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DISCRETE EXCURSIONS

It is well-known that the length generating function E(t) of Dyck paths (excursions with steps ±1) satisfies 1 -E + t 2 E 2 = 0. The generating function

, where the F k are polynomials in t given by

. This means that the generating function of these polynomials is k≥0 F k z k = 1/(1 -z + t 2 z 2 ). We note that the denominator of this fraction is the minimal polynomial of the algebraic series E(t).

This pattern persists for walks with more general steps. For any finite set of steps S, the generating function E (k) (t) of excursions (generalized Dyck paths) taking their steps in S and of height at most k is the ratio F k /F k+1 of two polynomials. These polynomials satisfy a linear recurrence relation with coefficients in Q[t]. Their (rational) generating function can be written k≥0 F k z k = N (t, z)/D(t, z). The excursion generating function E(t) is algebraic and satisfies D(t, E(t)) = 0 (while N (t, E(t)) = 0).

If max S = a and min S = b, the polynomials D(t, z) and N (t, z) can be taken to be respectively of degree d a,b = a+b a and d a,b -a -b in z. These degrees are in general optimal: for instance, when S = {a, -b} with a and b coprime, D(t, z) is irreducible, and is thus the minimal polynomial of the excursion generating function E(t).

The proofs of these results involve a slightly unusual mixture of combinatorial and algebraic tools, among which the kernel method (which solves certain functional equations), symmetric functions, and a pinch of Galois theory.

Introduction

One of the most classical combinatorial incarnation of the famous Catalan numbers, C n = 2n n /(n + 1), is the set of Dyck paths. These are one-dimensional walks that start and end at 0, take steps ±1, and always remain at a non-negative level (Figure 1, left). By factoring such walks at their first return to 0, one easily proves that their length generating function E ≡ E(t) is algebraic, and satisfies

E = 1 + t 2 E 2 .
This immediately yields:

E = 1 - √ 1 -4t 2 2t 2 = n≥0 C n t 2n .
The same factorization gives a recurrence relation that defines the series E (k) ≡ E (k) (t) counting Dyck paths of height at most k:

E (0) = 1 and for k ≥ 1, E (k) = 1 + t 2 E (k-1) E (k) .
This recursion can be used to prove that E (k) is rational, and more precisely, that

E (k) = F k F k+1
, where F 0 = F 1 = 1 and

F k+1 = F k -t 2 F k-1 .
The aim of this paper is to describe what happens for generalized Dyck paths (also known as excursions) taking their steps in an arbitrary finite set S ⊂ Z (see an example in Figure 1, right). Their length generating function E is known to be algebraic. What is the degree of this series? How can one compute its minimal polynomial? Furthermore, it is easy to see that the generating function E (k) can still be written F k /F k+1 , for some polynomials F k . Does the 

a i F k-i = 0 (1)
with a i ∈ Q[t], gives a non-linear recursion of order d for the series E (k) ,

d i=0 a i E (k-i+1) • • • E (k) = 0, (2) 
and, by taking the limit k → ∞, an algebraic equation of degree d satisfied by E = lim k E (k) :

d i=0 a i E i = 0.
This establishes a close link between the (still hypothetical) recursion for the sequence F k and the algebraicity of E. The connection between (1) and ( 2) is central in the recent paper [START_REF] Ayyer | The number of [old-time] basketball games with final score n : n where the home team was never losing but also never ahead by more than w points[END_REF] dealing with excursions with steps ±1, ±2.

A slightly surprising outcome of this paper is that symmetric functions are closely related to the enumeration of excursions. This can be seen in the following summary of our answers to the above questions. Assume min S = -b and max S = a. Then the excursion generating function E is algebraic of degree at most d a,b := a+b a . The degree is exactly d a,b in the generic case (to be defined), but also when S = {-b, a} with a and b coprime. Computing a polynomial of degree d a,b that cancels E boils down to computing the elementary plethysms e k [e a ] on an alphabet with a + b letters, for 0 ≤ k ≤ d a,b .

The generating function E (k) counting excursions of height at most k is rational and can be written F k /F k+1 for some polynomials F k . These polynomials satisfy a linear recurrence relation of the form (1), of order d a,b , which is valid for k > d a,b -a -b. Moreover, F k can be expressed as a determinant of varying size k, but also as a rectangular Schur function taking the form of a determinant of constant size a + b.

