ⇒∗

x. (Eventually at the end of
the procedure one needs to apply one more time the ⇒∗

x reductions for the last
multiplicative connectives) In the worst case we have b(P ) = O(|P |) = c(P ). �

Unfortunately an example of worst case is a Boolean proof net of nMLLu.
Remark that we can use ⇒M x at the end of every round but it can decrease the
box-depth of P : the next round will be made without changing box-depth.
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– The parallel down reduction –

We analyze the down rule →down to apply it in parallel. According to the
context C, the pattern p = sum(C[sumi∈I(Ai)], D) can be a critical pair for
the down rule. For example if C[−] = cut(sumj∈J(Bj), [−]) then p reduces to
sum(sumi∈I,j∈J(cut(Ai, Bj)), D) in two→down steps. The same holds for a more
general context C but remains convergent. As done in the previous subsection,
we consider a general rule to apply the down reductions in parallel in one sum-
box B.

Let B a sum-box and let Bk the sum-boxes in just one summand of B where
b(Bk) = b(B) + 1. We reduce in one parallel reduction step this summand: the
resulting summand is the combination of all the contents of the Bk and the
context outside the Bk. Then the sum-boxes go down and contexts rise. This
is a kind of generalization of the →fbd rule to every context (i.e. not only cut
sum-boxes) but only in the sum-box B. We denote this reduction by →B .

Because every summand in B are disjoined we can apply →B in parallel on
all summands of B. We denote ⇒Dx such parallel reductions applied to every
sum-boxes of the same box-depth x. We do it to have no conflict.

Lemma 2. Let P ∈ nMLLu. If sum(P )⇒Db(P ); · · · ;⇒D0sum(P ′)⇒M sum(P ′′)
then we have:

– b(P ) = b(P ′) and the context is empty between two successive sum-boxes of
P ′. Moreover c(P ) = c(P ′).

– b(P ′′) = 0 i.e. P ′′ is sum-box free, and c(P ′) = c(P ′′).
– For all choice of summand si for i ∈ I, si(sum(P ′′))⇒c(P ) Pi cut-free.

The order is chosen to simplify the statement of the lemma. For another
order it is enough to use the rule ⇒M after every ⇒Dx (but this may decrease
de box-depth of P ).

Theorem 2. There is a sequence of O(c(P ) + b(P )) parallel reductions which
reduces a nMLLu proof net P in a cut-free one.

Proof. Let P ′′ defined from P as in lemma 2. Because all the summands
{si}i∈I are pairwise disjoint we have ∪i∈Isi(sum(P ′′)) ⇒c(P ) ∪i∈IPi cut-free.

So sum(P ) ⇒
b(P )
D sum(P ′) ⇒1

M sum(P ′′) ⇒c(P ) sumi∈I(Pi) gives a cut-free
proof net. �

The same sequence takes O(c(P )) steps.

4 Boolean circuits and Boolean proof nets

In this section we briefly recall the definitions of Boolean circuits and Boolean
proof nets, and several properties on them. The only novelties concern the
Boolean proof nets of nMLLu that extend those of MLLu. For further informa-
tion see: [Ruz81,All89,Vol99] for uniformity and Boolean circuits, [Wol94,Par89]
for non-deterministic Boolean circuits, [Ter04,MR06] for (uniform) Boolean proof
nets of MLLu.
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– uniformity –

The given notions are used for Boolean circuit families and for Boolean proof
net families. Here both are denoted by F = (Fn)n∈N. From an algorithmic point
of view the uniformity is an important issue because only a uniform family can
be regarded as an implementation of an algorithm. A family is called uniform if
a description of the n’th element can be computed from 1n. Description means
all informations on the element like the sort, the predecessors and so on.

Formally, a family F = (Fn)n∈N is so-called L-uniform (resp. P -uniform)
if there is a function which computes a description of Fn from 1n in space
O(log |Fn|)) (resp. in time |Fn|

O(1)). If one works with NC then one could used
NC-uniformity which is defined in the same way. Usually the description also is
chosen according to the uniformity notion used.

Because we work with NNC (poly) = NP the P -uniformity is sufficient. Nev-
ertheless if one wants to study a property in NNC (log n) = NC then it is
necessary to use at least NC-uniformity. In practice we will use in this case the
L-uniformity with the following notion of description where the links are iden-
tified by binary numbers as the sorts. Let W the set of binary words and x the
binary representation of the integer x. The direct connection language of a proof
net family P = (Pn), denoted LDC(P ), is the set of tuple 〈y, l, w, b, s〉 ∈ W 5

where for n = y we have l is a link in Pn of sort b if w = ε else the wth premise
of l is the link b. We use the last bit s to say that the sth sum-box contains the
link l. Notice that the length of all identifiers is bounded by log |P |.

