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The relationship between Boolean proof nets of multiplicative linear logic (AP N) and Boolean circuits has been studied [Ter04] in a non-uniform setting. We refine this results by taking care of uniformity: the relationship can be expressed in term of the (Turing) polynomial hierarchy. We give a proofs-as-programs correspondence between proof nets and deterministic as well as non-deterministic Boolean circuits with a uniform depth-preserving simulation of each other. The Boolean proof nets class m BN (poly) is built on multiplicative and additive linear logic with a polynomial amount of additive connectives as the nondeterministic circuit class NNC (poly) is with non-deterministic variables. We obtain uniform-AP N = NC and m BN (poly) = NNC (poly) = NP .

Introduction

Linear Logic (LL) is a refinement of classical and intuitionist logic [START_REF] Girard | Linear logic[END_REF]. The conjunction/disjunction are split into the multiplicative (M) and additive (A) connectives. The exponentials give a logical status to the structural rules of classical and intuitionist sequent calculus. The study of LL revealed the proof nets [Gir87,DR89]: a parallel syntax for logical proofs where some inessential sequential information are removed. In this way the global and sequential sequent calculus cut-elimination becomes local and parallel in the proof nets. The well known Curry-Howard isomorphism is a correspondence between proofs and programs which associates cut-elimination in proofs and execution in programs. We study its extension to models of parallel computation using proof nets.

Boolean circuits [START_REF] Vollmer | Introduction to Circuit Complexity -A Uniform Approach[END_REF][START_REF] Boppana | The complexity of finite functions[END_REF] are a standard model of parallel computation as Turing machine are a model of sequential computation. Several important complexity classes are defined in terms of Boolean circuits, including NC. NC can be thought of as the problems being efficiently solved on a parallel computer just as the class P can be thought of as the tractable problems. Because a circuit has a fixed input size, Boolean circuits are so-called non-uniform models of computation: inputs of different lengths are processed by different circuits. A uniformity condition is often imposed on circuit families so that each circuit can be computed by some resource-bounded Turing machine. For instance NC is defined to be the set of Boolean functions that can be decided by uniform Boolean circuits of polynomial size in the length of the inputs and polylogarithmic depth.

The depth is the time on a parallel computer where the size is the number of processors.

K. Terui (NII, Japan) introduced a proof-as-programs correspondence between a multiplicative Boolean proof nets class (AP N ) and Boolean circuits such that cut-elimination corresponds to evaluation [START_REF] Terui | Proof nets and boolean circuits[END_REF]. Defining a parallel cut-elimination in proof nets, the Terui's main result is AP N = non-uniform NC. This is the first time that a logical depth is taken into account: it makes possible to achieve a seed up over sequential computation. Without restricting the depth in NC or non-uniform NC, one obtains respectively P or P/poly. P/poly is the complexity class of languages recognized by a polynomial-time Turing machine with a polynomial-bounded advice function. So K. Terui gives a corollary: polynomially-sized multiplicative Boolean proof nets class is equivalent to P/poly. Our paper is firstly motivated by an algorithmic point of view, and therefore an important issue is the uniformity of circuits, because only a uniform circuit family (C n ) n∈N can be regarded as an implementation of an algorithm. Indeed a description of the circuit C n for inputs of size n can be obtained easily when the value of n is known: we need an efficient algorithm to built C n given n, where different notions of efficient give rise to different notions of uniformity [START_REF] Ruzzo | On uniform circuit complexity[END_REF][START_REF] Allender | P-uniform circuit complexity[END_REF][START_REF] Barrington | On uniformity within NC 1[END_REF]. We introduce a suitable notion of uniformity for proof nets and adapt the proofs between proof nets and Boolean circuits to satisfy the uniformity condition. The method gives the uniform counter part of the Terui's results i.e. a proof nets characterisation of both NC and P .

Note that P/poly is not generally considered a practical class for computing. Indeed it contains every undecidable unary language, none of which can be solved in general by real computers. However P/poly is an important theoretical class because of the following fact: if NP ⊆ P/poly then the polynomial hierarchy collapses to Σ 2 P (i.e. NP with NP Oracle), and if NP is not a subset of P/poly then P = NP [START_REF] Karp | Some connections between nonuniform and uniform complexity classes[END_REF][START_REF] Cook | Consequences of the provability of NP⊆P/poly[END_REF]. Our work is motivated by such theoretical point of view and the logical study of complexity classes. We study a non-deterministic extension of the parallel Curry-Howard isomorphism in a uniform setting always by giving a uniform depth-preserving simulation of each classes. On one hand there are several characterizations of non-determinism in circuits [START_REF] Venkateswaran | Circuit definitions of nondeterministic complexity classes[END_REF][START_REF] Wolf | Nondeterministic circuits, space complexity and quasigroups[END_REF]. We use NNC (poly) a class equivalent to NP , which is defined in the same way as NC but using at most a polynomial amount of non-deterministic variables. On the other hand, as suggested by K. Terui we enrich proof nets with additive connectives, because additive allow us to incorporate non-determinism. An encoding of a co-NP problem in the intuitionist fragment of MALL [START_REF] Mairson | On the computational complexity of cut-elimination in linear logic[END_REF] illustrates why additives could be used. Contrary to the multiplicative case, the proof nets with additives have never been convincing: in the original syntax [START_REF] Girard | Linear logic[END_REF], the additive connective is associated to a box and the cut-elimination does not satisfy the Church-Rosser property. Nevertheless if a such proof net does not contain the connective in its conclusions then it has a unique normal form [START_REF] De Falco | Additives of linear logic and normalization -part i: a (restricted) church-rosser property[END_REF]. Our encoding and the defined Boolean proof nets satisfy this property, so we restrict our attention to this setting. Strong normalization and confluence of the additive proof nets have been studied in various directions [START_REF] De Falco | Additives of linear logic and normalization -part i: a (restricted) church-rosser property[END_REF], in the polarized fragment of LL [START_REF] Laurent | Slicing polarized additive normalization[END_REF] or recently with a set of linkings on a formula [START_REF] Hughes | Proof nets for unit-free multiplicative-additive linear logic[END_REF][START_REF] Hughes | Proof nets for unit-free multiplicative-additive linear logic[END_REF]. We have not yet fully explored this last approach which seems to give another kind of speed-up.