These results are detailed in the next section. Not all of them are new. The generating function of excursions, given in Proposition 1, first appeared in [START_REF] Bousquet-Mélou | Linear recurrences with constant coefficients: the multivariate case[END_REF], but can be derived from the earlier paper [START_REF] Gessel | A factorization for formal Laurent series and lattice path enumeration[END_REF]. An algorithm for computing a polynomial of degree d a,b that cancels E was described in [START_REF] Banderier | Basic analytic combinatorics of directed lattice paths[END_REF]. Hence the first part of the next section, which deals with unbounded excursions, is mostly a survey (the results on the exact degree of E are however new). The second partexcursions of bounded height -is new, although an attempt of the same vein appears in [START_REF] Banderier | Combinatoire analytique des chemins et des cartes[END_REF].

Let us finish with the plan of this paper. The kernel method has become a standard tool to solve certain functional equations arising in various combinatorial problems [START_REF] Banderier | Generating functions for generating trees[END_REF][START_REF] De Mier | A solution to the tennis ball problem[END_REF][START_REF] Prodinger | The kernel method: a collection of examples[END_REF]. We illustrate it in Section 3 by counting unbounded excursions. We use it again in Section 4 to obtain the generating function of excursions of bounded height. Remarkably, the same result can be obtained by combining the transfer matrix method and the dual Jacobi-Trudi identity. In Section 5, we determine the recurrence relation satisfied by the polynomials F k . More precisely, we compute the rational series k F k z k . This is equivalent to computing the generating function of rectangular Schur functions k s k a z k , where a = max S. Finally, we discuss in Section 6 the exact degree of the series E for certain step sets S. This involves a bit of Galois theory.

Statement of the results

We consider one-dimensional walks that start from 0, take their steps in a finite set S ⊂ Z, and always remain at a non-negative level. More formally, a (non-negative) walk of length n will be a sequence (s 1 , s 2 , . . . , s n ) ∈ S n such that for all i ≤ n, the partial sum

s 1 + • • • + s i is non-negative. The final level of this walk is s 1 + • • • + s n , and its height is max i s 1 + • • • + s i .
An excursion is a non-negative walk ending at level 0 (Figure 1). We are interested in the enumeration of excursions.

The generating functions we consider are fairly general, in that every step s ∈ S is weighted by an element ω s of some field K of characteristic 0. In general, we will think of the ω s as independent indeterminates. In this case, K is the fraction field Q(ω s , s ∈ S). Of course, one can then specialize the ω s in various ways. The length of the walks is taken into account by an indeterminate t. In particular, the generating function of excursions is

E := ω s1 • • • ω sn t n ,
where the sum runs over all excursions (s 1 , s 2 , . . . , s n ). Clearly, we could incorporate the weight t in the step weights ω s , upon replacing ω s by tω s , but we find more convenient to keep the variable t separate. If min S = -b and max S = a, we assume that ω -b and ω a are non-zero. If d divides all the elements of S, the excursion generating function is unchanged (up to a renaming of the weights ω s ) if we replace each s ∈ S by s/d. Thus we can always assume that the elements of S are relatively prime. Also, if (s 1 , s 2 , . . . , s n ) is an excursion, (-s n , . . . , -s 2 , -s 1 ) is also an excursion, with steps in -S. Thus the excursion series obtained for S and -S coincide, up to a renaming of the weights ω s .

In the expression of E given below (Proposition 1), an important role is played by the following term, which encodes the steps of S:

P (u) = s∈S ω s u s , ( 3 
)
where u is a new indeterminate. This is a Laurent polynomial in u with coefficients in K. If min S = -b, we define

K(u) = u b (1 -tP (u)) . (4) 
This is now a polynomial in u with coefficients in ) Exactly b of these roots, say U 1 , . . . , U b , are finite at t = 0. These roots are actually formal power series in t 1/b . We call then the small roots of K. The a other roots, U b+1 , . . . , U a+b , are the large roots of K. They are Laurent series in t 1/a , and their first term is ct -1/a , for some c = 0. Note that K(u) factors as

K(u) = u b (1 -tP (u)) = -tω a a+b i=1 (u -U i ) ,
so that the elementary symmetric functions of the U i 's are:

e i (U) = (-1) i ω a-i ω a - 1 tω a χ a=i , (5) 
with U = (U 1 , . . . , U a+b ). We refer to [START_REF] Stanley | Enumerative combinatorics[END_REF]Ch. 7] for generalities on symmetric functions.

