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We equip many non compact non simply connected surfaces with smooth Riemannian metrics whose isoperimetric profile is smooth, a highly non generic property. The computation of the profile is based on a calibration argument, a rearrangement argument, the Bol-Fiala curvature dependent inequality, together with new results on the profile of surfaces of revolution and some hardware know-how.

RESUM É: On construit, sur des surfaces non compactes non simplement connexes, des métriques riemanniennes lisses dont le profil isopérimétrique est lisse, phénomène hautement non générique. Le calcul du profil est basé sur l'idée de calibration, un argument de réarrangement, l'inégalité de Bol-Fiala, un résultat nouveau sur le profil des surfaces de révolution, et des connaissances en plomberie.

1 Introduction

The problem

Let M be a smooth manifold. We are concerned with isoperimetric profiles of metrics on M . Fix a Riemannian metric on M with total volume V . Given v < V , consider all domains (relatively compact open subsets with smooth boundary) in M with volume v. Define I M (v) as the least upper bound of the boundary volumes of such domains. In this way, one gets a function I M : (0, V ) → R + called the isoperimetric profile of M .

For instance, Euclidean space R n has

I R n (v) = const. v n-1
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for some constant const.(n). Indeed, for each v, round balls of volume v minimize boundary volume among all domains of volume v.

Here is an other example, where the isoperimetric profile is much easier to compute. Let Γ be a lattice of parabolic translations of hyperbolic n-space H n (i.e. Γ has a unique fixed point ζ on the ideal boundary, and acts as a lattice of translations on the complement of ζ, identified with euclidean n -1-space). Let M = H n /Γ. We call such a manifold a complete constant curvature cusp. Then I M (v) = (n -1)v.

This will be proven as Corollary 4 in section 3.

In both examples, the isoperimetric profile I is a smooth function. This is rather exceptional and related with the topological simplicity of the underlying manifolds. Smoothness of the isoperimetric profile is related to uniqueness of minimizers in the following way. For a generic Riemannian manifold, one expects that domains whose boundary has constant mean curvature come in finitely many smooth families. To each such family D i,t , there corresponds a function P i defined by

P i (vol(D i,t )) = vol(∂D i,t )
on some interval. The isoperimetric profile of M is the minimum of these functions P i . If M has nontrivial topology, there must be at least two different families, and it seems very unlikely that the isoperimetric profile be everywhere smooth. This suggests the following question.

Question 1 Does every manifold admit a smooth (resp. real analytic) metric with smooth (resp. real analytic) isoperimetric profile ?

The results

In this note, we construct examples of smooth complete metrics with smooth isoperimetric profiles on topologically non trivial manifolds, mostly in dimension 2.

Theorem 1 Every smooth (resp. real analytic) non compact manifold admits smooth (resp. real analytic) complete metrics of infinite volume whose isoperimetric profile vanishes identically.

For such metrics, there are no extremal domains. That's cheating! Say a Riemannian manifold M has an achieved isoperimetric profile if for each v ∈ (0, vol(M )), there exists a domain D with vol(D) = v and vol(∂D) = I M (v). The isoperimetric profile of a compact Riemannian manifold is always achieved. Here is a simple sufficient condition for non compact surfaces.

Definition 1 Say a non compact 2-dimensional Riemannian manifold M is ultrahyperbolic if

• M is complete;

• its curvature tends to -∞ at infinity;

• its injectivity radius tends to +∞ at infinity.

On such a surface, the isoperimetric profile is achieved, this is proven as Proposition 27 in the appendix.

Theorem 2 Let M be an orientable 2-dimensional manifold. Assume that one of the following properties holds.

• M has at least 4 ends.

• M has 3 ends, at least one of which having infinite genus.

• M has 2 ends and both have infinite genus.

Then M admits a complete smooth Riemannian metric of infinite area with achieved isoperimetric profile I M (a) = a for all a ∈ (0, +∞).

An even larger family of surfaces admit smooth metrics with smooth isoperimetric profiles.

Theorem 3 Let M be an orientable 2-dimensional manifold. Assume that one of the following properties holds.

• M has at least 2 ends.

• M has one end of infinite genus.

Then M admits a complete smooth Riemannian metric of infinite area with achieved isoperimetric profile whose square I 2 M extends to a smooth function on some neighborhood of R + . If furthermore M has finite topological type, one can arrange that M be ultrahyperbolic.

Question 2 Given a manifold M , can one construct metrics with smooth isoperimetric profile in all conformal classes on M ?

Scheme of proof

The proof of Theorem 1 is straightforward : given a function with compact sublevel sets on M , one arranges so that the volume of level sets tends to 0 although the total volume is infinite. The metrics of Theorem 2 are modelled on the 2-dimensional complete constant curvature -1 cusp M 0 , where the solutions of the isoperimetric problem are the sublevels V = {f ≤ t} of a function f such that ∆f = 1. In M 0 , each level set ∂V = {f = t} is calibrated by the unit 1-form ω = * df , i.e.

ω |∂V = vol ∂V .
The calibration method of Harvey and Lawson [START_REF] Harvey | Calibrated geometries[END_REF] can be readily adapted to the isoperimetric problem, see section 3. Given a calibrating 1-form (not quite a calibration since it is not closed), the method yields the value of the isoperimetric profile I(v) at v provided there exists a set with area v and calibrated boundary.

For the surfaces with complicated topology dealt with in Theorem 2, the construction goes in two steps.

First, glue together pieces of complete constant curvature -1 cusps in order to obtain a singular surface with constant curvature -1, equipped with a level function f and a calibrating 1-form * df . This is done in section 4. This kind of surface has plenty of subsets with calibrated boundary. Figure 1 shows an example of a triply punctured sphere made of 3 pieces of a cusp. It has 2 families of calibrated subsets exhibiting different topological types. One family depends on one parameter, the second on two parameters.

Second, smooth away singularities, while maintaining a calibrating 1-form. This is done in section 5.

The resulting surface has less calibrated subsets, since levels passing close to singular points are not calibrated any more. Sometimes, they are still sufficient for the determination of the isoperimetric profile. This not the case for the example of figure 1. Indeed, there is a gap, around the area of the critical sublevel, in the values of the area which are achieved by calibrated subsets.

To overcome this difficulty, the "pipe clearing trick" is applied. Imagine the surface as a pipestry and the calibrated regions as partial fillings of the pipestry with water. View a singular point as an obstacle blocking a pipe A. The traditional plumber's strategy consists in letting the water level raise in a neighboring pipe B, then pushing energeticly the water out of B so that in A water traverses the critical level, see figure 2. This allows, without change in the total amount of water, a change in the topology of the wet region. This hardware knowledge is turned into mathematics in . This trick is related to Pitts' observation that minimax cycles on a surface cannot have too many selfintersections, compare the four-legged star fish in [START_REF] Pitts | Existence and regularity of minimal surfaces on Riemannian manifolds[END_REF] and [START_REF] Calabi | Simple closed geodesics on convex surfaces[END_REF] page 540.

The existence of a neighboring pipe is related to a Morse function (water level) having disconnected level sets. Such functions exist only on surfaces with many ends, as shown in section 6.

The examples of Theorem 3 require two more steps.

When applied to a manifold M with two points removed, Theorem 2 yields a manifold with two constant curvature -1 cusps. Closing the cusps with suitably chosen caps of revolution yields a metric on M whose isoperimetric profile is given by that of the caps, see section 9. The only surfaces of revolution whose isoperimetric profiles were previously known to be smooth, see [START_REF] Benjamini | A new isoperimetric theorem for surfaces of variable curvature[END_REF], [START_REF] Howard | The isoperimetric problem on surfaces of revolution of decreasing gauss curvature[END_REF], [START_REF] Ritoré | Constant geodesic curvature curves and isoperimetric domains in rotationally symmetric surfaces[END_REF], [START_REF] Topping | Mean curvature flow and geometric inequalities[END_REF] are those whose curvature is a nonincreasing function of the distance to the pole. For our purposes, this class needs to be slightly enlarged. An argument based on the strict stability of parallels shows that the property that rotationally symmetric domains are extremal is stable under small perturbations, see section 8. This provides us with the suitable caps.

Finally, a rearrangement argument shows that the calibration method extends to forms ω such that dω = u vol where extremal domains are sublevel sets of u. Therefore an extra conformal change produces metrics whose isoperimetric profile equals any prescribed smooth convex function. Such metrics can be arranged to have curvature tending to -∞ and injectivity radius tending to +∞, see section 10.
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Non achieved isoperimetric profiles

We prove Theorem 1.