This description is given by analogy with the one of the circuits: The direct
connection language of a Boolean circuit family C = (Cn)n∈N over basis B,
denoted LDC(C), is the set of tuples 〈y, g, w, b〉, where for n = y we have g is a
gate in Cn labeled by the function b from B if w = ε else b is the wth predecessor
gate of g. In case of input, b is not a function but a sort (deterministic input or
non-deterministic variable).

– Boolean proof nets –

Boolean values are represented with the type B =O
3(α⊥, α⊥,�2(α, α)). The

non-deterministic Boolean values are represented with the same type ! There are
exactly two cut-free proof nets of MLLu of this type and we only consider one
cut-free proof net of nMLLu, called resp. false, true and b2 ≡ sum(b0, b1) (see
the Appendix):

b0 ≡ parq,p,r
s (tensorp,q

r (axp, axq)) and b1 ≡ parp,q,r
s (tensorp,q

r (axp, axq))

A Boolean proof net with n inputs −→p = p1, . . . , pn, one output and k(n)
sum-boxes is a proof net P (−→p ) of nMLLu of type:

⊢ p1 : B⊥[A1], . . . , pn : B⊥[An], q : �
m+1(B,

−→
C )

for some
−→
A ≡ A1, . . . , An and

−→
C ≡ C1, . . . , Cm where we denote B[A] the for-

mula B where all occurrences of α are substituted by A. Given −→x ≡ bi1 , . . . , bin
,

P (−→x ) denotes the proof net where we cut every bi with pi.
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Without loss of generality we can always set sum(P ) for P : if a Boolean proof
net P is without sum-boxes then sum(P ) is a sum-box with only one summand
in MLLu. This generalizes the uniform MLLu Boolean proof nets.

For a given −→x , a Boolean proof net sum(P (−→x )) is of type of q and reduces
in a unique cut-free proof net of the same type (e.g. by one of the reduction
sequences of the previous section). We say that sum(P (−→x )) evaluates to 1 iff

one of its summands is b1 with some garbage
−→
C . There is an asymmetry between

1 and 0 as for non-deterministic Turing machines. To be more readable in the
rest of the paper we often omit the added sum-box in sum(P ) and just write P
as in this following definition.

An n-ary Boolean proof net P (−→p ) computes a function f : {0, 1}n → {0, 1}
(or accepts a set X ⊆ {0, 1}n) if P (−→x ) evaluates to bf(x) for every −→x corre-
sponding to x ≡ i1 . . . in.

For Boolean proof nets encoding standard Boolean functions as negation,
conditional, disjunction, composition, duplication, and so on, the reader can see
[Ter04] (and the Appendix): here everything is again valid.

– NNC () –

A basis is a finite set of sequences of Boolean functions. The standard basis
are B0 = {¬,∧,∨} and B1 = {¬, (∧n)n∈N, (∨n)n∈N}. The circuits over basis with
an infinite sequence of Boolean functions (resp. without) are called unbounded
fan-in (resp. bounded fan-in) circuits. In particular we extend the basis with the
stCONN2 gates which test the strong connectivity of the (set of) edges given in
inputs and we use it to simulate the tightening cut-elimination of proof nets as
in [Ter04].

A deterministic Boolean circuit with n inputs over a basis B is a directed
acyclic graph with n + 1 sources or inputs (vertices with no in-going edges) and
one sink or output (a vertex with no out-going edges). Sources are labeled by
literals from {x1, . . . , xn}∪{1} and nodes of in-degree k are labeled by one of the
k-ary Boolean functions of B. Non-inputs nodes are called gates, and in-degree
and out-degree are called fan-in and fan-out respectively. Let Fn denote the set
of all Boolean functions f : {0, 1}n → {0, 1} for some n ∈ N. A deterministic
circuit computes a function in Fn (or accepts a set X ⊆ {0, 1}n) in a natural
way.

A non-deterministic Boolean circuit C with n inputs over a basis B with
k non-deterministic variables is a circuit with n + k + 1 sources labeled by
{x1, . . . , xn} ∪ {y1, . . . , yk} ∪ {1} s.t. it computes a function f ∈ Fn as follows:
for x ∈ {0, 1}n, f(x) = 1 iff ∃y ∈ {0, 1}k a witness s.t. C(x, y) evaluates to 1.