Unbounded excursions

At least three different approaches have been used to count excursions. The first one generalizes the factorization of Dyck paths mentioned at the beginning of the introduction. It yields a system of algebraic equations defining E [START_REF] Duchon | On the enumeration and generation of generalized Dyck words[END_REF][START_REF] Labelle | Langages de Dyck généralisés[END_REF][START_REF] Labelle | Generalized Dyck paths[END_REF][START_REF] Merlini | Underdiagonal lattice paths with unrestricted steps[END_REF]. The factorization differs from one paper to another. To our knowledge, the simplest, and most systematic one, appears in [START_REF] Duchon | On the enumeration and generation of generalized Dyck words[END_REF].

A second approach [START_REF] Gessel | A factorization for formal Laurent series and lattice path enumeration[END_REF] relies on a factorization of unconstrained walks taking their steps in S, and on a similar factorization of formal power series. The expression of E that can be derived from [START_REF] Gessel | A factorization for formal Laurent series and lattice path enumeration[END_REF] (by combining Proposition 4.4 and the proof of Proposition 5.1) coincides with the expression obtained by the third approach, which is based on a step by step construction of the walks [START_REF] Bousquet-Mélou | Linear recurrences with constant coefficients: the multivariate case[END_REF][START_REF] Banderier | Basic analytic combinatorics of directed lattice paths[END_REF]. This expression of E is given in (6) below. We repeat in Section 3 the proof of (6) published in [START_REF] Bousquet-Mélou | Linear recurrences with constant coefficients: the multivariate case[END_REF], as it will be extended later to count bounded excursions.

Proposition 1. The generating function of excursions is algebraic over K(t) of degree at most d a,b = a+b a . It can be written as:

E = (-1) b+1 tω -b b i=1 U i = (-1) a+1 tω a a+b i=b+1 1 U i , (6) 
where U 1 , . . . , U b (resp. U b+1 , . . . , U a+b ) are the small (resp. large) roots of the polynomial K(u) given by (4). The quantity defined by

D(t, z) = I⊂ a+b , |I|=a (1 + (-1) a ztω a U I ) , (7) 
with a + b = {1, 2, . . . , a + b} and

U I = i∈I U i ,
is a polynomial in t and z with coefficients in K, of degree d a,b in z, satisfying D(t, E) = 0.

Once the expression ( 6) is established, the other statements easily follow. Indeed, the second expression of E shows that D(t, E) = 0. Moreover, the expression of D(t, z) is symmetric in the roots U 1 , . . . , U a+b , so that its coefficients belong to K(t). More precisely, the form (5) of the elementary symmetric functions of the U i 's shows that D(t, z) is a Laurent polynomial in t. But the valuation of U i in t is at least -1/a, and this implies that D(t, z) is a polynomial in t.

Clearly, the degree of D(t, z) in z is d a,b = a+b a . Thus the excursion generating function E has degree at most d a,b . We prove in Section 6 that D(t, z) is actually irreducible in the two following cases:

• S = -b, a and ω -b , . . . , ω a are independent indeterminates (the generic case),

• S = {-b, a} with ω -b = ω a = 1 and a and b coprime (two-step excursions).

As shown by Example 2 below, D(t, z) is not always irreducible.

An algebraic equation for E. As argued above, D(t, z) is a polynomial in t and z that vanishes for z = E. However, its expression [START_REF] Carré | Plethysm of elementary functions[END_REF] involves the series U i , while one would prefer to obtain an explicit polynomial in t and z. Recall that the series U i are only known via their elementary symmetric functions [START_REF] Bousquet-Mélou | Linear recurrences with constant coefficients: the multivariate case[END_REF]. How can one compute a polynomial expression of D(t, z)?

The approaches based on resultants or Grbner bases become very quickly ineffective.