After some background on Boolean circuits in section 2, we present the Terui's approach extended to the uniform case in section 3. The circuit gates are unbounded like (∧ n ) n∈N and (∨ n ) n∈N . In particular the stCONN 2 gates which test the reachability between two nodes of the undirected graph given in input, are used to simulate the cut-elimination of proof nets. In the first subsection the definitions concerning MLL u (a n-ary variant of MLL) and Boolean type are presented as in [START_REF] Terui | Proof nets and boolean circuits[END_REF]. We define the uniformity for Boolean proof net families: the class mBN denotes just uniform-AP N . Then, we improve the Terui's results with two theorems (Thm.2, Thm.5): the translation and simulation between NC and mBN are done in logspace. Section 4 is devoted to the uniform non-deterministic Boolean proof nets called m BN (poly). We define the proof nets for M u ALL which is the fragment MLL u extended with additive connectives. We remind the standard definitions of the additives connectives: the slices and the cut-elimination. We easily obtain a parallel reduction theorem because of the particular setting. We introduce an extended version of the Boolean type for the non-deterministic variables. In the last section we establish the translation and the simulation theorems which imply NNC (poly) = m BN (poly) = NP .

Background

-Boolean circuits -Let F n denote the set of all Boolean functions f : {0, 1} n → {0, 1} for some n ∈ N. A basis is a finite set consisting of Boolean functions or sequences of Boolean functions (f i ) i∈N where f i ∈ F i . The standard basis are B 0 = {¬, ∧, ∨} and

B 1 = {¬, (∧ n ) n∈N , (∨ n ) n∈N }.
A Boolean circuit over a basis B is a directed acyclic graph with n + 1 sources or inputs (vertices with no in-going edges), one sink or output (a vertex with no out-going edges) and all nodes in B. Sources are labelled by literals from {x 1 , . . . , x n } ∪ {1} and nodes of in-degree k are labelled by one of the kary Boolean functions of B. A Boolean circuit (a circuit for short) computes a function in F n in a natural way. Nodes are called gates, and in-degree and outdegree are called fan-in and fan-out respectively. The circuits over basis without infinite families of Boolean functions (as B 0 ), are called bounded fan-in circuits. The other circuits are called unbounded fan-in circuits.

We say that a family of circuits

C = (C n ) n∈N computes a function f : {0, 1} * → {0, 1} (or recognizes a language L C ∈ {0, 1} * ) if for every n the circuit C n computes the restriction of f to F n . I.e. ∀x ∈ {0, 1} * , C |x| (x) = f (x).
Let C be a circuit, the size denoted size(C) is the number of gates of C. The depth denoted d(C) is the length of a longest directed path.

A non-deterministic Boolean circuit C with m non-deterministic variables is a circuit with n + m + 1 sources labelled by {x 1 , . . . , x n } ∪ {y 1 , . . . , y m } ∪ {1}.

It computes a function f ∈ F n as follows: for x ∈ {0, 1} n , f (x) = 1 iff there exist a setting of the non-deterministic variables {y 1 , . . . , y m } which makes the circuit output 1. We denote C(x, y) the same circuit as C without distinction between non-deterministic variables and deterministic gates, x ∈ L C the language recognized by C, if ∃w ∈ {0, 1} m a witness s.t. C(x, w) = 1. When needed we abusively denote C(x) and C(x, y) the distinct circuits.

-Circuit uniformity -As briefly presented in the introduction, there are different notions of circuit uniformity [START_REF] Vollmer | Introduction to Circuit Complexity -A Uniform Approach[END_REF]. In order to obtain a class containing P , it is necessary to impose a "P -uniform" condition on circuit families. That is, the description of the n th circuit can be provided by a deterministic Turing machine operating in polynomial time [START_REF] Allender | P-uniform circuit complexity[END_REF]. But P -uniformity is too weak to define subclasses of P ; this leads one to consider L-uniformity [START_REF] Ruzzo | On uniform circuit complexity[END_REF]: the description is computable in logspace. It is the same when we want to consider the subclass of NC with O(log n) depth (called NC 1 ): DLOGTIME-uniformity requires a somewhat more careful definition. Informally, there is a deterministic linear time in O(log s(C n )) Turing machine that, given n and a name of a gate g can determine all the wanted information about gate g (like sort, predecessors, ...) belonging to the circuit C n of size s. Unfortunately all these notions are more and more restrictive.

In our work we focus on a uniform approach of the well established relationship between non-uniform NC and the multiplicative Boolean proof net class AP N . For the sake of simplicity we consider the L-uniformity: it is sufficient to investigate all classes containing L. Actually, only NC 1 and constant depth classes of circuits and proof nets need a uniformity notion stronger than the L-uniformity. Moreover the NC class remains the same if stronger notions of uniformity than L-uniformity are used [START_REF] Ruzzo | On uniform circuit complexity[END_REF].

The direct connection language of a family C = (C n ) n∈N over basis B, denoted L DC (C), is the set of tuples y, g, p, b , where for y = 1 n , we have: g is the number of a gate v in C n , and p ∈ {0, 1} * is a binary word such that -if p = ε then b is the number of the function from B labeling v, -if p = bin(k) then b is the number of the k th predecessor gate to v.

A circuit family (C n ) n∈N is L-uniform if its direct connection language can be recognized in logspace by a deterministic Turing machine. Without precisions, we use in the rest of this paper the term uniform as a shorthand for L-uniform.

-Circuit classes -

The classes NC i and AC i for i 0 are the functions computable by uniform families of polynomial size, O(log i n) depth circuits over B 0 and B 1 respectively. AC i (stCONN 2 ) correspond to AC i over B 1 ∪ {stCONN 2 }. We denote NC the uniform circuit families which have polynomial size and polylogarithmic depth, i.e. NC = ∪ i 0 NC i . We define AC in the same way. L, NL and P are in the time-space hierarchy of the Turing machines. The well known hierarchy is:

AC 0 NC 1 ⊆ L ⊆ NL ⊆ AC 1 ⊆ NC 2 ⊆ AC 2 ⊆ • • • ⊆ NC ⊆ P ∀i ∈ N, AC i ⊆ AC i (stCONN 2 ) ⊆ AC i+1
The class NNC i (f (n)) is the class of languages accepted by L-uniform-NC i circuit families with at most O(f (n)) non-deterministic variables, where n is the length of the input. We define NAC i (f (n)) in the same way, but using AC i . We abusively denote NNC i (poly) when f (n) is a polynomial function. If f (n) = log n then the amount of non-deterministic variables can be described by a polynomial number of NC gates [START_REF] Wolf | Nondeterministic circuits, space complexity and quasigroups[END_REF]:

NNC i (log n) = NC i , and then NNC (log n) = ∪ i 0 NNC i (log n) = NC.
So we don't consider these classes but we investigate the following classes [START_REF] Wolf | Nondeterministic circuits, space complexity and quasigroups[END_REF]:

NNC (poly) = ∪ j 0 NNC (n j ) = NP and ∀i ∈ N * , NNC i (poly) = NP. NAC (poly) = ∪ j 0 NAC (n j ) = NP and ∀i ∈ N, NAC i (poly) = NP.
3 Uniform Boolean proof nets -MLL u and Boolean type -We recall in this section some basic definitions gave by Terui in [START_REF] Terui | Proof nets and boolean circuits[END_REF]. The formulas of MLL u are built on literals by n-ary versions of multiplicative conjunction and disjunction, for every n 2. The negation of a non-literal formula is defined by de Morgan's duality (reversing the order of subformulas).