A family of circuits C = (Cn)n∈N computes a function f : {0, 1}∗ → {0, 1} (or
accepts a set X ∈ {0, 1}∗) if for every n the circuit Cn computes the restriction
of f to Fn.

The size of a circuit is the number of gates and the depth is the length of a
longest directed path. All dimensions are defined w.r.t the length of the input,
which is denoted everywhere n. As usual we use abusively the words poly for
nO(1) and polylog for logO(1) n.
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The classes NCi and ACi for i > 0 are the functions computable by uniform
families of polynomial size, O(login) depth circuits over B0 and B1 respectively.
We add (stCONN2) to the classes if the basis is extended with a stCONN2 gate.
The class NNCi(k(n)) (resp. NACi(k(n))) are the functions computable by NCi

(resp. ACi) circuit families with O(k(n)) non-deterministic variables. We denote
NC, NNC (k(n)), AC and NAC (k(n)) the respective unions over the exponents
of the depth. The hierarchy of NC and NNC () is the following: ∀i ∈ N and
∀j ∈ N∗

AC0 ( NC1 ⊆ L ⊆ NL ⊆ AC1 ⊆ NC2 ⊆ . . . ⊆ AC = NC ⊆ P

ACi ⊆ ACi(stCONN2) ⊆ ACi+1

NNCj(log n) = NCj , and then NNC (log n) = NC

NNCj(poly) = NNC (poly) = NACi(poly) = NAC (poly) = NP

5 Translation and simulation

– Logspace translation –

Let C = (Cn)n∈N be a uniform Boolean circuit family over the basis B1(stCONN2)
with non-deterministic variables. We call module an intermediate proof net.

First of all without distinguish the inputs, we associate a uniform Boolean
proof net family P = (Pn)n∈N to C using the uniformity. After what we con-
sider the non-deterministic variables. Indeed the uniformity function of Boolean
circuits builds the uniformity function of Boolean proof nets as it was done in
[MR06]. The main idea is already given in [Ter04]. E.g. starting from LDC(C):

– for each n-fan-in gate labeled f(n) read in LDC(Cn) we give a polysize
module computing f(n). If the gate is a non-deterministic variable we cut
the corresponding input with the proof net b2 ≡ sum(b0, b1),

– for each n-fan-out gate read in LDC(Cn) we make a polysize duplication,
– for each edge read in LDC(Cn) we glue the modules and the duplications.

Just parsing the LDC(Cn) for i = 0 to |Cn| we detail a Logspace translation into
LDC(Pn): everything is identified with a binary number

1. each 〈n, i, ε, b〉 builds the module associated to the function b of the basis
of the family (or to the sort b in case of inputs). It is a subset of LDC(Pn)
where relations between links and sorts are given.

2. if there is multiple 〈n, i, k, j〉 (i.e. j is the k-th predecessor of i) for fixed n and
j then the fan-out of j is multiple. We build the corresponding duplication.
It is again a subset of LDC(Pn).

3. each 〈n, i, k, j〉 (i.e. j is the k-th predecessor of i) builds 〈n, a, b, c, 0〉 (i.e. an
edge from (a, 0) to (b, c)) where a is the link associated to the output of the
module (step 1) corresponding to j and b is the link associated to the c-th
input of the module corresponding to i, modulo duplications added.
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The novelty comes from the non-deterministic variables for which the module
associated is a cut with b2 ≡ sum(b0, b1) but not a sort. Only here the last bit
used is not zero.

Theorem 3. For every uniform family C of unbounded fan-in Boolean circuit of
size s and depth c over the basis B1(stCONN2) and with k(n) non-deterministic
variables, there is a uniform family of Boolean proof nets of nMLLu of size sO(1)

and logical depth O(c) and with k(n) sum-boxes, which accepts the same set as
C does.