In the generic case where S = -b, a and the weights ω s are indeterminates, K(u) is the general polynomial of degree a + b in u, and the problem can be rephrased as follows: Take n = a + b variables u 1 , . . . , u n , and expand the polynomial

Q(z) = |I|=a (1 -zu I ) (8)
in the basis of elementary symmetric functions of u 1 , . . . , u n . For instance, for a = 2 and b = 1, z 3 (e 3,3 + e 4,1,2 ) + z 4 e 4 (e 3,4,2 + z 6 e 4,4,4 . (9) Using the standard notation for plethysm [START_REF] Stanley | Enumerative combinatorics[END_REF]Appendix 2], the polynomial Q(z) reads

Q(z) = (1 -zu 1 u 2 )(1 -zu 1 u 3 )(1 -zu 2 u 3 ) = 1 -z(u 1 u 2 + u 1 u 3 + u 2 u 3 ) + z 2 (u 2 1 u 2 u 3 + u 1 u 2 2 u 3 + u 1 u 2 u 2 3 ) -z 3 (u 1 u 2 u 3 ) 2 = 1 -ze 2 + z 2 e 3,1 -z 3 e 3,3 , while for a = b = 2, Q(z) = 1 -ze 2 + z 2 (e 3,1 -e 4 ) -
Q(z) = d a,b k=0 (-z) k e k [e a ].
This shows that, in the generic case, the problem of expressing D(t, z) as a polynomial in t and z is equivalent to expanding the plethysms e k [e a ] in the basis of elementary symmetric functions, for an alphabet of n = a + b variables. Unfortunately, there is no general expression for the expansion of e k [e a ] in any standard basis of symmetric functions, and only algorithmic solutions exist [START_REF] Carré | Plethysm of elementary functions[END_REF][START_REF] Chen | Algorithms for plethysm[END_REF]. Most of them expand plethysms in the basis of Schur functions. This is justified by the representation theoretic meaning of plethysm. Still, in our walk problem, the natural basis is that of elementary functions. We have used for our calculations the simple platypus 1 algorithm presented in [START_REF] Banderier | Basic analytic combinatorics of directed lattice paths[END_REF], which only exploits the connections between power sums and elementary symmetric functions. This algorithm takes advantage automatically of simplifications occurring in non-generic cases. For instance, when only two steps are allowed, say -b and a, all the elementary symmetric functions of the U i 's vanish, apart from e 0 (U), e a (U) and e a+b (U). It would be a shame to compute the general expansion of e k [e a ] in the elementary basis, and then specialize most of the e i to 0. The platypus algorithm directly gives the expansion of e k [e a ] modulo the ideal generated by the e i , for i = 0, a, a + b. For instance, when a = 2 and b = 1, this would mean that the coefficient of z k in D(t, z) is always a monomial in t. This observation first gave us some hope to find (in the two-step case) a simple description of D(t, z) and, why not, a direct combinatorial proof of D(t, E) = 0. However, this nice pattern does not persist: for a = 3 and b = 5, the coefficient of z 16 in Q(z) contains e 6 8 and e 8 3 e 3 8 . For the sake of completeness, let us describe this platypus algorithm. Take a polynomial L(z) of degree n with constant term 1, and define U 1 , . . . , U n implicitly by

Q(z) ≡ 1 -ze 2 -z 3 e 2 3 ,
L(z) = n k=1 (1 -zU k ).
1 Don't ask me why!

The algorithm gives a polynomial expression of

Q(z) = |I|=a (1 -zU I ) = d k=0 (-z) k e k [e a ](U) with d = n
a and U = (U 1 , . . . , U n ). The only general identity that is needed is the expansion of e a in power sums. This can be obtained from a series expansion via

e a = [z a ] exp   - i≥1 (-z) i i p i   = Φ a (p 1 , . . . , p a ) (10) 
for some polynomial Φ a . The rest of the calculation also uses series expansions, and goes as follows:

• compute p i (U) for 1 ≤ i ≤ ad using p i (U) = i[z i ] log(1/L(z)), • compute log Q(z) up to the coefficient of z d using log Q(z) = - i≥1 z i i Φ a (p i (U), p 2i (U), . . . , p ai (U)), (11) 
• compute Q(z) up to the coefficient of z d using Q(z) = exp(log Q(z)). Since Q(z) has degree d, the calculation is complete. The identity [START_REF] De Bruijn | The average height of planted plane trees[END_REF] follows from [START_REF] Cohen | Galois groups of trinomials[END_REF] and

log Q(z) = - i≥1 z i i |I|=a U i I = - i≥1 z i i e a (U i 1 , . . . , U i n ).
Given a set of steps S, with max S = a, one obtains a polynomial expression of D(t, z) by applying the platypus algorithm to

L(z) = s∈S ω s ω a z a-s - z a tω a .
If the output of the algorithm is the polynomial Q(z), then D(t, z) = Q((-1) a+1 tω a z).