Let M be a smooth manifold, w : M → R + a smooth Morse function with compact sublevel sets and isolated critical values. Start with any complete smooth metric g on M . Consider the positive continuous function v defined on (0, +∞) by

v(t) = vol({w ≤ t}).
Let u : R+ → (0, +∞) be a smooth function such that uv tends to 0. In the conformal metric g ′ = u(w) 2/(n-1) g, the level set {w = t} has volume uv(t). Let h : R+ → R + be a smooth function

such that +∞ 1 huv(t) dt = +∞. Let g ′′ = g ′ + h(w) 2 dw 2 .
Then the volume of level sets of w still tends to 0 since it does not change. Furthermore, for all 0 < s < t,

vol ′′ ({s < w < t}) = t s ( {w=r} 1 |∇w| ′′ ) dr ≥ t s h(r)u(r)v(r) dr.
Given v > 0 and s > 0, there exists t such that vol ′′ ({s < w < t}) = v. Then vol ′′ (∂{s < w < t}) ≤ vol ′′ ({w = s}) + vol ′′ ({w = t}) = uv(s) + uv(t) tends to 0 as s tends to +∞. This shows that

I (M,g ′′ ) ≡ 0. Since +∞ 1 h(t) dt = +∞, (M, g ′′ ) is complete.
If M is real analytic, the construction is the same, in the real analytic category.

The calibration argument

The following lemma goes back to S.T. Yau, [START_REF] Yau | Isoperimetric constants and the first eigenvalue of a compact manifold[END_REF].

Lemma 2 Let M be a complete n-dimensional Riemannian manifold. Let x ∈ M have injectivity radius ≥ R and let B = B(x, R) be the geodesic ball. Assume that on B, the sectional curvature is less than -ρ 2 . Then I B (v) ≥ (n -1)ρv.

Proof. On B, let r denote the distance to x, and ω = ι ∇r vol. Then |ω| ≤ 1 and dω = h vol where h, the mean curvature of geodesic spheres, is controlled by curvature, h ≥ (n -1)ρ. This form can be used as a "calibration" : given a domain D ⊂ B,

(n -1)ρvol(D) ≤ D h vol = ∂D ω ≤ length(∂D).
In this section, we turn Yau's observation into a systematic tool for computing isoperimetric profiles. Note that, in order to prove isoperimetric inequalities, F. Hélein has made a slightly different use of calibrations, [START_REF] Hélein | Inégalité isopérimétrique et calibration[END_REF]. • there exist compact domains V ǫ such that

vol(V \ V ǫ ) → 0, vol(∂V △∂V ǫ ) → 0
as ǫ tends to 0.

Then I M (v) = c v.
Proof.

Let D be an arbitrary domain. Then

c vol(D) = D c vol = D dω = ∂D ω ≤ vol(∂D) since |ω| ≤ 1. This shows that I M (v) ≥ c v.
Equality holds asymptoticly for sets of the form V ǫ as ǫ tends to 0. Indeed, since ω calibrates ∂V ,

∂V ω = vol(∂V ), whereas lim ǫ→0 vol(∂V ǫ ) c vol(V ǫ ) = 1,
showing that

I M (v) = (n -1)v.
Corollary 4 Let M be a complete constant curvature n-dimensional cusp. Then 4 Constructing a singular metric from a Morse function

I M (v) = (n -1)v.

Standing assumptions on the level function

In this section, M will denote an orientable 2-manifold equipped with a smooth function f satisfying the following.

1. For all a ≤ b ∈ R, f -1 [a, b] is compact.
2. All critical points of f are nondegenerate of index 1.

3. The values of f at distinct critical points are distinct integers.

4. Critical values of f form an interval of Z containing 0 and 1.

In the terminology of the introduction, f is a level function on M . Under assumptions 1 to 4, LG is a trivalent graph. Indeed, f descends to a map f : LG → R which is a covering map over the complement of critical values. The pull-back of a neighborhood of a critical value consists of finitely many arcs on which f is a homeomorphism, and a Y shaped set (3 arcs joined at a the class of a critical point), see figure 4. Edges are oriented by the map f .

Weights

We are about to put a metric on M such that if a is a regular value of f , then f -1 (a) is a disjoint union of constant geodesic curvature curves. Each such curve corresponds to an edge of LG. The total length of f -1 (a) is shared between its connected components in proportion of numbers called the weights of the corresponding edges. In this subsection, we describe how these weights are chosen.

Definition 5 Weights are given recursively to edges of LG in the following way. Assume that f -1 (1/2) consists of N points. Each of the edges on which f vanishes is weighted 1/N . Then as one moves away from f -1 (1/2), following oriented edges, as one encounters a vertex v,

• either v has one incoming edge and two outgoing edges; the weight of the incoming edge has been previously defined; then both outgoing edges are weighted one half of the weight of the incoming edge.

• or v has two incoming edges and one outgoing edge; the weight of the incoming edges have been previously defined; then the outgoing edge is weighted the sum of the weights of the incoming edges. Symmetricly, when proceeding from f -1 (1/2) backwards along oriented edges, the opposite rule is applied : 2 incoming edges share half the weight of 1 outgoing edge, 1 incoming edge adds up the weights of 2 outgoing edges, see figure 5.

Note that for each t ∈ R, the sum of the weights of the edges on which f takes the value t is equal to 1.

Lemma 6 For every oriented edge e of LG originating at p ′ = α(e) and ending at p ′′ = ω(e),

weight(e) ≥ 1 N 2 -|f (p ′′ )|-1 .
Proof. When traversing a vertex of LG, weights decrease at worst by a factor of 2. Furthermore, travelling along

LG from e to an edge on which f takes the value 1/2, at most |f (p ′′ )| + 1 vertices are encountered.

Renormalization of the Morse function

Pick an integer ν ≥ 1 such that N ≤ 2 ν .

Definition 7 Let u = φ • f where φ is a diffeomorphism of R onto (0, +∞) mapping an integer n ∈ Z to 16 n(|n|+ν) .
Lemma 8 For every oriented edge e of LG originating at p ′ = α(e) and ending at p ′′ = ω(e), and every vertex p such that u(p) < u(p ′′ ),

weight(e)u(p ′′ ) ≥ 8u(p).

Proof. One easily checks that for all

n ∈ Z, φ(n) ≥ 2 |n|+4+ν φ(n -1). If f (p ′′ ) = n, then f (p) ≤ n -1, and Lemma 6 gives weight(e) ≥ 1 N 2 -|n|-1 ≥ 2 -|n|-1-ν ≥ 8 φ(n -1) φ(n) ≥ 8 u(p) u(p ′′ ) .

Constant curvature annuli

Our model for a calibrated triple (M, f, ω) is the hyperbolic plane, f a Busemann function and ω = * df the unit 1-form calibrating a family of concentric horoballs. Denoting w = e -f we have

ω = ι w -1 ∇w vol, |∇w| = w and ∆w = -2w. In coordinates, w = 1 ℑm(z) = 1 y
when the hyperbolic plane is represented as the upper half plane {ℑm(z) > 0} equipped with the metric

dx 2 + dy 2 y 2 = w 2 dx 2 + dw 2 w 2 .
When divided by a translation in the x coordinate, this simply connected model gives rise to complete constant curvature cusps

w 2 dx 2 + dw 2 w 2 , x ∈ R/τ Z, w ∈ (0, +∞).
and then to annuli

A τ,c,c ′ = (R/τ Z × [c, c ′ ], w 2 dx 2 + dw 2 w 2 ). The annulus A τ,c,c ′ has constant curvature -1. Its boundary components have lengths cτ and c ′ τ . Note that A τ,c,c ′ is isometric to A cτ,1,c ′ /c
. The second parameter is only used to adjust the interval of variation of the w coordinate. Note that area(A τ,c,c ′ ) = τ (c ′c), and that the height of A τ,c,c ′ , i.e. the distance between the boundary components, is equal to log(c ′ /c).

Definition 9

We shall call A 1,0,δ (resp. A 1,δ,+∞ ) a constant curvature -1 cusp (resp. anticusp) with boundary a horocycle of length δ.

A(e) P P(e) The height of A(e) is log u(ω(e))log u(α(e)).

In particular, the height is always ≥ log 2.

If α(e) (resp. ω(e)) has two incoming (resp. outgoing) edges, one chooses two points on the left hand (resp. right hand) boundary component of A(e) which separate it into two intervals of lengths proportional to the weights of incoming (resp. outgoing) edges. Then the two marked points are identified. The resulting surface P (e) is a singular pair of pants whose boundary consists of three circles, see figure 6.