Proof. Let Cn ∈ C and Pn ∈ P the Boolean proof net obtained by translation.
By translation b(Pn) = 1. Every gate is translated by a module of size O(s4) and
constant depth, and only the composition of these modules increases linearly the
depth [Ter04]. Let x ∈ {0, 1}n an input of Cn and −→x corresponding to x. From
the proof of theorem 2 we have: Pn(−→x )⇒1

D0;⇒
1
M sumi∈I(Pi) ⇒

c sumi∈I(Qi)
is an O(c) steps reduction s.t. sumi∈I(Qi) is cut free and there is a witness
y ∈ {0, 1}k s.t. Cn(x, y) evaluates to 1 if and only if Pn(−→x ) evaluates to 1 (i.e.
∃i ∈ I s.t. Qi = b1). �

Remark that the same holds with the ⇒fbd reduction because the box-depth
of a translated circuit is 1.

– Simulation of parallel cut-elimination –

Let P = (Pn)n∈N be a uniform Boolean proof net family of nMLLu with k(n)
sum-boxes. We associate a uniform Boolean circuit family C = (Cn)n∈N to P in
two big steps based on the sequence of reductions of theorem 2:

– We both initialize the descriptions of the circuits and simulate all the par-
allel down reductions by a polysize and constant depth circuit using the
uniformity,

– As done in [Ter04], we simulate all the ⇒ reductions of all summands using
stCONN2 gates for ⇒t simulation and finally we check the result of the last
configuration.

From the description of a proof net Pn ∈ P (or of the associated circuit
in C) one built Θ0 an initial set of boolean values representing the proof net
to simulate. A configuration Θ ∈ Conf(Pn) is the set of the following Boolean
values: alive(p), sort(p, s), box(p, i) and edge(p, 0, q, i). Θ0 values are initialized
to 1 iff a link p ∈ L is respectively in Pn, of sort s, contained in the ith sum-box
and of principal port in relation with the ith port of a link q ∈ L. In pedantic
terms our initial configuration is the description itself extended to alive values.
Each reduction step simulation can be done with small circuits which modify a
configuration to another. Everything could be done in Logspace.

Lemma 3. There is an unbounded fan-in circuit C of size O(|P0|
3) and constant

depth over B1 with non-deterministic variables, which computes in Logspace Θ ∈

Conf(P ′) from Θ0 ∈ Conf(P0) whenever P0(bi1 , . . . , bin
) ⇒

b(P )
D ⇒1

M P ′ from
given inputs i1, . . . , in.
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Proof. As done in the translation one can parse the configuration of P0(bi1 , . . . , bin
)

without taking care of sum-boxes to build partially LDC(C) in Logspace. From
Conf(P0) we complete LDC(C) in Logspace and compute Conf(P ′) as follows:
The simulation of one k-ary sum-box t which corresponds to k summands/choices,
uses log k non-deterministic variables {Gt} as done in the Fig. 8. Let l be a link
of box-depth b(l), i.e. l is contained in exactly b(l) sum-boxes {ti}i∈I . Let ki be
the arity of the sum-box ti. The link l depends on Σi∈I log ki non-deterministic
gates. We initialize the value of the corresponding edges with the conjunction
of the values of these non-deterministic gates ∪i∈I{G

si}. Globally this constant
depth initialization uses one conjunction gate by edge in Conf(P0) and one
negation gate by non-deterministic gates. �
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Fig. 8. 22-ary sum-box simulation where edgei are in the ith summand

Lemma 4. [Ter04] There is an unbounded fan-in circuit C over B1(stCONN2)
of size O(|P0|

3) and constant depth such that whenever a configuration Θ ∈
Conf(P ) is given as input and P ⇒ P ′, C outputs a Θ′ ∈ Conf(P ′).

Theorem 4. For every uniform family P of Boolean proof nets of size s and
logical depth c, of nMLLu with k(n) sum-boxes of maximal arity k, there is a
uniform family of unbounded fan-in Boolean circuit over the basis B1(stCONN2)
of size sO(1) and depth O(c) and with O(k(n).log k) non-deterministic variables,
which accepts the same set as P does.

Proof. By theorem 2 {i1, . . . , in} is accepted by P if and only if b1 ∈ {Pi}i∈I

where P (bi1 , . . . , bin
)) ⇒

b(P )
D ⇒1

M P ′ ⇒c(P ) sumi∈I(Pi). We build a uniform
polysize constant depth circuit: the lemma 3 proof gives the bound on the non-
deterministic variables. For each of the ⇒c(P ) reductions we apply the Terui’s
lemma. Finally one easily build a polysize constant depth circuit for acceptance
checking which decides if a given configuration represents b1 or not. �

6 Proof net complexity

For i ∈ N, the class nmBN i(k(n)) and the class mBN i are the functions com-
putable by uniform families of polynomial size, O(login) depth Boolean proof
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nets of respectively nMLLu with O(k(n)) sum-boxes and MLLu. We denote
nmBN (k(n)) and mBN the respective unions over the exponents of the depth.
From the theorems 3 and 4 we obtain:

Theorem 5. For all i ∈ N,
NACi(k(n))(stCONN2) ⊆ nmBN i(k(n)) ⊆ NACi(k(n)× log n)(stCONN2)

Proof. For a Boolean proof net of size s the arity k of a sum-box is O(s) in
the worst case. So O(k(n).log k) = O(k(n) × log n) because here log O(s) =
log nO(1) = O(log n). �

Corollary 1. For all i, j ∈ N,

1. nmBN i(poly) = NACi(poly)(stCONN2) = NP ,
2. NACi(logj n)(stCONN2) ⊆ nmBN i(logj n) ⊆ NACi(logj+1 n)(stCONN2),
3. nmBN (1) = mBN = NC,
4. nmBN (log n) ⊇ NC,
5. nmBN (polylog) = NNC (polylog),
6. nmBN (poly) = NNC (poly) = NP .

Proof. Point 1. O(nO(1) × log n) = O(nO(1)).
Point 3. NAC (1)(stCONN2) = NC = NNC (log n) = NAC (log n)(stCONN2).
Point 5. by union over i and j from Point 2.
Point 6. by union over i from Point 1. �

Remark that nmBN (1) = mBN is what we expect: a constant number of
sum-boxes corresponds to nO(1) summands/choices in the worst case then is
simulable with a disjunction of a polynomial number of mBN circuits of same
depth. I.e. it corresponds to NNC (log n) = NC.

7 Conclusion

We study the parallel reductions of the proof nets of the non-deterministic mul-
tiplicative Linear logic. We define uniform Boolean proof nets with an amount
of explicit non-determinism analogously to uniform circuits of NNC (), the non-
deterministic NC class. We apply our results to give a proof-as-programs corre-
spondence between this two models of parallel computation, preserving both size
and depth. We define in a standard way classes for families of uniform Boolean
proof nets nmBN () and we establish the following results:

NC = nmBN (1) ⊆ nmBN (log n) ⊆ nmBN (polylog) ⊆ nmBN (poly) = NP
q q q

mBN NNC (polylog) NNC (poly)

Remark that the central theorems could apply for circuits without depth con-
straint. Such a circuit is simply called a polynomial size circuit. So there is a
chain from P to NP for families of uniform polynomial size Boolean proof nets.

There is a reduction which replaces the sequence of ⇒D in our theorem
in only one step: it is what is simulated in circuits. The same could even be
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done parsing the summands without to reduce sum-boxes (using only k(n).log n
bits) but with our theorem reduction we do fully parallel computation. Ad-hoc
Boolean proof net classes can be given to have a more strictly correspondence
with NNC (), using only binary �-links. Then the encoding are no more constant
depth but O(k(n)) depth: one finds NC with O(log n) sum-boxes. Remark that if
we use a uniformity which is not sharp as the L-uniformity then the descriptions
are more readable: e.g. for sum-boxes a relation between the �-links is sufficient.

Because in nmBN () sum-boxes are not binary we only need a constant
amount of sum-boxes to be equal to NC. So we are curious about the dimen-
sions needed for the algorithm for quasigroup isomorphism (QI) problem given
by [Wol94] i.e. ∃?i s.t. QI ∈ nmBN i(log n).

By showing that NNCi(logj n) ⊆ DSPACE(logmax(i,j) n) in his attempt
to separate NC from NP , Wolf [Wol94] gives a better intuition about NNC ()
in term of space than of time. It could be interesting to explore this complexity
classes however with the Boolean proof nets we are much closer to time: we
can use more than a fixed quantity of non-deterministic variables but explicit
non-determinism as functional constructor. Indeed a function can be fully non-
deterministic as a choice between two functions, or it can be build with explicit
non-deterministic type (nd-Bool) e.g. the function AND of type nd-Bool× Bool→
Bool is defined by AND(x,y)= if y then x else 0. Such functional approach
is not used in this paper but is efficient with proof nets enriched with additives.
mNBN () are classes of Boolean proof nets enriched with fixed amount of N

additive connectives to simulate non-determinism [MR06]. However N behavior
is not strictly the non-determinism but a little more. The sum-boxes are a kind of
weak additives that we can define for the Boolean proof net setting by extending
additives to unary connectives: �3B and NB. The corresponding links are the
usual binary N(B,B) but the �3(B,B) is binary and cuts behave as for the
sum-boxes. There is not an inelegant collapse of the additive neutrals as done in
[Mat96] with auto-dual additive connectives (an equivalent version of nLL). An
immediate advantage of Boolean proof net with unary additives is to avoid the
garbage.
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A Appendix