Example 1: Two step excursions. The simplest walks we can consider are obtained for S = {-b, a} and ω a = ω -b = 1. We always assume that a and b are coprime. If b = 1, Proposition 1 gives E = U/t, where U is the only power series satisfying U = t(1 + U a+1 ). Equivalently, E = 1 + t a+1 E a+1 . This equation can be understood combinatorially by looking at the first visit of the walk at levels a, a -1, . . . , 1, 0, and factoring the walk at these points. Of course, a similar result holds when a = 1.

If a, b > 1, it is still possible, but more difficult, to write directly a system of polynomial equations, based on factorizations of the walks, that define the series E. See for instance [START_REF] Duchon | On the enumeration and generation of generalized Dyck words[END_REF][START_REF] Labelle | Langages de Dyck généralisés[END_REF][START_REF] Labelle | Generalized Dyck paths[END_REF][START_REF] Merlini | Underdiagonal lattice paths with unrestricted steps[END_REF]. It would be interesting to work out the precise link between the components of these systems and the series U i . To compare both types of results, take a = 3 and b = 2. On the one hand, it is shown in [START_REF] Duchon | On the enumeration and generation of generalized Dyck words[END_REF] that E is the first component of the solution of

   E = 1 + L 1 R 1 + L 2 R 2 L 1 = L 2 R 1 + L 3 R 2 R 1 = L 1 R 2 L 2 = L 3 R 1 R 2 = tE L 3 = tE.
On the other hand, Proposition 1 gives E = -U 1 U 2 /t, where U 1 , U 2 are the small roots of u 2 = t(1 + u 5 ). The platypus algorithm gives D(t, E) = 0 with

D(t, z) = 1 -z + t 5 z 5 (2 -z + z 2 ) + t 10 z 10 . ( 12 
)
This polynomial is irreducible. Similarly, for a = 4 and b = 3, D(t, E) = 0 with

D(t, z) = 1 -z + t 7 z 7 5 -4 z + z 2 + 3 z 3 -z 5 + z 6 + t 14 z 14 10 -6 z + 3 z 2 + 5 z 3 -z 4 + z 5 + t 21 z 21 10 -4 z + 3 z 2 + z 3 -z 4 + t 28 z 28 5 -z + z 2 -z 3 + z 35 t 35 . ( 13 
)
We prove in Section 6 that, in the case of two step walks, D(t, z) is always irreducible. That is, the degree of E is exactly a+b a . Example 2: Playing basket-ball with A. and Z. In a recent paper [START_REF] Ayyer | The number of [old-time] basketball games with final score n : n where the home team was never losing but also never ahead by more than w points[END_REF], the authors consider excursions with steps in {±1, ±2}, where the steps ±2 have length 2 rather than 1. They use factorizations of walks to count excursions (more specifically, excursions of bounded height). This problem fits in our framework by specializing the indeterminates ω s to ω -2 = ω 2 = t, and

ω -1 = ω 1 = 1. Proposition 1 gives E = -U 1 U 2 /t 2 ,
where U 1 and U 2 are the two small roots of u2 = t(t + u + u 3 + tu 4 ). The platypus algorithm yields

D(t, z) = D(t, z)(1 + t 2 z) 2 , (14) 
where

D(t, z) = t 8 z 4 -t 4 1 + 2 t 2 z 3 + t 2 3 + 2 t 2 z 2 -1 + 2 t 2 z + 1 ( 15 
)
is the minimal polynomial of E. This factorization is an interesting phenomenon, which is not related to the unequal lengths of the steps. Indeed, the same phenomenon occurs when S = {±1, ±2} and all weights are 1. In this case, one finds:

D(t, z) = D(t, z)(1 + tz) 2 with D(t, z) = t 4 z 4 -t 2 (2t + 1)z 3 + t(3t + 2)z 2 -(2t + 1)z + 1,
so that the excursion generating function has degree 4 again. The factorization of D(t, z) is due to the symmetry of the set of steps. For each set of steps S such that S = -S and weights ω s such that ω s = ω -s , the polynomial P (u) given by ( 3) is symmetric in u and 1/u. In particular, a = b. This implies that the small and large roots of 1 -tP (u) can be grouped by pairs: U a+1 = 1/U 1 , . . . , U 2a = 1/U a . In particular, if a is even, the polynomial D(t, z) contains the factor (1 + tω a z) at least a a/2 times. In the basket-ball case (a = 2), this explains the factor (1 + tz) 2 occurring in D(t, z). More generally, we prove in Section 7 that if S is symmetric, with symmetric weights, then the degree of E is at most 2 a , where a = max S.