A sequent of MLL u is of the form ⊢ Γ , where Γ is a multiset of formulas. The rules of MLL u are given in Fig. 1(a) with the convention The corresponding links (Fig. 2(a)) are of three sorts called: axiom-link, nlink and n -link. Each link has several ports. The ports numbered 0 are called the principal ports, while others are called auxiliary ports. By convention a principal port is always written below the link whereas an auxiliary port is above it.

-→ A ≡ A 1 , . . . , A n and ← - A ≡ A n , . . . , A 1 . ⊢ A, A ⊥ (axiom) ⊢ Γ, C ⊢ ∆, C ⊥ ⊢ Γ, ∆ (cut) ⊢ Γ, A ⊢ Γ, B ⊢ Γ, A B (a) (b) ⊢ Γ1, A1 . . . ⊢ Γn, An ⊢ Γ1, . . . , Γn, n ( - → A ) n ⊢ Γ, An, . . . , A1 ⊢ Γ, n ( ← - A ) n ⊢ Γ, Ai ⊢ Γ, A1 A2 i i=1,2
A pseudo net is a triple

L, σ, ∼ s.t. L is a finite set of links, σ : L → {•} ∪ { n , n } n 1 and ∼ is a symmetric relation on (L, N) 2 .
A link p with σ(p) = • ( n , n , resp.) stands for an axiom-link ( n -link, n -link, resp.). When (p, n) ∼ (q, m), we say that there is an edge between (p, n) and (q, m), where (p, n) stands for the port number n of link p. A cut in a pseudo net is an unordered pair of link p, q s.t. (p, 0) ∼ (q, 0): we call it an ax-cut when either p or q is an axiom-link, otherwise we call it a m-cut.

A proof net of type ⊢ Γ is a pseudo net P inferred by a sequent calculus proof of ⊢ Γ ′ where Γ is a decoration of Γ ′ i.e. formulas of the form p : A (see Fig. 5 for an example) (a proof net of type ⊢ p : A is simply called a proof net of type A) . The pseudo nets inferred in Fig. 3(a) are respectively: tensor p1,...,pn q (P 1 , . . . , P n ), par pn,...,p1 q (P ) and ax p , cut p,q (P, Q). 

P Q p q 0 0 • P Q p1 p2 r 1 1 r 1 k r 2 1 r 2 k r1 r k q 1 2 1 2 1 2 0 0 0 P 1 p q 1 0 P 2 p q 1 0
(α) = d(α ⊥ ) = 1 and d( n ( -→ A )) = d( n ( ← - A )) = max(d(A 1 ), . . . , d(A n )) + 1, with -→ A ≡ A 1 , . . . , A n .
Given a derivation π of ⊢ Γ inferring P , its depth d(π) is the maximal depth of cut formulas in it. The depth d(P ) of a proof net P is defined to be min{d(π)|π is a derivation of ⊢ Γ inferring P for some Γ }.

Boolean values are represented with the type B = 3 (α ⊥ , α ⊥ , 2 (α, α)). There are exactly two cut-free proof nets of this type (true and false resp.) Fig. 4(a): b 1 ≡ par p,q,r s (tensor p,q r (ax p , ax q )), b 0 ≡ par q,p,r s (tensor p,q r (ax p , ax q )). A Boolean proof net with n inputs -→ p ≡ p 1 , . . . , p n and one output is a proof net P ( -→ p ) of type:

⊢ p 1 : B ⊥ [A 1 ], . . . , p n : B ⊥ [A n ], q : m+1 (B, -→ C ), for some -→ A ≡ A 1 , . . . , A n and -→ C ≡ C 1 , .
. . , C m (garbage due to the multiplicative framework) where B[A] denote the formula B where all occurrences of α are substituted by

A. Given -→ b ≡ b i1 , . . . , b in , P ( -→ b ), of type m+1 (B, -→ C ), denotes the proof net obtained by connecting, ∀j ∈ {1, . . . , n} (i j ∈ {0, 1}), b ij to p j by a cut. P ( -→ b ) reduces to a cut-free proof net of the shape tensor(b i , -→ Q ), i ∈ {0, 1}: we say that P ( -→ b ) evaluates to b i . Let w ≡ i 1 . . . i n ∈ {0, 1} n . P ( -→ p ) represents a function f : {0, 1} n → {0, 1} if P (b i1 , . . . , b in ) evaluates to b f (w)
. Thus, the language accepted by P ( -→ p ) is f -1 (1).

AP N i for i ∈ N, is the class of languages recognized by non-uniform Boolean proof net families of polynomial size and O(log i n)-depth. APN= i∈N AP N i .

-Uniform proof nets -In the framework of polynomial size proof nets, we consider an extended description of a proof net P which is equivalent to the triple defining a pseudo net. We call it Conf (P ), the configuration of P .

Let P = {P n } n∈N be a family of Boolean proof nets. Links are identified by binary words. For all n ∈ N, we fix the inputs p 1 , . . . , p n of P n to be identified by 0, . . . , bin(n -1) respectively, and the output to be identified by bin(n) (where bin is the function which associates to a number in decimal base its value in binary base). Conf(P) denotes the set of tuples in {1} * × (W \ {ǫ}) × W 2 × {0, 1} (W is the set of binary words), s.t. for y = 1 n :

-in y, u, ǫ, ǫ, 1 , u identifies a P n link.

-in y, u, s, ǫ, 1 , s is the sort's identifier of the link identified by u.

-in y, u, v, bin(i), 1 , u identifies a link connected by its principal port (or one of its two principal ports in the case of an axiom) to the port i of the link identified by v. -in y, u, a, b, 0 , u, a, b are the same informations as above but are not concerned with P n (i.e. the edges which does not appear in P n ).