By construction, if e, e ′ are incoming and e ′′ is the outgoing edge of some vertex v, the lengths of the right hand boundary components of P (e) and P (e ′ ) fit with the lengths of the left hand boundary components of P (e ′′ ). Therefore one can choose orientation preserving isometries between these circles and glue them together. This applies as well to vertices with one incoming and two outgoing edges.

Morse theory shows that the resulting space

P = e P (e)/ ∼
is homeomorphic to M , in such a way that u is mapped to w, the projection onto the second factor, on each annulus A(e).

The nonsingular part of P

The space P constructed above can be viewed as M equipped with a Riemannian metric g which, away from critical points of u, is locally isometric to hyperbolic plane with curvature -1. More precisely, for a point p ∈ P , let ℓ(p) be the smallest length of a cycle in {u = u(p)} containing p, let r(p) be the min of log 2 and of the injectivity radius of the bi-infinite constant curvature cusp along the horocycle of length equal to ℓ(p). Then the ball B(p, r(p))

• either is isometric to a ball of radius r(p) in the hyperbolic plane,

• or contains a critical point.

Proposition 10 Let M ′ denote the smooth part of P . Then M ′ is an incomplete surface of constant curvature -1, diffeomorphic to M with the critical points of u removed. Its isoperimetric profile is

I M ′ (v) = v. Proof. Let B t = {u ≤ t}. Then area(B t \ B s ) = t -s.
In particular area(B t ) = t is finite.

Indeed, if the interval [s, t] does not contain critical values, B t \ B s is the union of disjoint annuli isometric to {s ≤ w ≤ t} ⊂ A weight(e),value(α(e),value(ω(e) .

Each annulus has area weight(e)(ts), the weights of edges crossing a level set of u sum up to 1, therefore the total area is ts. The general case follows by additivity.

If D is a disk of radius r (small enough) centered at a critical point, then D is an isometric double covering of a hyperbolic disk of radius r (see next paragraph). Thus its area and boundary length tend to 0 as r tends to 0. Each B t can be approximated by domains B t,ǫ by removing B ǫ and tiny disks around critical points, whose total area and boundary length is arbitrarily small.

Since u is smooth, the 1-form ω = ι u -1 ∇u vol is smooth. Since u coincides with coordinate w on each P (e), ω has unit norm, satisfies dω = vol and calibrates the sublevel sets of u. Therefore proposition 3 applies, and the isoperimetric profile of M ′ is linear.

Description of singularities

We claim that at each critical point p of u, P has a conical singularity with angle 4π. More precisely, for r ≤ r(p), the ball B(p, r) in M is isometric to the disk D r of radius tanh(r) in C equipped with the metric

g 0 = 16|z| 2 (1 -|z| 4 ) -2 |dz| 2 in such a way that u = u(p) |z 2 -i| 2 1-|z| 4 .
Indeed, the map z → z ′ = z 2 is a 2-sheeted Riemannian covering of D r \ {0} onto the punctured disk of radius tanh(r) equipped with the hyperbolic metric 4|dz ′ | 2 /(1 -|z| 2 ) 2 . We use the isometry

z ′ → z ′′ = 1 -iz ′ z ′ -i
between the Poincaré disk and the upper half plane equipped with |dz ′′ | 2 /(ℑm(z)) 2 , and pull back the function w ′′ = 1/ℑm(z ′′ ). Taking a constant multiple of it, we get a function

w 0 = u(p) |z 2 -i| 2 1 -|z| 4
on D 0 . The level set {w 0 = u(p)} splits D 0 into four regions, isometric in pairs, and isometric to the intersection of a horoball (resp. the complement of a horoball) and a hyperbolic ball of radius 1/4 centered on the boundary of the horoball. In each region, log(w 0 /u(p)) is the signed distance to the boundary horocycle. Therefore these regions fit together exactly into a ball of radius r centered at a singular point of M . And w 0 is exactly mapped to u. Then we change g 1 into g while keeping the same volume element. At points where ω does not vanish, one can write

Smoothing of singularities

g 1 = ( * 1 ω |ω| 1 ) 2 + g ⊥ 1
where g ⊥ 1 is non negative with kernel the vectorfield ξ dual to ω.

Let g = ( * 1 ω χ(|ω| 1 ) -1 |ω| 1 ) 2 + χ(|ω| 1 ) -2/(n-1) g ⊥ 1 ,
where χ : R + → (0, +∞) is a smooth function such that

• χ(t) ≥ t ; • χ(t) = t for t > 2/3 ; • χ(t) = 1 for t < 1/3.
With respect to the metric g, the 1-form

* 1 ω χ(|ω| 1 ) -1 |ω| 1 has unit norm, so that |ω| = | * ω| = |ω| 1 χ(|ω| 1 ) ≤ 1.
In a neighborhood of the boundary, g 1 = g 0 and ω = ω 0 , thus |ω| 1 = 1 and g = g 1 . At points where |ω| 1 < 1/3, g = g 1 , thus g extends smoothly to all of D, and the inequality |ω| ≤ 1 trivially extends to points where ω vanishes.

Since vol g = vol 1 , dω = vol g and area(D, g) = area(D, g 1 )

= D dω 0 = ∂D ω 0 ≤ vol 0 (∂D).
Proposition 12 Let E be the union of the intervals (c/2, 2c) where c is a critical value of u. There exists a smooth Riemannian metric and a smooth 1-form ω on M with the following properties.

1. |ω| ≤ 1.

2. dω = vol.

3. ω calibrates the sublevel sets {u ≤ t} for all t / ∈ E.

Furthermore, one can arrange that each superlevel set {u ≥ s} have bounded geometry.

Proof. This local construction can be performed in the model (D r , g 0 ). In order to apply Lemma 11 to smooth versions of g 0 and ω 0 , we must check that they satisfy

I = Dr dω 0 > 0. Since D 0 dω 0 = ∂D 0 ω 0 ,
I only depends on the boundary data, and we can compute it from the singular data. Using the double covering z → z 2 of D r onto a ball of hyperbolic radius tanh(r), we see that I is twice the flux of a Busemann vectorfield along the boundary of a hyperbolic ball, i.e. twice the area of the hyperbolic ball. In particular, I > 0.

Therefore, Lemma 11 Remark 13 If c is a critical value of u, then D = {u ≤ c} is not a solution of the isoperimetric problem.

Indeed, solutions have a smooth boundary. Compare [START_REF] Calabi | Simple closed geodesics on convex surfaces[END_REF] page 541 or [START_REF] Pitts | Existence and regularity of minimal surfaces on Riemannian manifolds[END_REF] page 37.

Construction of special Morse functions

Proposition 14 Let M be a connected orientable 2-manifold. Assume that one of the following properties holds.

• M has at least 4 ends.

• M has 3 ends and at least one of the ends has infinite genus.

• M has 2 ends and both have infinite genus.

Then there exists on M a function f such that If furthermore both ∂ + M and ∂ -M are disconnected, then one can arrange that all levels of f be disconnected.

1. For all a ≤ b ∈ R, f -1 [a, b] is compact.
Proof. Compact orientable surfaces with marked boundary are classified by their genus and the number of boundary components of each sign. Indeed, such surfaces are obtained by removing disks from closed orientable surfaces. Closed orientable surfaces are classified by their genus and the diffeomorphism group of a surface is transitive on finite collections of disks. Therefore is suffices to give an example for each value of the triple (genus, number of + boundary components, number ofboundary components). Figure 7 shows such a surface together with the critical levels of a suitable Morse function. If ∂ + M or ∂ -M is connected, the Z-shaped core must be replaced with a > or --shaped surface, in which case the disconnectedness of levels is lost.

Lemma 16 Let M be a connected orientable non compact 2-manifold with non empty compact boundary. There exists a proper Morse function on M which is constant along the boundary and satisfies 1 to 4.

Proof. Start with an arbitrary proper Morse function f which is constant on the boundary. Choose an increasing sequence t j of noncritical values. On each compact submanifold {t j ≤ f ≤ t j+1 }, apply Lemma 15 to improve f . The resulting function has all the required properties. Case k = 4. For t ∈ [-1, 1], the level {f = t} is disconnected as shown on the picture. For t > 1 or t < 1, this follows from the fact that {f = t} intersects at least two connected components of M \ K.

Case k = 3. We can assume that the end where u ≥ 1 has infinite genus. A noncompact end of infinite genus is, up to a compact change, diffeomorphic to the surface with boundary shown on figure 8 ( [START_REF] Richards | On the classification of noncompact surfaces[END_REF], [START_REF] Kerekjarto | Vorlesungen über Topologie I[END_REF]). Therefore, up to enlarging K, we can assume that the connected component of M \ K where f ≥ 1 has a boundary consisting of exactly 2 curves. Figure 8 also shows the critical levels of a Morse function on the end satisfying 1 to 5. We use it to modify f . Thus if t ≥ 1, the level {f = t} is disconnected. For t ∈ [-1, 1], this follows from Lemma 15. For t ≤ 1, this follows from the fact that {f = t} intersects two connected components of M \ K.