Excursions of bounded height

We now turn our attention to the enumeration of excursions of height at most k. These are walks on a finite directed graph, so that the classical transfer matrix method applies 2 . The vertices of the graph are 0, 1, . . . , k, and there is an arc from i to j if j -i ∈ S. The adjacency matrix of this graph is

A (k) = (A i,j ) 0≤i,j≤k with A i,j = ω j-i if j -i ∈ S, 0 otherwise. ( 16 
)
By considering the nth power of A (k) , it is easy to see [START_REF] Stanley | Enumerative combinatorics[END_REF]Ch. 4] that the series E (k) counting excursions of height at most k is the entry (0, 0) in (1 -tA (k) ) -1 . The translational invariance of our step system gives

E (k) = F k F k+1
where F 0 = 1 and F k+1 is the determinant of 1 -tA (k) . The size of this matrix, k + 1, grows with the height. As was already observed in [START_REF] Banderier | Combinatoire analytique des chemins et des cartes[END_REF], the series counting walks confined in a strip of fixed height can also be expressed using determinants of size a + b, where a = max S and -b = min S. However, the expressions given in the above reference are heavy. A different route yields determinants that are Schur functions in the series U i (recall that these series are the roots of the polynomial K(u) given by ( 4)). This was shown in [START_REF] Bousquet-Mlou | Culminating walks: enumerative properties and random generation[END_REF] for the enumeration of culminating walks. The case of excursions is even simpler, as it only involves rectangular Schur functions.

Let us recall the definition of Schur functions in n variables x 1 , . . . , x n . Let δ = (n -1, n -2, . . . , 1, 0). For any integer partition λ with at most n parts, λ = (λ 1 , . . . , λ n ) with

λ 1 ≥ λ 2 ≥ • • • ≥ λ n ≥ 0, s λ (x 1 , . . . , x n ) = a δ+λ a δ , with a µ = det x µj i 1≤i,j≤n . (17) 
Proposition 2. The generating function of excursions of height at most k is

E (k) = F k F k+1 = (-1) a+1 tω a s k a (U) s (k+1) a (U)
where U = (U 1 , . . . , U a+b ) is the collection of roots of the polynomial K(u) given by (4), and

F k+1 = det(1 -tA (k)
) where A (k) is the adjacency matrix [START_REF] Kennedy | The distribution of the maximum Brownian excursion[END_REF]. In particular,

F k = (-1) k(a+1) (tω a ) k s k a (U). ( 18 
)
This proposition is proved in Section 4 in two different ways. In Section 5, we derive from the Schur expression of F k that these polynomials satisfy a linear recurrence relation. Equivalently, the generating function k F k z k is a rational function of t and z. Proposition 3. The generating function of the polynomials F k is rational, and can be written as k≥0

F k z k = N (t, z) D(t, z)
where D(t, z) is given by [START_REF] Carré | Plethysm of elementary functions[END_REF], and N (t, z) has degree a+b a -a -b in z. Moreover,

D(t, E) = 0 and N (t, E) = 0.
In other words, the sequence F k satisfies a linear recurrence relation of the form (1), of order d a,b = a+b a , valid for k > a+b a -a -b (with F i = 0 for i < 0). This proposition follows from Proposition 4, which deals with the generating function of rectangular Schur functions of height a: for symmetric functions in n variables,

k s k a z k = P (z) Q(z) (19) 
where Q(z) is given by ( 8) and has degree n a , while P (z) has degree n a -n. Computational aspects. We have shown in Section 2.1 that, given the step set S, the polynomial D(t, z) can be computed via the platypus algorithm. One way to determine the numerator N (t, z) is to compute F k explicitly (e.g. as the determinant of (1 -tA (k) )) for k ≤ δ := a+b a -a -b, and then to compute N (t, z) = D(t, z) k F k z k up to the coefficient of z δ .