A.1 Functions in Boolean proof nets

The conditional (if-then-else) is the base of the Terui’s gates translations: given
two proof nets P1 and P2 of types ⊢ Γ, p1 : A and ⊢ ∆, p2 : A resp., one can build
a proof net condp1,p2

r [P1, P2](q) of type ⊢ Γ,∆, q : B[A]⊥, r : A � A (Fig.9(b)).
Given a cut between bi and q we have:

condp1,p2

r [P1, P2](b1)→
∗ tensorp1,p2

r (P1, P2),

condp1,p2

r [P1, P2](b0)→
∗ tensorp2,p1

r (P2, P1).

Fig. 9. (a) The Boolean b1 and b0 ; (b) The conditional

Disjunction, conjunction and duplication are based on the conditional: let
n > 2 be an integer and C ≡ �(B[A1], . . . ,B[An]),

or(p1, p2) ≡ cond[b1, axp1
](p2) of type ⊢ p1 : B⊥, p2 : B[B]⊥, q : B � B,

and(p1, p2) ≡ cond[axp1
, b0](p2) of type ⊢ p1 : B⊥, p2 : B[B]⊥, q : B � B,

copyn(p) ≡ cond[tensor(
−→
b1), tensor(

−→
b0)](p) of type ⊢ p : B⊥[C], q : C � C.
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The composition of two translated circuits is defined by: let Γ ≡ p′1 : A′
1, . . . , p

′
n :

A′
n and ∆ ≡ q′1 : B′

1, . . . , q
′
n : B′

m, let P (
−→
p′ ) and Q(

−→
q′ ) be proof nets of type

⊢ Γ, p : �
2(B,

−→
C ) and ⊢ q : B⊥[A],∆, r : �

2(B,
−→
D), respectively. Then:

compp,q,r
s [P,Q](

−→
p′ ,
−→
q′ ) is of type ⊢ Γ [A],∆, s : �

2(B,
−→
D,
−−→
C[A]).

With this composition one can construct n-ary versions of conjunction and
disjunction.

A.2 nMALL non-determinism

– �3 is redondant: (a) �3-rule (b) is derivable in nMALL –

(a)

⊢ Γ,A ⊢ Γ,B

⊢ Γ,A � B
�3

(b)

⊢ Γ,A

⊢ ∆, A � B
�1

⊢ Γ,B

⊢ Γ, A � B
�2

⊢ Γ,A � B
sum

– �3/N reduction step simulation in nMALL –

⊢ Γ, A ⊢ Γ, B

⊢ Γ, A � B
�3

⊢ ∆, A⊥
⊢ ∆, B⊥

⊢ ∆, A⊥
NB⊥

N

⊢ Γ, ∆
cut

−→�3/N

⊢ Γ, A ⊢ ∆, A⊥

⊢ Γ, ∆
cut

⊢ Γ, B ⊢ ∆, B⊥

⊢ Γ, ∆
cut

⊢ Γ, ∆
sum

⊢ Γ, A

⊢ ∆, A � B
�1

⊢ Γ, B

⊢ Γ, A � B
�2

⊢ Γ, A � B
sum

⊢ ∆, A⊥
⊢ ∆, B⊥

⊢ ∆, A⊥
NB⊥

N

⊢ Γ, ∆
cut

−→sum/cut

⊢ Γ, A

⊢ ∆, A � B
�1

⊢ ∆, A⊥
⊢ ∆, B⊥

⊢ ∆, A⊥
NB⊥

N

⊢ Γ, ∆
cut

⊢ Γ, B

⊢ ∆, A � B
�2

⊢ ∆, A⊥
⊢ ∆, B⊥

⊢ ∆, A⊥
NB⊥

N

⊢ Γ, ∆
cut

⊢ Γ, ∆
sum

−→�1/N,�2/N

⊢ Γ, A ⊢ ∆, A⊥

⊢ Γ, ∆
cut

⊢ Γ, B ⊢ ∆, B⊥

⊢ Γ, ∆
cut

⊢ Γ, ∆
sum
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