Remark that if P n ∈ P then Conf (P n ) is the set of tuples that belong to Conf (P ) s.t. the first word is of size n. A proof net family {P n } n∈N of polynomial size s is L-uniform (resp. P -uniform) iff there is a function which computes

Conf (P n ) from 1 n in space O(log s) (resp. in time s O(1) ), for all n ∈ N. For all i ∈ N, uniform AP N i is denoted mBN i .
-Uniform Terui's translation of NC -

The conditional (if-then-else, Fig. 4(b)) is the base of the Terui's gates translations: given two proof nets P 1 and P 2 of types ⊢ Γ, p 1 : A and ⊢ ∆, p 2 : A resp., one can build a proof net cond p1,p2 r [P 1 , P 2 ](q) of type ⊢ Γ, ∆, q : B[A] ⊥ , r : A A. Given a cut between b i and q we have with the convention that the first component is considered as the output, the rest being the garbage:

cond p1,p2 r [P 1 , P 2 ](b 1 ) → * tensor p1,p2 r (P 1 , P 2 ), cond p1,p2 r [P 1 , P 2 ](b 0 ) → * tensor p2,p1 r (P 2 , P 1 ).
Disjunction, conjunction and duplication are based on the conditional: let n 2 be an integer and

C ≡ n (B[A 1 ], . . . , B[A n ]), or(p 1 , p 2 ) ≡ cond[b 1 , ax p1 ](p 2 ) of type ⊢ p 1 : B ⊥ , p 2 : B[B] ⊥ , q : B B, and(p 1 , p 2 ) ≡ cond[ax p1 , b 0 ](p 2 ) of type ⊢ p 1 : B ⊥ , p 2 : B[B] ⊥ , q : B B, copy n (p) ≡ cond[tensor( -→ b 1 ), tensor( -→ b 0 )](p) of type ⊢ p : B ⊥ [C], q : C C.
The composition (Fig. 4(c)) of two translated circuits is defined as follows: let 

Γ ≡ p ′ 1 : A ′ 1 , . . . , p ′ n : A ′ n and ∆ ≡ q ′ 1 : B ′ 1 , . . . , q ′ n : B ′ m , let P ( -→ p ′ ) and Q( -→ q ′ ) be (a) • • • • ≡ b1 ≡ b0 (b) P2 P1 ⊗ • p2 p1 q r (c) • • • • • P Q p q r s
q : B ⊥ [A], ∆, r : 1+m ′ (B, -→ D), respectively. Then: comp p,q,r s [P, Q]( -→ p ′ , -→ q ′ ) is of type ⊢ Γ [A], ∆, s : 1+m ′ +m (B, -→ D, --→ C[A]
). With this composition one can construct n-ary versions of conjunction and disjunction. The translation of a Boolean circuit follows from composition of gate translations and duplication for fan-out management:

Theorem 1 ( [START_REF] Terui | Proof nets and boolean circuits[END_REF]). For every unbounded fan-in Boolean circuit C of size s and depth d over the basis B 1 (stCONN 2 ), there is a Boolean proof net of size O(s 5 ) and depth O(d), which accepts the same set as C does.

Lemma 1. Let Σ be a finite alphabet. If g : Σ * → Σ * and f : Σ * → Σ * are computable in logspace and the f output is polynomial in its input, then g • f is computable in logspace.

Theorem 2. Let i ∈ N. The Terui translation of a Boolean circuit family in AC i (stCONN 2 ), by a Boolean proof net family in mBN i is logspace.

Remark 1. In order to simplify this result we consider a translation of a circuit where the garbage of each translated gate is propagated directly to the output of the proof net. This version is equivalent to the one presented by Terui but in which some reductions have been performed. Proof. Let C = {C n } n∈N be a L-uniform Boolean circuit family in AC i (stCONN 2 ). By uniformity, there is a logspace function f s.t. for every n ∈ N, f (1 n ) = L DC (C n ). Let P = {P n } n∈N be the Boolean proof net family obtained by translation of C. We show that there is a logspace function f ′ built from f s.t. for every n ∈ N, f ′ (1 n ) = Conf (P n ). In order to do that, we use a function f d→c , logspace in the inputs of f , which associates

Conf (P n ) to L DC (C n ) for all n ∈ N. Let f d→c = f 3 • f 2 • f 1
where we call module the composition of the translated gate and its translated fan-out, and (k, j ∈ {1, . . . , size(C n )}):

-f 1 copies out its inputs adding to tuples which indicate that a gate v is the k th predecessor of a gate u, that gate u is the j th successor of gate v.

Then f 1 computes for every gate its module composed with a pseudo net allowing garbage propagation, adding the identifier of the translated gate, and for each output, an identifier differentiating it from others. -f 2 copies out and completes the information given by the modules created by f 1 with the help of the information added to L DC (C n ). That is, it adds information about edges between an output of a module and an input of another module, with the help of information added about translated gates and edges between gates. -f 3 organizes tuples and deletes useless information.

L DC (C n ) like Conf (P n ) has a polynomial size. An identifier of a gate or a link is logspace. At each step, these functions memorize a constant number of identifiers, so f 1 , f 2 and f 3 are logspace. Then f d→c is logspace. By lemma 1,

f ′ = f d→c • f is logspace in the inputs of f . -Parallel cut-elimination -
The elimination of a cut between two axioms cannot always be performed in parallel. So K. Terui considers another reduction step named tightening reduction which reduces a maximal sequence of cut axioms to an axiom. Such maximal sequence (ax-sequence) is defined as a set of axioms, each linked with another in this set s.t. there are not other axioms that verify this property.

If Q is obtained from P by elimination of all ax-cuts simultaneously (m-cuts, ax-sequences, resp.) then we write P ⇒ ax Q (P ⇒ m Q, P ⇒ t Q, resp.). We write

P ⇒ Q if P ⇒ ax Q or P ⇒ m Q or P ⇒ t Q.
Theorem 3 (parallel cut-elimination, [START_REF] Terui | Proof nets and boolean circuits[END_REF]). There is a sequence of parallel reductions

P ⇒ P 1 • • • ⇒ P k , s.t. P k is cut-free and k 3 × d(P ).
-Uniform Terui's simulation in NC -We consider proof nets with links belonging to a fixed set L 0 with the convention n -link is of sort , and a n -link is of sort . A configuration Θ consists of the following Boolean values : alive(p), sort(p, s), edge(p, 0, q, i), for every p, q ∈ L 0 , s ∈ {•, , } and i < |L 0 |.