In the generic case, computing the generating function of the polynomials F k boils down to computing the generating function [START_REF] Labelle | Generalized Dyck paths[END_REF]. Again, the platypus algorithm can be used to determine Q(z) in terms of the elementary symmetric functions. In order to determine P (z), we express the Schur functions s k a , for k ≤ δ := n a -n, in the elementary basis. This can be done using the dual Jacobi-Trudi identity (see Section 5 for details). One finally obtains P (z) by expanding the product Q(z) k s k a z k in the elementary basis up to order δ. For instance, for

a = b = 2, k≥0 s k a z k = 1 -z 2 e 4 Q(z) ,
where Q(z) is given by [START_REF] Cohen | The Galois group of a polynomial with two indeterminate coefficients[END_REF]. More values of P (z) are given in Section 7.2. Let us now revisit the examples of Section 2.1.

Example 1: Two step excursions. When S = {a, -1}, one has D(t, z) = 1 -z + t a+1 z a+1 . The polynomials F k satisfy the recursion F k = F k-1 -t a+1 F k-a-1 , which can be understood combinatorially using Viennot's theory of heaps of pieces [START_REF] Viennot | Heaps of pieces. I. Basic definitions and combinatorial lemmas[END_REF]. Via this theory, F k appears as the generating function of trivial heaps of segments of length a on the line 0, k , each segment being weighted by -t a+1 . The recursion is valid for k ≥ 1, with F 0 = 1 and F i = 0 for i < 0. The generating function of the F k 's is k≥0

F k z k = 1 1 -z + t a+1 z a+1 .
When a = 3 and b = 2, the minimal polynomial of the excursion series E is given by ( 12) and the generating function of the polynomials F k is found to be k≥0

F k z k = 1 + t 5 z 5 1 -z + t 5 z 5 (2 -z + z 2 ) + t 10 z 10 .
For a = 4 and b = 3, we refer to [START_REF] Duchon | On the enumeration and generation of generalized Dyck words[END_REF] for the minimal polynomial D(t, z) of E, and k≥0 F k z k = 1 + t 7 z 7 4 + z 3 + z 4 + t 14 z 14 6 + z 3 + 4 t 21 z 21 + t 28 z 28 D(t, z) .

Example 2: Basket-ball again.

For S = {±1, ±2} with ω -2 = ω 2 = t, ω -1 = ω 1 = 1, k≥0 F k z k = 1 -t 2 z (1 + t 2 z) (1 -z(1 + 2t 2 ) + z 2 t 2 (3 + 2t 2 ) -z 3 t 4 (1 + 2 t 2 ) + z 4 t 8 )
.

The denominator is not irreducible. Its second factor is the minimal polynomial of E, see [START_REF] Gessel | A factorization for formal Laurent series and lattice path enumeration[END_REF]. Moreover, comparing to [START_REF] Flajolet | The average height of binary trees and other simple trees[END_REF] shows that N (t, z) and D(t, z) have a factor (1 + t 2 z) in common.

A similar phenomenon occurs for S = {±1, ±2} but now ω s = 1 for all s. In this case, k≥0

F k z k = 1 -tz (1 + zt) (1 -z (1 + 2 t) + t (2 + 3 t) z 2 -t 2 (1 + 2 t) z 3 + z 4 t 4 )
.

Again, the minimal polynomial of E is the second factor of the denominator, and N (t, z) and D(t, z) have a factor (1 + tz) in common.

Enumeration of unbounded excursions

Here we establish the expression (6) of the excursion generating function E. The proof is based on a step-by step construction of non-negative walks with steps in S, and on the so-called kernel method. This type of argument is by no means original. The proof that we are going to present can be found in [5, Example 3], then in [START_REF] Banderier | Basic analytic combinatorics of directed lattice paths[END_REF], and finds its origin in [17, Ex. 2.2.1.4 and 2.2. 1.11]. The reason why we repeat the proof is because it will be adapted in Section 4 to count excursions of bounded height.