Case k = 2. An orientable surface with two ends of infinite genus is the bi-infinite version of figure 8 ( [START_REF] Richards | On the classification of noncompact surfaces[END_REF], [START_REF] Kerekjarto | Vorlesungen über Topologie I[END_REF]) and therefore has an obvious Morse function satisfying 1 to 5.

Proof of Theorem 2

Apply Proposition 14 in order to obtain a Morse function on M having properties 1 to 5. Apply Proposition 12 to produce a smooth metric, a smooth function u and a smooth calibration ω on M which calibrates the boundary of most sublevel sets For each t ∈ (c -, c + ), we must find a submanifold with boundary which is calibrated by ω and has area t. 

B t = {u ≤ t} of u,
\ B c ′ + )) -area(B c + \ B c -) = weight(e)(c ′′ --c ′ + ) -(c + -c -) ≥ weight(e)( 1 2 - 1 8 )c ′′ -(2 - 1 2 )c ≥ 1 4
weight(e)c ′′ -2c ≥ 0, Therefore, as s varies, area(C e,s ) and area(D e,s ) together achieve all values in (c -, c + ) (this is the pipe clearing trick). Then Proposition 3 applies, and I M (a) = a for all a > 0.

Surfaces of revolution

This is a preparation for the next section, where caps of revolution with explicit isoperimetric profiles will be needed.

In a surface of revolution, the isoperimetric profile is not always achieved by disks of revolution. It is the case provided the curvature is a nonincreasing function of the distance from the pole. This is not sufficient for our purposes. Indeed, a constant curvature cusp cannot be replaced with a surface of revolution with nonincreasing curvature of the same area. We need just a little more flexibility. Fortunately, the property that disks of revolution are extremal is often stable under small perturbations.

Lemma 17 Let A = ([a, b] × R/2πZ, dr 2 + f (r) 2 dθ 2
), f > 0, be a smooth annulus of revolution such that for all r ∈ [a, b], f ′ (r) 2f ′′ (r)f (r) is not the square of a nonzero integer. There exist constants β > 0 and γ > 0 such that if g is a C 2 function on [a, b] such that gf C 2 < β, D 0 = {a ≤ r < r 0 } and D = {a ≤ r < ρ(θ)} are domains such that area(D) = area(D 0 ) and ρr 0 C 2 < γ whose boundary has constant geodesic curvature in the metric dr 2 + g(r) 2 dθ 2 , then D = D 0 .

Proof.

Given g ∈ C 2 ([a, b]) and ρ ∈ C 2 (R/2πZ), let κ ∈ C 0 (R/2πZ) be the geodesic curvature of the curve {r = ρ(θ)}, κ = -g(ρ)ρ ′′ + g ′ (ρ)g(ρ) 2 + 2g ′ (ρ)ρ ′2 g(ρ) 2 + ρ ′2 3 . ( 1 
)
The area of D = {a ≤ r < ρ(θ)} is equal to area(D) = where κ = κ(g, ρ) is given by formula (1),

g = G ′ and ρ = G -1 • (R + v).
Constant geodesic curvature annular domains of area v correspond to solutions of Φ(v, G, R) = 0. For every (v, G) such that 0 < v < G(b), R = 0 is a solution. Let us show that, for (v, G) close to (v, F ) where F (r) = r 0 f (s) ds, this is the only solution. Let us compute the derivative of Φ with respect to R at (v, F, 0). Let r 0 = F -1 (v) be the solution of F (r 0 ) = v. Let ρ t be a smooth family of functions starting from the constant function ρ 0 = r 0 , and ρ = dρ t dt |t=0 . Then

dΦ dt |t=0 = -3f -4 f ′ ρ(f ′ f 2 ) + f -3 (-f ρ′′ + f ′′ f 2 ρ + 2f ′2 f ρ)
where f = f (r 0 ), f ′ = f ′ (r 0 ), and f ′′ = f ′′ (r 0 ). In other words,

∂Φ ∂R (v, F, 0) : C 2 0 (R/2πZ) → C 0 0 (R/2πZ
) is equal to the operator

P : u → -f -2 u ′′ + (f ′′ f -1 -f ′2 f -2 )u.
Since the eigenvalues of u → -u ′′ on functions on R/2πZ with vanishing average are squares of nonzero integers, the assumption made implies that P is invertible on Sobolev spaces H 2 0 → H 0 0 of functions with vanishing average which are in L 2 (resp. have 2 derivatives in L 2 ). Since H 2 0 ⊂ C 0 0 , if P u is continuous, so is u ′′ , thus P -1 maps C 0 0 to C 2 0 . P is a continuous bijection C 2 0 (R/2πZ) → C 0 0 (R/2πZ), and thus an isomorphism. The implicit function theorem applies : there are neighborhoods

I v of v in R, V of F in C 3 0 ([a, b]) and W of 0 in C 2 0 (R/2πZ) such that for (v ′ , G) ∈ I v × V v , the equation Φ(v ′ , G, R) = 0 admits a unique solution in W v , this is R = 0.
Covering the interval [0, F (b)] with a finite number of intervals I v , this translates into constants β > 0 and γ > 0 such that if gf C 2 < β and ρr 0 C 2 < γ, then the curve {r = ρ(θ)} has constant geodesic curvature if and only if ρ is constant.

Optimality of rotationally symmetric disks is often stable

Although we shall not need the following proposition, we state it for its independant interest.

Proposition 18 Let S = (R + ×R/2πZ, dr 2 +f (r) 2 dθ 2 ) be a complete smooth surface of revolution such that • f is nondecreasing and tends to +∞;

• the curvature K(r) = - f ′′ (r) f (r) tends to -∞;
• the disks of revolution {r < t} are the only extremal domains for the isoperimetric problem in S, and for all t ∈ [a, b], they are strictly stable, i.e.

f ′ (t) 2 f (t) 2 - f ′′ (t) f (t) < 1 f (t) 2 . Let g be a C 2 function on R + such that g = f outside [a, b]. If g -f C 2 is
small enough, then in the surface of revolution S ′ = (R 2 , dr 2 + g(r) 2 dθ 2 ), the disks of revolution {r < t} are the only extremal domains for the isoperimetric problem. In particular, for all t > 0,

I S ′ (2π t 0 g(s) ds) = 2πg(t).
Proof. The assumptions on f imply that all surfaces under consideration are ultrahyperbolic. Therefore extremal domains exist and form compact sets.

The proof goes by contradiction. Assume there exists a sequence g ℓ of functions C 2 -converging to f and a sequence of non rotationally symmetric extremal domains D ℓ . One can assume that D ℓ converges in flat norm to some domain D. By lower semi-continuity of the boundary length and continuity of the area, D is extremal in S, thus D is rotationally symmetric, i.e. D = {r ≤ r 0 }.

Let χ : R + → R + be a smooth function such that χ(r 0 ) = 0. By flat convergence,

lim ℓ→+∞ ∂D ℓ χ(r)f (r) dθ = ∂D χ(r)f (r) dθ = 0.
This shows that, for every ǫ > 0, outside the ǫ neighborhood U ǫ of ∂D,

lim ℓ→+∞ ∂D ℓ \Uǫ f (r) dθ = 0.
In particular,

lim ℓ→+∞ length(∂D ℓ ) = length(∂D) = ∂D f (r) dθ = lim ℓ→+∞ ∂D ℓ ∩Uǫ f (r) dθ ≤ lim ℓ→+∞ length(∂D ℓ ∩ U ǫ ), which shows that lim ℓ→+∞ length(∂D ℓ \ U ǫ ) = 0.
Since the projection (r, θ) → r is length decreasing, there exist two sequences r ℓ < r 0 < r ′ ℓ , tending to r 0 such that ∂D ℓ does not intersect the parallels {r = r ℓ } and {r = r ′ ℓ }. Since

lim ℓ→+∞ ∂D ℓ ∩{r ℓ <r<r ′ ℓ } dθ = ∂D dθ = 2π, exactly one component c ℓ of ∂D ℓ ∩ {r ℓ < r < r ′ ℓ } is homotopic to ∂D in the annulus {r ℓ < r < r ′ ℓ }.
Using an arclength parametrization of c ℓ and applying Ascoli's theorem, one can assume that c ℓ converges uniformly, and the limit must be ∂D parametrized by arclength.