A link p ∈ L 0 is said to be alive in Θ if alive(p) = 1. Given a proof net P = L, σ, ∼ , we write Θ ∈ Conf (P ) if for every p ∈ L 0 , alive(p) = 1 ⇐⇒ p ∈ L and for every alive links p, q in Θ, the following holds : sort(p, s) = 1 ⇐⇒ σ(p) is of sort s and edge(p, 0, q, i) = 1 ⇐⇒ (p, 0) ∼ (q, i).

Lemma 2 ([Ter04]

). There is an unbounded fan-in Boolean circuit C of size O(|P 0 | 3 ) and constant depth with stCONN 2 gates s.t. whenever Θ ∈ Conf (P ) is given as input of C and P ⇒ P', it outputs a configuration Θ ′ ∈ Conf (P ′ ).

Theorem 4 ( [START_REF] Terui | Proof nets and boolean circuits[END_REF]). For every Boolean proof net P of size s and depth d, there is a Boolean circuit C over the basis B 1 (stCONN 2 ) of size O(s 4 ) and depth O(d) which accepts the same set as P does.

Theorem 5. Let i ∈ N. The Terui simulation of a Boolean proof net family in mBN i by a Boolean circuit family in AC i (stCONN 2 ), is logspace. Proof. Let P = {P n } n∈N be a L-uniform Boolean proof net family in AP N i . By uniformity there is a logspace function f s.t. for all n ∈ N, f (1 n ) = Conf (P n ). Let C = {C n } n∈N be the Boolean circuit family obtained by simulation of P . We show that there is a logspace function f ′ built from f s.t. for every n ∈ N,

f ′ (1 n ) = L DC (C n ).
In order to do that, we use a function f c→d , logspace in the inputs of f , which associates L DC (C n ) to Conf (P n ) for all n ∈ N. The simulation introduced by Terui is divided in three steps: creation of initial configuration, simulation of parallel cuts elimination and check of the the last configuration.

-f c→d builds the part of the first configuration which represents the inputs of the proof net using the inputs of the Boolean circuit. It builds the part which represents the proof net using its input. Only a constant number of identifiers of links are memorized. -f c→d builds the circuit which simulates parallel cuts elimination. This part is only dependent of the size and depth of the proof net and not of its structure. -f c→d builds the circuit which check the result contained in the last configuration. This building is only dependent of the size of the proof net.

Conf (P n ) like L DC (C n ) has a polynomial size. An identifier of a gate or a link is logspace. At each step, f c→d memorizes a constant number of identifiers, so it is logspace. By lemma 1,

f ′ = f c→d • f is logspace in the inputs of f .
Corollary 1. mBN = NC and P is the class of those languages for which there is a uniform polynomial size family of (multiplicative) Boolean proof nets.

4 Non-deterministic Boolean proof nets m BN ()

In this section we introduce the unbounded fan-in version of multiplicative linear logic (MLL u ) extended with the binary additive connectives. We denote it M u ALL. The formulas of M u ALL are built from literals by MLL u connectives and by binary additive conjunction and additive disjunction . The sequent calculus rules are given in Fig. 1(a+b).

The added links are called -link, 1 -link and 2 -link (Fig. 2(b)). The inference rules for the new links follow the sequent calculus rules as expected. The resulting proof nets are depicted in Fig. 3(b). In a derivation, the two premises of a -rule, with the same context Γ , infer two proof nets called components. Each identical conclusion coming from the two components are merged with a binary co-additive-links (denoted -links or coad-links). So a -link arrives with an additive box bounding a (possibly empty) set of coad-links and the two components. This is described in Fig. 3(b) with the associated ports. As previously the cuts are just edges between principal ports.

-Slices and additive cut-elimination -

A slice of a proof net P is a proof net sl(P ) which may contain some unary 1 and 2 links: for every -link one of the premises is chosen. Then the noncorresponding component, the additive box and the coad-links are erased. In a slice, the additive cut-elimination between a i -link and a j -link, for i, j ∈ {1, 2}, is simply to check the consistency: if i = j then the additive links are removed propagating the cut on the unique premises.

We define as usual [START_REF] Girard | Linear logic[END_REF] the additive cut-elimination, denoted → a . The cut-elimination between a -link and a i -link (i ∈ {1, 2}) is the choice of the i th -link's premise and the same erasing as a slice. A cut-elimination with a coad-link is more complicated: the cut proof net is swallowed and duplicated in the additive box. The duplicated conclusions are merged with coad-links.

The cut-elimination with a coad-link is not confluent. A standard example is the proof net of type ⊢ A A, A ⊥ , cut to the proof net of type ⊢ A ⊥ A ⊥ , A. This produces two possible proof nets of type ⊢ A A, A ⊥ A ⊥ where the -link of the additive box is one of the formulas, the other being a coad-link. Nevertheless the proof nets are stable by cut-elimination [START_REF] Danos | La logique linéaire appliquée à l'étude de divers processus de normalisation (et principalement du λ-calcul)[END_REF][START_REF] De Falco | Additives of linear logic and normalization -part i: a (restricted) church-rosser property[END_REF]. Roughly speaking if the conclusions of the proof nets are -free then the cut-elimination is confluent.

-Parallel reduction theorem -It is difficult to have an additive cut-elimination from a parallel point of view (denoted ⇒ a ). We need a strategy e.g. as the parallel tightening reduction, one could want to reduce first the -links in parallel. But it is difficult to bound the number of parallel reduction steps because of the coad-links (it depends on maximal nesting of the additive boxes it contains). In the non-deterministic Boolean proof nets framework, it is somewhat different as explained after in lemma 3: proof nets are always cut against an additive witness s.t. this cut is eliminated equivalently to a slice choice. So we start the parallel reductions by choosing a slice, then additive cut-elimination becomes trivial and confluent: ⇒ a is only the disjoint consistency check done in parallel. We write ⇒ if one of the parallel reduction occurs (i.e. ⇒ t , ⇒ ax , ⇒ m or ⇒ a ). Because in a slice each sequence of all distinct parallel reductions strictly decrease the depth, we have: Theorem 6 (parallel cut-elimination). For every consistent slice sl, there is a sequence of parallel reductions sl(P ) ⇒ P 1 ⇒ • • • ⇒ P k s.t. P k is cut-free and k 4 × d(P ) + 1.

-Extended Boolean type for non-deterministic variables -

We define a non-deterministic Boolean type as B e = (B α ⊥ ), (α α). There . . . 

⊢ B ⊢ α, α ⊥ (ax) ⊢ B α ⊥ , α ( ) . . . ⊢ B ⊢ α, α ⊥ (ax) ⊢ B α ⊥ , α ( ) ⊢ B α ⊥ , α α ( ) → b0 b1
⊢ p 1 : B ⊥ [A 1 ], . . . , p n : B ⊥ [A n ], q : 1+k+m (B, -→ D, -→ id), r : m ( ------→ id ⊥ id ⊥ ).
Clearly, for w a proof net of type m ( ----→ id id) and

-→ b ≡ b i1 , . . . , b in (∀j ∈ {1, . . . , n}, i j ∈ {0, 1}), the proof net cut(P ( -→ b ), w) reduces to a cut-free proof net of type 1+k+m (b i , -→ D, -→ id) (i ∈ {0, 1}):
we say that P ( -→ b ) evaluates to b i if there exists such a w. The language accepted by a non-deterministic Boolean proof net is defined in the same way as for Boolean proof nets in section 3.

Similarly to the Terui AP N hierarchy and to the NNC () hierarchy, we define the m BN () hierarchy: a uniform family (P n ) n∈N of non-deterministic Boolean proof nets accepts a language X ⊆ {0, 1} * if P n is n-ary and accepts X ∩ {0, 1} n for every n 1. A language X ⊆ {0, 1} * belongs to the class m BN i (poly) iff X is accepted by a uniform polynomial size, log i -depth family of non-deterministic Boolean proof nets with a polynomial number of additive links.

NNC (poly) = m BN (poly)

In order to obtain the equality between NNC (poly) and m BN (poly), we use the class NAC (poly) whose relations with NNC (poly) were described in section 2.

-translation of NAC (poly) -Let C(x) be a circuit of input length n belonging to a family in NAC i (poly) for an arbitrary i ∈ N. By definition C(x, y) and C(x) have the same dimensions and m =| y |= n O(1) . Thus C(x, y) ∈ AC i w.r.t. the size of x, if we just omit the distinction between non-deterministic variables and deterministic variables. As in [START_REF] Terui | Proof nets and boolean circuits[END_REF] (see section 3) let P be the translation of C(x, y). For each y we cut the built proof net P with exactly one representation of B e . We manage the garbage as it can be seen in Fig. 6 to obtain the proof net T . Such translated proof net is in m BN i (poly). Let sl be a slice of T . We have the following parallel reduction from sl(T ):

P i1 bi1 im bim ⇒ m ⇒ ax P bi1 bim i1 im ⇒ * B -→ D i1 im
Another way could be to choose a witness w, i.e a proof net of type m ( ----→ id id), and then to reduce the cut between T and w. By only one additive parallel reduc-P b0 b1 b0 b1

Fig. 6. translation tion we obtain confluently a multiplicative proof net: it corresponds to C(-, w).

From the translation it immediately holds that to have a slice or a witness is equivalent in this setting, as is stated in this lemma: -Cut-elimination simulation -Let P ∈ m BN i (poly) be a proof net of size s and depth d. Let NAC i (poly) (stCONN ) corresponds to NAC i (poly) over B 1 ∪ {stCONN }. In order to have a corresponding non-deterministic circuit C ∈ NAC i (poly)(stCONN ), we represent P by a set of Boolean values: the configurations that we extend to take care of additive sorts and a box(p, q) relation to describe that p is associated to the additive box of the -link q. After that in the same way as [START_REF] Terui | Proof nets and boolean circuits[END_REF] (see section 3), the cut-elimination in P is simulated by the construction of layers of a circuit for each parallel cut-elimination step s.t. the evaluation of the constructed circuit C simulates the cut-elimination procedure. For simplicity we describe it following the parallel reductions as in lemma 3 with the help of non-deterministic variables, one for each link of the proof net:

Lemma 3. Let C ∈ NAC (
(x)) ⇒ * 1+n+m (b 1 , - → D , - → α ), 1 j m ( ij (α)) ⇐⇒ ∃w a witness of type m ( ----→ id id) s.t. cut(P n (x), w) ⇒ * 1+l+m (b 1 , -→ D, -→ id) ⇐⇒ x ∈ L P ,
-The circuit simulates the choice of a slice (its edges) s.t. every distinct choice can be done in parallel, depending on the non-deterministic variables:

-selection of one premise for each -links, with the help of a constant depth circuit of size O(s 3 ), -selection of one premise for each coad-links depending on the selected premise of the associated -links, with the help of a constant depth circuit of size O(s 4 ). Moreover we "erase" the coad-links themselves: by updating the alive value of a coad-link and the edge values concerning its incident edges and by linking the premise and the conclusion of a coad-link, with the help of a constant depth circuit of size O(s 5 ), -selection of one component associated to each -links using a stCONN gate, with the help of a constant depth circuit of size O(s 4 ). -The cut between a witness (depending on the non-deterministic variables)

and the modified slice is reduced in a known result due to our choice of the id type. This is done by a constant depth circuit of size O(s 5 ). -Finally as many time as 4×d(P )+1 we simulate one parallel reduction of the modified slice (⇒, in the same way as in [START_REF] Terui | Proof nets and boolean circuits[END_REF] with the help of a constant depth circuit of size O(s 3 ) that simulate ⇒ a ). We check consistency at each step with the help of a constant depth circuit of size O(s 3 ).

The most essential cost is due to the erasing of the coad-links and the elimination of the cut between a witness and a slice of a Boolean proof net. Each small circuit used here can be found in the appendix with precise depth and size.

Theorem 8 (simulation). Let i ∈ N. For every Boolean proof net P ∈ m BN i (poly) of size s and depth d, there is a Boolean circuit in NAC i (poly)(stCONN ) of size O(s 5 ) and depth O(d) which accepts the same set/language as P does.

Since the considered non-deterministic circuit class collapse we can replace NAC i (poly)(stCONN ) by NAC i (poly) in the previous theorem.

Conclusion

Focusing on uniformity, we strengthened the connection between proof nets and deterministic Boolean circuits by giving a uniform depth-preserving simulation of each other. This kind of Curry-Howard isomorphism for models of parallel computation as been extended to the non deterministic case. Because the uniformity arguments apply to the translation and simulation theorems, we have:

Theorem 9. ∀i ∈ N, m BN i (poly) = NAC i (poly) = NP .
Corollary 2. m BN (poly) = NNC (poly) = NP .