∂D ℓ has constant geodesic curvature κ ℓ . At points where the function r restricted to c ℓ achieves its maximum r max or its minimum r min , a comparison principle yields

f ′ (r min ) f (r min ) ≤ κ ℓ ≤ f ′ (r max ) f (r max ) ,
showing that κ ℓ tends to f ′ (r 0 ) f (r 0 ) .

Since short closed curves must have large geodesic curvature somewhere, ∂D ℓ has no short components, thus ∂D ℓ = c ℓ .

Along a long curve with bounded geodesic curvature which makes a large angle with parallels at some point, the function r varies a lot. This shows that the angle of the tangent of c ℓ with parallels tends uniformly to 0. In other words, c ℓ can be viewed as a graph {r = ρ ℓ (θ)} where ρ ℓ converges to r 0 in C 1 . Since the geodesic curvature converges, formula (1) for the geodesic curvature shows that ρ ′′ ℓ converge, i.e. ρ ℓ converges to r 0 in C 2 . Lemma 17 implies that, for ℓ large enough, ρ ℓ is constant, a contradiction.

Finite approximations of a cusp-like surface

What we need is a variant of Proposition 18 where the model surface is non compact.

Proposition 19 Let S = (R×R/2πZ, dr 2 +f (r) 2 dθ 2 ) denote a complete surface of revolution. Let S ℓ = ([-R ℓ , +∞)× R/2πZ, dr 2 + g ℓ (r) 2 dθ 2 ) be a sequence of complete smooth surfaces of revolution converging to S in the following sense : g ℓ = f on R + , and g ℓ converges to f , C 2 -uniformly on compact subsets of R -. Assume that

• f (r) = e r for r ≤ 0; • f ′ /f is nondecreasing;
• f is nondecreasing and tends to +∞;

• the curvature K(r) = - f ′′ (r) f (r) tends to -∞;
• g ℓ is nondecreasing.

Then for ℓ large enough, the disks of revolution {r ≤ t} are extremal domains for the isoperimetric problem in S ℓ . In particular, for all t > -R ℓ ,

I S ℓ (2π t -R ℓ g ℓ (s) ds) = 2πg ℓ (t).
Proof. Since the candidate isoperimetric profile is nondecreasing, one can restrict to domains which are disjoint unions of disks (otherwise, replace a domain with the largest disk spanned by one of its boundary components). Since S ℓ is ultrahyperbolic, there exist extremal domains, which again are disjoint unions of disks. Let D ℓ be extremal domains with area v ℓ in S ℓ which converge in flat norm to a possibly non compact submanifold D ⊂ S. Ultrahyperbolicity holds for S on {r ≥ 0}. Therefore D ∩ {r ≥ 0} is compact. D can be approximated by domains of the form D ∩ {e r ≤ ǫ} with ǫ tending to 0. Let ω = f (r) dθ on S. Then dω = u vol where u = f ′ /f is nondecreasing. Proposition 24 applies, showing that D has calibrated boundary, i.e. D = {r ≤ r 0 } is a rotationally symmetric non compact annulus.

As in the proof of Proposition 18, most of the length of ∂D ℓ concentrates in thin neighborhoods of ∂D. Then one component c ℓ of ∂D ℓ is contained in a thinner and thinner neighborhood of ∂D (being homotopic to ∂D in this neighborhood). One can assume that c ℓ converges uniformly, its constant geodesic curvature converges, thus c ℓ is a graph which C 2 -converges to ∂D. Since f ′ /f is increasing, f ′2f ′′ f ≤ 0 < 1. Lemma 17 implies that c ℓ = {r = r ℓ } is a parallel for ℓ large enough.

For ℓ large, D ℓ contains {r ≤ r ℓ } with r ℓ close to r 0 . The other components of D ℓ are thus contained in {r ≥ r ℓ }. By uniform ultrahyperbolicity on the {r ≥ 0} side, they are contained in fact in a fixed compact set on with the metrics converge C 2 -uniformly. Short closed curves contained in this set cannot have bounded geodesic curvature. We conclude that D ℓ = {r ≤ r ℓ }.

Caps with prescribed isoperimetric profile

Corollary 20 Let δ > 0 be small enough and k, α be large enough. There exists a smooth complete surface of revolution S = S δ,k,α such that 1. S is ultrahyperbolic;

2. S contains a rotationally symmetric annulus of constant curvature -1 and area α + δ, whose inner boundary has length δ and inner disk has area δ;

3. the curvature at the origin is equal to k;

4. all rotationally symmetric disks in S are extremal;

5. the square I 2 S of the isoperimetric profile of S extends to a smooth function on a neighborhood of R + ; 6. I S is nondecreasing and v → I S (v)/v is nonincreasing;

7. for δ ≤ v ≤ α, I S (v) = v; 8. for all v, I S (v) ≥ √ 4πv -k v 2 .
Proof. Let S = (R + × R/2πZ, g = dr 2 + f (r) 2 dθ 2 ) be a surface of revolution. Let us first collect necessary conditions on the function f . Assume that all disks of revolution are extremal domains in S. In other words, the isoperimetric profile I S is determined by

V ′ (r) = I S (V (r)). (2) 
where V (r) = 2π r 0 f (s) ds is the area of the disk of revolution of radius r. For f to give rise to a smooth metric on a plane, it is necessary and sufficient that f extends to a smooth odd function on R such that f ′ (0) = 1. Therefore V extends to a smooth even function, i.e. V (r) = G(r 2 ) where G is smooth on a neighborhood of 0. Since V ′′ (0) = 2πf ′ (0) = 2π, V (r) ∼ πr 2 and G ′ (0) = π, so the inverse map G -1 is smooth on a neighborhood of 0. Equation (2) implies that

I S (G(r 2 )) 2 = 4r 2 G ′ (r 2 ) 2 , i.e. for v ≥ 0, I S (v) 2 = 4G -1 (v)G ′ (G -1 (v)) 2
is the restriction of a smooth function.

Differentiating equation (2) yields

V ′′ = V ′ I ′ S (V ) = I S (V )I ′ S (V ) = 1 2 dI 2 S dv (V ),
The first derivative of I S is given by

dI S dv (V ) = V ′′ V ′ = f ′ f , thus I is convex if and only if f ′ /f is nondecreasing. Also dI 2 S dv (0) = 2V ′′ (0) = 4π.
Differentiating once more yields

V ′′′ = 1 2 V ′ d 2 I 2 S dv 2 (V ).
The curvature, as a function of the distance r to the origin, is given by

K(r) = - f ′′ f = - V ′′′ V ′ = - 1 2 
d 2 I 2 S dv 2 (V (r)) = -(I S d 2 I S dv 2 + ( dI S dv ) 2 )(V (r)), which yields d 2 I 2 S dv 2 (0) = -2K(0).
Conversely, let α be large. Choose first a smooth convex function I 0 on R + such that I 0 (v) = v for v ≤ α, and I ′ 0 tends to +∞. The corresponding surface of revolution satisfies f (r) = e r on (-∞, log(α/2π)], f is nondecreasing, f ′ /f is nondecreasing and tends to +∞, and the curvature

-f ′′ f tends to -∞.
Given δ < α and k large enough, there exists a function I = I δ,k,α on R + such that

• I 2 extends to a smooth function on a neighborhood of R + ;

• I(0) = 0, dI 2 dv (0) = 4π and d 2 I 2 dv 2 (0) = -2k; • I(v) = I 0 (v) for v ≥ δ; • d 2 I 2 dv 2 ≥ -2k everywhere;
• I is nondecreasing and v → I(v)/v is nondecreasing;

• as δ tends to 0 (and k tends to +∞), I = I δ,k,α converges to I 0 , C ∞ -uniformly on compact subsets of R -. The corresponding surface of revolution S δ,k,α is smooth, it satisfies g δ = f on [log(δ/2π), +∞), g δ is nondecreasing. Proposition 19 implies that for δ small enough, disks of revolution are extremal in S δ,k,α , and the isoperimetric profile of S δ,k,α is equal to I δ,k,α .

Cusp filling

Let M be an orientable surface with at least two ends. Remove two points from M and equip M with a metric g and calibration in such a way that neighborhoods of the deleted points be isometric to constant curvature -1 cusps. According to preceding sections, the isoperimetric profile of (M, g) is linear. Furthermore, away from the cusp neighborhoods, (M, g) has bounded curvature and injectivity radius. Let us cut cusp neighborhoods along horocycles of equal length and fill them with smooth caps of revolution where the isoperimetric profile is achieved by disks of revolution. We show that the isoperimetric profile of the obtained metric is smooth.

The gluing procedure

The following elementary properties will be needed.