The substitution on the non-deterministic Boolean type B e deals with id to simplify the general case which can also be treated without difficulties. The most simple form of non-deterministic Boolean is 1 1 i.e. just replace id = α α ⊥ by 1: the semantic is clearly the same but the fragment of linear logic considered is extended to neutrals. Even without this, the Boolean proof nets of type ⊢ B ⊥ , . . . , B ⊥ , B . . . B are in a way canonical (up to substitutions) but the simulation is more complicated. A more general work can be done using the additive fragment expressiveness fully: a garbage is no more needed but the cut-elimination is no more confluent. Other approaches are interesting like the additives à la Hughes and van Glabbeek [START_REF] Hughes | Proof nets for unit-free multiplicative-additive linear logic[END_REF][START_REF] Hughes | Proof nets for unit-free multiplicative-additive linear logic[END_REF]: we believe to realize a stronger seed-up.

A Some corollaries

As a corollary for the theorem 7, we have: Corollary 3. For every Boolean circuit C ∈ NNC i (poly) of size s and depth d there is a Boolean proof net in m BN (poly) of size O(s 5 ) and depth O(d) which accept the same set/language as C does.

The most essential cost of the simulation of a Boolean proof net in m BN i (poly) (i ∈ N) by a boolean circuit in NNC i (poly), is due to the translates of stCONN gates (a log-depth circuit of size O(n 4 ) for a n-ary gate). Thus as a corollary for the theorem 8, we have: Corollary 4. For every Boolean proof net P ∈ m BN i (poly) (i ∈ N) of size s and depth d, there is a Boolean circuit in NNC i+2 (poly) of size O(s 12 ) and depth O(d) which accepts the same set/language as P does.

B Non-deterministic simulation

In this section, we adopt these conventions:

-alive(p) is write p -sort(p, s) is write p(s) -edge(p, 0, q, i) is write (p, q, i)

The circuit on Fig. 7, depicts the selection of one premise of a -links. The two ouputs are the new values for the edge values. This circuit is realized for all links p, q and r. For all links p and q, the new value of an edge(p, 0, q, 1) or an edge(p, 0, q, 2) value corresponds to the conjunction of its values at ouputs of these circuits. We obtain a circuit (named Sg) of size n 3j and constant depth, with n j the number of links.

Gp

(q, p, 1) (r, p, 2) p( / )

∧ ¬ ¬ ∧ ∧ ∧ ∧ ∨ ∨ Fig. 7. selection of one premise of a -link
It is the same for the selection of one premise of a coad-links (Fig. 8), but it depend on the selected premise of the associated -links. The two ouputs are the new values for the edge values. This circuit is realized for all links p, q, r and t. For all links p and q, the new value of an edge(p, 0, q, 1) or an edge(p, 0, q, 2) value corresponds to the conjunction of its values at ouputs of these circuits. We obtain a circuit of size n 4j and constant depth, with n j the number of links. The circuit on Fig. 9, depicts the erasing of information on unary coadlinks. This circuit is realized for all links p, q, r, t and i. First, the new value of a edge value corresponds to the disjunction of its values at the first output (edge(q, 0, t, i) on the Fig. 9) of these circuits. Second, the new value of an edge, a box, or an alive value corresponds to the conjunction of its values at the five last outputs of these circuits and at the output just created. We obtain a circuit of size n 5j and constant depth, with n j the number of links.

Gt (q, p, 1) (r, p, 2) box(p, t) ∧ ¬ ¬ ∧ ∧ ∧ ∧ ∨ ∨
(q, t, i) box(p, r) (q, p, 1) (q, p, 2) (p, t, i) p ∨ ∧ ¬ ∨ ∧ ∧ ∧ ∧ ∧ (q, t, i) box(p, r) (q, p, 1) (q, p, 2) (p, t, i) p

Fig. 9. erasing of a unary coad-link

The circuit on Fig. 10, depicts the erasing of the useless components of each additive box. The part above the mark -2-is realized for all links q, r and i. This circuit above the mark -3-is realized for all links p. The new value of an edge or an alive value corresponds to the conjunction of its values at ouputs of these circuits. We obtain a circuit of size n 4j and constant depth, with n j the number of links. Since the cut between a witness and the modified slice is reduced in a known result, the following circuit on Fig. 11 depicts elimination of this cut. This circuit is realized for all links p, q, t, y and v. For all links p and q, the new value of an edge(p, 0, q, 1) or an edge(p, 0, q, 2) value corresponds to the conjunction of its values at ouputs of these circuits. For an edge(p, 0, q, 0) value, we realize a disjunction. We obtain a circuit of size n 5j and constant depth, with n j the number of links. p q t u v p( )q( ) t( ) u(•) v(•) (u, v, 0)(u, p, 1)(v, p, 2)(p, q, 1)(p, q, 2) (q, t, i) (t, w, i) The circuit on Fig. 12 allows to check consistency of a slice. It is of size n 3j and constant depth, with n j the number of links. The description of a Boolean proof net (the triples defining a pseudo net introduced in section 3.3) can expressed as following: Definition 1 (triple(P)). Let P = {P n } n∈N be a family of Boolean proof nets. Links are identified by binary numbers. For all n ∈ N, we fix the inputs p 1 , . . . , p n of P n to be identified by O, . . . , bin(n -1) respectively, and the output to be identified by bin(n). triple(P) denotes the set of tuples in {1} * × (W \ {ε}) × W 2 (where W is the set of binary words), s.t. for y = 1 n :

∧ ∧ ∧ ∨ ∨ ∀i ∨ ∀w, i ¬ ∧ ¬ ∨ ∧ ∧ (u, v, 0) (u, p, 1) (v, p, 2)
• y, u, ǫ, ǫ , u identifies a link belonging to P n .

• y, u, s, ǫ , s identifies the sort of the link identified by u.

• y, u, v, bin(i) , u identifies a link connected by its principal port (or one of its two principal ports in the case of an axiom) to the port i of the link identified by v.

Let P n be a Boolean proof net belonging to the family {P i } i∈N . We'll show that there exists a function f computable in space O(log(n)), which associates Conf (P n ) to 1 n iff. there exists a function g computable in space O(log(n)), which associate triple(P n ) to 1 n . In order to do that, we will use two function h and h ′ , both logspace in n, which associate respectively triple(P n ) to Conf (P n ) and Conf (P n ) to triple(P n ).

For every tuple belonging to its input, h write this tuple, without its last word, on its ouput, if the last word is 1.

The function h ′ handles the links by decreasing order on their identifiers, after having found the biggest identifier amoung the tuples , , ǫ, ǫ , t. For all identifier of link i ∈ {0, . . . , t}, if the tuple , i, ǫ, ǫ is in the input of h ′ , it copy out on its output with the fifth word 1, else with 0. It works similarly for the tuples whose the forth word is ǫ (or none of the four).