Lemma 21 Let f and g be nonnegative functions on R + such that v → f (v)/v and v → g(v)/v are nonincreasing. Then min{f, g} has the same property. Assume furthermore that f (δ) = g(δ) for some δ > 0. Then the function h such that h = f on [0, δ] and h = g on (δ, +∞) also shares the same property. Any such function is subadditive, i.e.

f (v + v ′ ) ≤ f (v) + f (v ′ ) for all v, v ′ ∈ R + .
Lemma 22 Let M denote a 2-dimensional complete Riemannian manifold with curvature bounded from above, K ≤ k. Assume that there exists ǫ > 0 such that M ǫ = {x ∈ M ; inj(x) < ǫ} consists of a disjoint union of annuli.

Let I d denote the modified isoperimetric profile in which the competing domains are restricted to disjoint unions of domains of one of the following two types, 1. disks;

2. domains having at least one boundary component which is homotopic neither to zero nor to a component of ∂M ǫ .

Then there exists η > 0, η < 2π/k, such that

I d M (v) ≥ √ 4πv -kv 2 for v < η.
Proof. First, I d tends to zero, since small disks have small boundary length. A simple closed curve c of length < ǫ which is not homotopic to zero is contained in M ǫ . Then c is homotopic to a boundary component of M ǫ with one of the two possible orientations. Therefore domains of the second type do not contribute to I d (v) for v small. For disks, the Bol-Fiala isoperimetric inequality applies, [START_REF] Bol | Isoperimetrische Ungleichungen für Bereiche auf Flächen[END_REF], [START_REF] Fiala | Sur le problème des isopérimètres sur les surfaces ouvertes à courbure positive[END_REF]. For unions of disks, use the subadditivity of v → √ 4πvkv 2 , which follows from Lemma 21.

Lemma 23 Let m be an integer and 0 < δ < α/m. Let S j δ,α , j = 1, . . . , m, denote m smooth surfaces with boundary, of revolution, with area α. Denote by C j δ,α the rotationaly symmetric disk of revolution in S j δ,α with area δ. Assume that • all S j δ,α \ C j δ,α are constant curvature -1 annuli with inner boundary of length δ;

• for all v ≤ mδ, I S j δ,α is achieved by a rotationally symmetric disk;

• I S j δ,α
is nondecreasing, and v → I S j δ,α (v)/v is nonincreasing;

• for every k, there exists δ(k) > 0 such that for v < δ < δ(k), I S j δ,α

(v) ≤ √ 4πv -kv 2 .
Let M denote an orientable 2-dimensional complete Riemannian manifold. Assume that

• there exists ǫ ≫ δ such that M ǫ = {x ∈ M ; inj(x) < ǫ} consists of m disjoint constant curvature -1 cusps;

• let δ ′ be the number such that area(M δ ′ ) = mδ, then for every v > mδ, I M (v) is achieved by a domain which contains M δ ′ ;

• M has curvature bounded from above, K ≤ k;

• I M is nondecreasing;

• for all j = 1, . . . , m, I M = I S j δ,α on [mδ, mα] where α ≤ area(M ǫ )/m does not depend on α.

Remove each component of M δ ′ and replace it with a disk C j δ,α , to produce a smooth surface N . If δ is small enough, then I N is achieved,

I N (v) = min j I S j δ,α (v) for v ≤ mδ, I N (v) = I M (v) for v ≥ mδ.
Proof. Since the candidate isoperimetric profile is nondecreasing, when establishing the isoperimetric inequality for a domain D in N , we can replace D with any other domain with larger area and shorter boundary. For instance, if some boundary component c of D is null homotopic, it bounds a disk D ′ . Replace D with D ∪ D ′ . This increases the area of D and decreases its boundary length. Therefore, we do not loose generality in assuming that D is a disjoint union of domains which, unless they are disks, have no null homotopic boundary component.

Denote by N ǫ the complement of M \ M ǫ in N . Let w : N ǫ → R be the function, extending the (exponential of minus) horofunction on the constant curvature -1 annuli of N , such that area({w < t}) = t. Then {w < mδ} is the union of the caps C j δ,α , {w < mα} is isometric to j S j δ,α . If length(∂D ∩ {w < mα}) ≥ length({w = mα}), then replacing D with D ∪ {w < mα} increases area and decreases boundary length. Thus we can assume that length(∂D ∩ {w < mα}) < length({w = mα}).

The distance in M (and therefore in N ) between the level sets {w = m 2 δ} and {w = mα} tends to +∞ as δ tends to 0. If δ is small enough, there exists t ∈ (m 2 δ, mα) such that ∂D ∩ {w = t} = ∅. If the j-th component of {w = t} is contained in D, then the whole j-th component of {w < t} is contained in D. Otherwise, let us replace the part of D contained in the j-th component of {w < t} with the disk of the form {w < t j } in the same component which has the same area. Due to the isoperimetric inequality in S j δ,α , this decreases boundary length. Assume that area(D) < mδ. Then no component of D can contain a component of {w < m 2 δ}. Let v j denote the area of the part of D contained in the j-th component of {w < t} and v ′ = area(D)j v j = area(D ∩ {w > t}). Note that Lemma 22 applies to D ∩ {w > t}. We can assume that mδ < η, the constant in this lemma, and that δ < δ(k). Then length(∂D) , the boundary length gets even smaller in M than in N . This

≥ j I S j δ,α (v j ) + I d M (v ′ ) ≥ j min{I S j δ,α }(v j ) + min{I S j δ,α }(v ′ ) ≥ min{I S j δ,α }( j v j + v ′ ) ≥ min{I S j δ,α }(area(D)), since I d M (v) ≥ √ 4πv -k v 2 ≥ min{I S j δ,α } for v ∈ [0,
shows that length(∂D) ≥ I M (area(D)).

We have shown that

I N ≥ min{I S j δ,α
} on [0, mδ] and I N ≥ I M elsewhere. Conversely, let v ≤ mδ.

Let j be the index for which I S j δ,α (v) is minimum. Then there exists in S j δ,α a rotationally symmetric domain D of area v and minimal boundary length. This domains naturally embeds in N . Let v > mδ. By assumption, I M (v) is achieved by a domain which contains M δ ′ . Again, this domain has an obvious counterpart in N with the same area and the same boundary length. We conclude that I N is achieved and is equal to min{I S j δ,α } on [0, mδ] and to I M elsewhere.

Smooth profile for 2 ended surfaces

Let M be an orientable 2-manifold with at least two ends or one end of infinite genus. Remove two points from M to get M . Then M satisfies the assumptions of Theorem 2. One can equip M with a Morse function w : M → (0, +∞) with compact level sets and a metric modelled on constant curvature -1 annuli, such that, for some t > 0, {w < t} consists of two cusps. Note that on {w ≥ t}, the injectivity radius in bounded below and the curvature is bounded above. Theorem 2 yields a calibration ω which garantees that the isoperimetric profile is linear

I M (v) = v.
Choose δ very small, according to Lemma 23. Apply Corollary 20 in order to choose appropriate caps of revolution. Arrange so that one of the caps has an isoperimetric profile which is everywhere smaller than the other. Lemma 23 garantees that the resulting surface N has a smooth isoperimetric profile. This completes the proof of the first part of Theorem 3. 

Conformal changes of metrics

Proposition 25 Let (M, g) be an oriented Riemannian manifold, w a smooth positive function on M , ω a calibration on M , i.e. |ω| = 1 and dω = vol. Assume that there exist t 1 < t 0 such that • all critical values of w belong to (-∞, t 0 );

• |∇w| = w on {w > t 0 };

• on {w > t 0 }, ω = ι w -1 |∇w| vol;

• for all t ≥ t 0 or t ≤ t 1 , vol({w < t}) = t = vol({w = t});

• for all v < t 0 , I M (v) = v is asymptotically achieved by a sequence of domains which are contained in {w ≤ t 0 }.

Let I be a smooth convex function on R + such that I(v) = v for v ≤ t 0 . Then there exists a conformal metric g ′ = f 2 g on some sublevel set

M ′ = {w < τ } ⊂ M diffeomorphic to M such that g ′ ≡ g on {w ≤ t 0 }, vol(M ′ ) = +∞ and I M ′ = I.
Proof. Let τ be some positive number, and f :

[0, τ [→ R + a smooth function such that f ≡ 1 on [0, t 0 ]. Let g ′ denote the conformal metric f (w) 2 g on M ′ = {w < τ } ⊂ M . Let V (t) = vol ′ ({w < t})
denote the volumes of sublevel sets of w in the new metric. According to the coarea formula, for t ≥ t 0 ,

V (t) = V (t 0 ) + {t 0 <w<t} f (w) n = t 0 + t t 0 f (s) n ( {w=s} 1 |∇w| ) ds = t 0 + t t 0 f (s) n ds = t 0 f (s) n ds, since vol({w = s}) = s = w = |∇w| on {w = s} when s ≥ t 0 . In particular, f (t) = V ′ (t) 1/n . Similarly, if t ≥ t 0 , vol ′ ({w = t}) = f (t) n-1 vol({w = t}) = f (t) n-1 t.
Assume that for all v ≥ t 0 , the isoperimetric profile I = I (M ′ ,g ′ ) is achieved by sublevel sets of w.

Then, for all t ≥ t 0 , vol ′ ({w = t}) = I(vol ′ ({w < t})).

This implies that

f (t) n-1 t = I( t 0 f (s) n ds), i.e. V ′ (t) n-1 n t = I(V (t)). (3) 
This is a differential equation which, together with the initial condition V (t 0 ) = t 0 , uniquely determines V , and therefore f = V ′1/n .

Conversely, given a smooth function 

I : R + → R + such that I(v) = v for v ≤ t 0 , let V : [0, τ [→ R + be
= f (w) n vol, ω ′ = f (w) n-1 ω, thus dω ′ = (n -1)f (w) n-2 f ′ (w) dw ∧ ω + f (w) n-1 dω = ((n -1)f (w) n-2 f ′ (w)|∇w| + f (w) n-1 ) vol = u vol ′ ,
where u = h(w) and

h(t) = f (t) -n ((n -1)f (t) n-2 f ′ (t)t + f (t) n-1 ) = (f n ) -1 d dt (f n-1 t) = ( dV dt ) -1 dI(V (t)) dt = dI dv (V (t)).
If I is convex, h is nondecreasing, therefore large sublevel sets of w satisfy

t ≥ t 0 ⇒ {u < h(t)} ⊂ {w < t} ⊂ {u ≤ h(t)}.
Using, as compact approximations to {w < t}, the domains {ǫ < w < t}, Lemma 24 applies, and for v ≥ t 0 , I M ′ (v) is achieved by the sublevel set of w of volume v. For all v, I M ′ (v) ≥ v.

By assumption, there exists for each v < t 0 a sequence of approximate extremal domains of area v contained in {w ≤ t 0 }. These domains are unaffected by the conformal change. Therefore I M ′ (v) = v for v < t 0 . This proves that I M ′ = I.

Curvature and injectivity radius

Let M be a compact orientable 2-dimensional Riemannian manifold. Remove finitely many (but at least two) points from M to get M . Choose two more points a and b. Apply Theorem 2 to M \ {a, b}. Get a Morse function w : M \ {a, b} → (0, +∞) with compact level sets, a metric g modelled on constant curvature -1 annuli except near critical points of w. Let t 0 (resp. t 1 ) be slightly larger (resp. smaller) than the largest (resp. smallest) critical value. Then {w < t 1 } consists of two constant curvature -1 cusps and {w > t 0 } of finitely many constant curvature -1 anticusps. Choose some smooth convex function I on R + such that I(v) = v for v ≤ t 0 and I(v) = v log(v) for large v. Apply Proposition 25 to get a conformal metric on M ′ = {w < τ } with isoperimetric profile equal to I.

As observed in [START_REF] Bavard | Sur le volume minimal de R 2[END_REF], the second variation formula relates the first and second derivatives of the isoperimetric profile at v to the Ricci curvature in the normal direction along the boundary of an extremal domain of volume v. Here, since the Gauss curvature K is constant along the boundary of the extremal domain of volume v, one gets

d 2 I 2 M ′ dv 2 (v) = -2K.
Therefore, K tends to -∞ as w tends to τ .

Recall that the conformal change of metric is g ′ = f (w) 2 g where f = V ′1/2 and V is the solution of V ′ (t)

1 2 t = I(V (t)) with initial condition V (t 0 ) = t 0 . The formulae 1 t - 1 τ = +∞ V (t) I(s) -2 ds and f (t) = V ′ (t) 1/2 = I(V (t)) t
show that the asymptotic behaviour of f (t) as t tends to τ depends only on the asymptotic behaviour of I(v) as v tends to +∞. An explicit calculation with

I(v) = v log(v) shows that 1 t -1 τ ∼ V (t) -1 (log(V (t))) -2 , log(V (t)) ∼ log(τ t/τ -t) and f (t) ∼ τ t τ -t (log( τ t τ -t )) -1 .
In particular,

τ t 0 f (t)
t dt = +∞. This implies that the metric

g ′′ = g + f (w) 2 w 2 dw 2 on {w < τ } is complete. Since g ′ ≥ g + f (w) 2 -1 w 2 dw 2 ,
the identity map ({f (w) ≥ 2}, g ′ ) → ({f (w) ≥ 2}, g ′′ ) is Lipschitz. This proves that (M ′ , g ′ ) is complete.

Let x j be a sequence of points in M ′ such that w(x j ) tends to τ . Assume that inj(x j ) is bounded by L. Since M ′ is complete and negatively curved away from some sublevel set of w, for j large, inj(x j ) is equal to half the length of a geodesic loop ℓ j which not null homotopic. Since M has injectivity radius bounded below away from {w < t 1 }, the g-length of ℓ j is bounded below. Since ℓ j ⊂ B ′ (x j , L) ⊂ {w > w(x j )-ǫ j } where ǫ j tends to 0, f is large at each point of ℓ j , a contradiction. We conclude that inj(x) tends to +∞ as w(x) tends to τ .

To complete the proof of Theorem 3, there remains to fill the cusps as described in paragraph 9.2.

Remark 26

In the examples produced in Theorem 3, the isoperimetric profiles passes through three different regimes.

1. At small areas, the profile is subadditive. One can arrange that the profile be achieved by a unique extremal domain. For this, it suffices to arrange that one of the caps be more positively curved than the other. There is some flexibility in the choice of the prescribed profile.

2. At medium areas, the profile is exactly linear. There is no flexibility. The profile is achieved by large families of extremal domains.

3. At large areas, the profile is superadditive. There is again flexibility in the choice of the profile.

It is achieved by a unique extremal domain.

11 Appendix : ultrahyperbolicity

Proposition 27 Let M be a non compact complete 2-dimensional Riemannian manifold M which is ultrahyperbolic, i.e.

• curvature tends to -∞ at infinity;

• injectivity radius tends to +∞ at infinity.

On such a surface, the isoperimetric profile is achieved. Therefore, it is continuous on R + . Furthermore, for every V < area(M ), the set of domains D such that area(D) ∈ [0, V ] and length(∂D) = I M (area(D)), is compact.

Proof. Given ρ < 0 and L > 0, let C(ρ, L) denote the tubular neighborhood of width 2L of the set of points x ∈ M such that either inj(x) ≤ L or K(x) ≥ ρ. By assumption, this is a compact set. Denote by J the function defined on R + by J ρ (v) = 4πvρv 2 .

We first show that for every a > 0, if ρ < -( 4 L cosh -1 (1+ a 2π )) 2 , then every connected domain D with area ≤ a and boundary length ≤ L which is not contained in C(ρ, L) satisfies the isoperimetric inequality length(∂D) ≥ J ρ (area(D)). Let x ∈ D \ C(ρ, L). Then on the ball B(x, 2L), the injectivity radius is everywhere ≥ L and the curvature everywhere ≤ ρ. Let y ∈ B(x, L). Since area(B(y, L/4)) ≥ 2π(cosh( √ -ρL/4) -1) > a, the ball B(y, L/4) overlaps the boundary of D.

This implies that d(x, y) < L 4 + L 4 + 1 2 length(∂D) ≤ L. This show that D is contained in B(x, L). The Bol-Fiala inequality for disks ( [START_REF] Bol | Isoperimetrische Ungleichungen für Bereiche auf Flächen[END_REF], [START_REF] Fiala | Sur le problème des isopérimètres sur les surfaces ouvertes à courbure positive[END_REF]) implies that length(∂D) ≥ J ρ (area(D)). Indeed, D is homeomorphic to a disk with holes, filling the holes yields a disk D ′ , to which the Bol-Fiala isoperimetric inequality applies : length(∂D) ≥ length(∂D ′ ) ≥ J ρ (area(D ′ ))

≥ J ρ (area(D)), since J ρ is nondecreasing. Note that this implies that √ -ρarea(D) ≤ length(∂D).