Functions h and h ′ memorize a constant number of tuples, of identifier of links and of counters of size logspace in n.

-Proof of lemma 1 -Proof. We don't want to memorize the output of f on a input w. We have to notice that at each step of the computation of g on f (w), it's necessary to read only one bit of f (w). Thus, it's sufficient to maintain a counter (on the binary base) of size O(log(n)) (where n is the size of w), because of the polynomial size of the output of f . Then, we simulate the computation of g, in space O(log(n)), on the input f (w) without write it entirely. Each time we need to read a bit, we use a space O(log(n)) to find it. Hence, we use a space O(log(n)) to compute g • f .

-Proof of theorem 6 -Proof. As in a multiplicative framework, only elimination of ax-cuts cannot be performed in parallel in a slice of a proof-net built with multiplicative and additive links. Hence, we'll show that the sequence ⇒ t ; ⇒ ax ; ⇒ a ; ⇒ m decrease the depth a slice of a proof-net. Let P be a proof-net and sl(P ) one of its consistent slice.

-Let Q such that sl(P ) ⇒ t Q. If the only one cuts of sl(P ) are some cuts of ax-sequences, they are all removed. Then, the depth of Q is 0 which if less or equal to the depth of sl(P ). Else, there exist some other cuts in sl(P ). Let π be any sequentialization of sl(P )). Let {A 1 , . . . , A k } (where k ∈ N), the set of ax-sequences of sl(P ). For all i ∈ {1, . . . , k}, the formulae (of depth p i ) associates to the ports of the axiom which substitute the axsequence A i are the same than those of any axiom in this ax-sequence. Let p = max(p 1 , . . . , p k ). After reduction of all the ax-sequences, the depths of the cut-formulae (which are not between two axioms) in π remain unchanged. If the maximal depth (q) of cuts (we define the depth of a cut as the depth of formulae associated to the ports of the links connected by this cut) in sl(P ), which are not cuts between two axioms, is less than p, then the depth of Q is q < p = d(sl(P )). Else, the depth of Q is the same than the one of sl(P ): q ≥ p. -Let R such that Q ⇒ Ax R. If the only one cuts of Q are ax-cuts, they are all removed. Then, the depth of R is 0 which if less than the depth of Q (since these cuts are between two links whose one is not an axiom, see below).

Else, there exist some other cuts in Q. Let π be any sequentialization of Q.

Let {v 1 , . . . , v k } (where k ∈ N), the set of axioms which are cut to other links than an axiom in Q. For all i ∈ {1, . . . , k}, let v 1 i and v 2 i be the two principal ports of v i . Let v i cut by its port v 1 i to the principal port u 0 i of a link u i (its only one principal port because u i cannot be an axiom). Let w i the link connected to v i by v 2 i . In π, the formula associated to u 0 i is the same than the one associated to v 2 i , the dual of the one associated to v 1 i . So, they are the same depth p i . Let p = max(p 1 , . . . , p k ). The elimination of this cut remove, for all i ∈ {1, . . . , k}, v i and connect w i to u i . So, after elimination of all the ax-cuts, the depths of cut-formulae (those which are not ax-cuts) in π remain unchanged. If the maximal depth (q) of cuts in Q, which are not
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  which is the language recognized by P Theorem 7 (translation). Let i ∈ N. For every Boolean circuit C ∈ NAC i (poly) of size s and depth d, there is a Boolean proof net in m BN i (poly) of size O(s 5 ) and depth O(d) which accepts the same set/language as C does. Proof. Let C ∈ NAC i (poly) be a circuit of input length n. Let s = size(C) and d = d(C). Let m =| y |= n O(1) s be the amount of non-deterministic variables. Following Terui's theorem, every gate of fan-in f and fan-out o can be encoded by a proof net of size O(f 4 + o) O(s 4 ) and of constant depth. The depth increase is linear in d. Because C(x, y) and C have the same dimensions, we obtain the same result as Terui. The last construction due to the non-deterministic variables translation doesn't change the proof net dimensions: we add O(m + s) links and a constant to the depth.
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  poly) be a circuit family and let P = (P n ) n∈N be the uniform non-deterministic Boolean proof net family obtained by the translation of C. Let C(x, y) ∈ AC be the deterministic circuit family corresponding to C s.t. | y |= m. We have x ∈ L C , the language recognized by C ⇐⇒ ∃w ∈ {0, 1} m a witness s.t. C n (x, w) = 1 ⇐⇒ ∃sl a slice of P n s.t. sl(P n
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ax-cuts, is less than p, then the depth of R is q < p = d(Q). Else, the depth of R is the same than the one of Q: q ≥ p.

-R do not contain cuts involving axioms any more. The only one cuts of R are m-cuts or additive cuts.

• Let S such that R ⇒ a S. Let R contain m m-cuts and n additive cuts. Let π be any sequentialization of R. An additive cut between two additive links, in a consistent slice of a proof net, whose the formulae associated to their principal ports in π are i (A) and i (B, C) (i ∈ {1, 2}) is replaced by a cut between two links whose the formulae associated to the principal ports connected by the cut in π are A and B or A and C. The deepest formulae in π (p be the greatest depth) are formulae associate to m-cuts or formulae 

) are formulae of depth d(A) + 1). The other cuts, of depth q < p, generate cuts of depth at most q -1 < p -1.

• Let T such that S ⇒ m T . Let π be any sequentialization of S. By the previous item, the deepest cut-formulae are formulae in π, associate to m-cuts. A m-cut between two links whose the formulae associate to their principal ports in π are ( -→ A ) and ( ← -B ), is replaced by n cuts between pairs of links whose formulae in π associate to ports connected by cuts are A i and B i , for all i ∈ {1, . . . , n} where n ∈ N. The deepest cut-formulae in π (p be the greatest depth) are

. . , A kr r ), kr ((A kr r ) ⊥ , . . . , (A 1 r ) ⊥ )}, where r ∈ N and ∀j ∈ {1, . . . , r}, k j ∈ N. Then, The deepest cut-formulae are some formulae A j i , (A j i ) ⊥ where i ∈ {1, . . . , r} and j ∈ {1, . . . , k r }, of depth p -1. In π, a cut of depth p generate some cuts of depth at most p -1. Moreover, there exit at least one cut at this depth since ( -→ A ) or ( ← -B ) (n ∈ N) are formulae of depth max(d(A 1 ), . . . , d(A n )) + 1, so there exist a j ∈ {1, . . . , n} such that A j = max(d(A 1 ), . . . , d(A n )). The other cuts of depth q < p generate cuts of depth at most q -1 < p -1.