Let D ℓ be a sequence of domains such that area(D ℓ ) converges to v, staying less than a, and length(∂D ℓ ) converges to I M (v), staying less than L. According to the compactness theorem for integral currents [START_REF] Federer | Geometric measure theory[END_REF], one can diagonally extract a subsequence such that for every ρ < 0, D ℓ ∩C(ρ, L) converges in flat norm. Since area(∂D ℓ \ C(ρ, L)) ≤ L/ √ -ρ, the limiting current with unbounded support D has area v. By semi-continuity, length(∂D) ≤ I M (v). Since D minimizes boundary length for compactly supported area preserving perturbations, D is a locally finite union of smooth domains, [START_REF] Fleming | Flat chains over a finite coefficient group[END_REF].

Fix a point x 0 ∈ M \ D ∞ . Choose ρ ′ < K(x 0 ). When r tends to 0, length(∂B(x 0 , r)) and area(B(x 0 , r)) behave asymptotically like in constant curvature K(x 0 ). It follows that, for w small enough (say w ≤ v 0 ), the function I such that length(∂B(x 0 , r)) = I(area(B(x 0 , r)) satisfies I(w) ≤ 4πwρ ′ w 2 . Let v 1 = min{v 0 , area(B(x 0 , dist(x 0 , D)))}. Given a and L, choose ρ < ρ ′ such that ρ < -( 4 L cosh -1 (1 + a 2π )) 2 and L √ -ρ < v 1 . Let B = B(x 0 , r 0 ) denote the ball centered at x 0 with area v 1 . By construction, B does not intersect D.

Assume that D is not contained in C(ρ, L). Let D 2 be the union of components of D which are not contained in C(ρ, L), and D 1 = D\D 2 . For r > 0, let D r = D 1 ∪B(x 0 , r). Since every component ∆ of D which is not contained in C(ρ, L) satisfies √ -ρarea(∆) ≤ length(∂∆), area(D 2 ) ≤ L √ -ρ < v 0 . Therefore there exists r ∈ (0, r 0 ) such that area(D r ) = area(D). Then length(∂D r )length(∂D 1 ) = length(∂B(x 0 , r))

≤ I(area(B(x 0 , r)))

≤ 4πα -kα 2 ,
where α = area(D 2 ). Since v → J ρ (v)/v is nonincreasing, J ρ is subadditive. Therefore the inequality length(∂∆) ≥ J ρ (area(∆)), valid for each component ∆ of D 2 , implies length(∂D 2 ) ≥ J ρ (area(D 2 )). It follows that length(∂D r ) < length(∂D). This contradicts the extremality of D.

We conclude that D is compact.

This proves the existence of compact extremal domains. According to [START_REF] Bavard | Sur le volume minimal de R 2[END_REF], this implies that the isoperimetric profile is continuous. The compactness of the set of extremal domains follows.

Remark 28 Here is a relative version of Proposition 27.
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Proposition 3

 3 Let M be an oriented Riemannian manifold with volume element vol M , let ω be an n -1-form on M such that |ω| ≤ 1, and dω = c vol M for some constant c. Let V ⊂ M be a submanifold with compact boundary and finite volume v. Assume that • ω calibrates ∂V , i.e. ω |∂V = vol ∂V .

Proof.

  Let ξ denote the Busemann vectorfield attached to ζ (i.e. ξ(x) is the initial speed of the unit speed geodesic starting at x and converging to ζ). Then ξ descends to a well defined unit vectorfield on M . Consider the n -1-form ω = ι ξ vol M . Then |ω| = |ξ| = 1, and dω = (n -1)vol. Horospheres centered at ζ descend to hypersurfaces orthogonal to ξ in M . Each horoball centered at ζ descends to an open set B v of finite volume v, and v takes every value in (0, +∞). With the orientation induced from horoballs, horospheres are calibrated by ω. Proposition 3 applies to B v,ǫ = B v \ B ǫ .
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 4 Figure 4: The level graph of a function
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 6 Figure 6: Gluing together singular pairs of pants

Lemma 11

 11 Let D be a n-dimensional disk, g 0 a smooth Riemannian metric and ω 0 a smooth n -1-form on D such that |ω 0 | 0 = 1 and dω 0 = vol 0 in a neighborhood of the boundary. Assume that D dω 0 > 0. Then there exists a smooth Riemannian metric g and a smooth n -1-form ω on D such that 1. g = g 0 and ω = ω 0 in a neighborhood of ∂D, 2. |ω| ≤ 1 and dω = vol in D, 3. vol(D, g) = D dω 0 ≤ vol 0 (∂D). Proof. First change g 0 into g 1 away from the boundary, in order that vol(D, g 1 ) = D dω 0 . This is possible since D dω 0 > 0 by assumption. Let η be a compactly supported n-form on D. According to the Poincaré Lemma, there exists a compactly supported n -1-form β on D such that dβ = η if and only if D η = 0. Therefore there exists a compactly supported n -1-form β such that ω = ω 0 + β satisfies dω = vol 1 .
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 7 Figure 7: A Morse function with disconnected levels on a compact surface with boundary
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 8 Figure 8: Infinite genus end

  but unfortunately not all of them. This works for levels which are not in an open neighborhood E of the set of critical values. E is a discrete union of intervals of the form (c -, c + ), each of them containing exactly one critical value c, c -= c/2, c + = 2c.
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 9 Figure 9: C e,c ′′ -

  s) ds. Therefore C 2 metrics and C 2 annular domains of a given area v are conveniently described by pairs of functions G : [a, b] → R, R : R/2πZ → R such that G(0) = 0, G ′ > 0 and 2π 0 R(θ) dθ = 0. g and ρ are recovered via g = G ′ and ρ = G -1 • (R + v). Let C 3 0 ([a, b]) denote the space of C 3 functions G on [a, b] such that G(a) = 0. Let C 2 0 (R/2πZ) denote the space of C 2 functions R such that 2π 0 R(θ) dθ = 0. Let U ⊂ R × C 3 0 ([a, b]) × C 2 v (R/2πZ) denote the open subset of triples (v, G, R) such that v > 0, G ′ > 0 and 0 < R + v < G(b). Let C 0 0 (R/2πZ) denote the space of continuous functions with vanishing average. Let Φ : U → C 0 0 (R/2πZ) denote the C 1 map defined by Φ(v, G, R) = κ -
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 10 Figure 10: Prescribed isoperimetric profile

  mδ] by Lemma 22 and min{I S j δ,α } is subadditive, by Lemma 21. If area(D) > mδ, let us construct a domain D ′ in M with the same area as D. The components of D which do not intersect {w < t} naturally live in M . The components of D which contain components of {w < t} also have obvious counterparts in M . To those components of D which are contained in {w < t}, we associate a domain of the form {w < t j } in the corresponding end of M with equal area. Since I M ≤ I S j δ,α
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 101 The rearrangement argumentWe need a generalization of Lemma 3.Proposition 24 Let M be an oriented Riemannian manifold with volume element vol M , let ω be an n -1-form on M such that |ω| ≤ 1, and dω = u vol M for some nonnegative function u. Let V ⊂ M be a submanifold with compact boundary and finite volume v. Assume that• ω calibrates ∂V , i.e. ω |∂V = vol ∂V ;

  can be applied near each critical point p. Let ℓ(p) denote the minimum length of a boundary component of an annulus that contains p. Then ℓ(p) increases with u(p). Indeed, when moving from a critical value to the next, the total length of the critical level is multiplied at least by 16, and weights are at most divided by 2. The injectivity radius of the bi-infinite curvature

-1 cusp at a point on the horocycle of length ℓ(p) also increases. Therefore, the radius r(p) of the ball centered at a critical point p to which Lemma 11 can be applied increases with u(p). On the ball B(p, r(p)), u takes values in (e -r(p) u(p), e r(p) u(p)). Since E contains the interval (u(p)/2, 2u(p)), one can perform exactly the same smoothing on B(p, log 2) for all p, provided u(p) is large enough. This gives bounded geometry.

  the maximal solution of Equation 3 with initial condition V (t 0 ) = t 0 . Then V (t) = t for t ≤ t 0 and lim t→τ V (t) = +∞. One sets f = V ′1/n . Let ξ = ∇w |∇w| . By assumption, the given calibration ω is equal to ι ξ vol on {w ≥ t 0 }. Let ξ ′ = ∇w |∇w| ′ and ω ′ = ι ξ ′ vol ′ . By definition, |ω ′ | ′ ≤ 1 and ω ′ calibrates level sets {w = t} for t ≥ t 0 . Since |∇w| ′ = f (w) -1 |∇w|, and vol ′

• there exists t such that {u < t} ⊂ V ⊂ {u ≤ t};

• there exist compact domains

Since ω calibrates ∂V , ∂V ω = vol(∂V ). We have shown that I M (v) ≥ vol(∂V ), and that equality holds asymptotically for the domains V ǫ . We conclude that I M (v) = vol(∂V ).