Let W be the set of walks that start from 0, take their steps in S, and always remain at a non-negative level. Let W (t, u) be their generating function, where the variable t counts the length, the variable u counts the final height, and each step s ∈ S is weighted by ω s :

W (t, u) = (s1,s2,...,sn)∈W ω s1 • • • ω sn t n u s1+•••+sn .
We often denote W (t, u) ≡ W (u), and use the notation W h for the generating function of walks of W ending at height h:

W (t, u) = h≥0 u h W h where W h = (s 1 ,s 2 ,...,sn )∈W s 1 +•••+sn=h ω s1 • • • ω sn t n .
A non-empty walk of W is obtained by adding a step of S at the end of another walk of W. However, we must avoid adding a step i to a walk ending at height j, if i + j < 0. This gives

W (u) = 1 + t s∈S ω s u s W (u) -t i∈S,j≥0 i+j<0 
ω i u i+j W j .
Let min S = -b. Rewrite the above equation so as to involve only non-negative powers of u:

u b (1 -tP (u))W (u) = u b -t b h=1 u b-h i∈S,j≥0 i+j=-h ω i W j , (20) 
with P (u) = s∈S ω s u s . The coefficient of W (u) is the kernel K(u) of the equation, given in (4).

As above, we denote by U 1 , . . . , U b (resp. U b+1 , . . . , U a+b ) the roots of K(u) that are finite (resp. infinite) at t = 0. For 1 ≤ i ≤ b, the series W (U i ) is well-defined (it is a formal power series in t 1/b ). The left-hand side of ( 20) vanishes for u = U i , with i ≤ b, and so the right-hand side vanishes too. But the right-hand side is a polynomial in u, of degree b, leading coefficient 1, and it vanishes at u = U 1 , . . . , U b . This gives

u b (1 -tP (u))W (u) = b i=1 (u -U i ).
As the coefficient of u 0 in the kernel is -tω -b , setting u = 0 in the above equation gives the generating function of excursions:

E = W (0) = (-1) b+1 tω -b b i=1 U i .
This is the first expression in [START_REF] Bousquet-Mlou | Culminating walks: enumerative properties and random generation[END_REF]. The second follows using

U 1 • • • U a+b = (-1) a+b ω -b /ω a (21) 
(see ( 5)).

Remark. There exists an alternative way to solve [START_REF] Merlini | Underdiagonal lattice paths with unrestricted steps[END_REF], which does not exploit the fact that the right-hand side of ( 20) has degree b in u. This variant will be useful in the enumeration of bounded excursions. Write

Z -h = i∈S,j≥0 i+j=-h ω i W j ,
so that the right-hand side of (20) reads

u b -t b h=1 u b-h Z -h .
This term vanishes for u = U 1 , . . . , U b . Hence the b series Z -1 , . . . , Z -b satisfy the following system of b linear equations:

For U = U i , with 1 ≤ i ≤ b, b h=1 U b-h Z -h = U b /t.
In matrix form, we have MZ = C/t, where M is the square matrix of size b given by

M =      U b-1 1 U b-2 1 • • • U 1 1 1 U b-1 2 U b-2 2 • • • U 1 2 1 . . . . . . U b-1 b U b-2 b • • • U 1 b 1     
, Z is the column vector (Z -1 , . . . , Z -b ), and C is the column vector (U b 1 , . . . , U b b ). The determinant of M is the Vandermonde in U 1 , . . . , U b , and it is non-zero because the U i are distinct. We are especially interested in the unknown Z -b = ω -b E. Applying Cramer's rule to solve the above system yields

Z -b = (-1) b+1 t det(U b-j+1 i ) 1≤i,j≤b det(U b-j i ) 1≤i,j≤b .
The two determinants coincide, up to a factor U 1 . . . U b , and we finally obtain

E = Z -b ω -b = (-1) b+1 tω -b U 1 • • • U b .

Enumeration of bounded excursions

As argued in Section 2.2, the generating function of excursions of height at most k is

E (k) = F k F k+1 , (22) 
where

F k+1 = det(1 -tA (k)
) and A (k) is the adjacency matrix ( 16) describing the allowed steps in the interval 0, k . In order to prove Proposition 2, it remains to establish the expression [START_REF] Labelle | Langages de Dyck généralisés[END_REF] of the polynomial F k as a Schur function of U 1 , . . . , U a+b . We give two proofs. The first one uses the dual Jacobi-Trudi identity to identify F k as a Schur function. The second determines E (k) in terms of Schur functions via the kernel method, and the Schur expression of F k then follows from ( 22) by induction on k (given that F 0 = 1).

First proof via the Jacobi-Trudi identity. The dual Jacobi-Trudi identity expresses Schur functions as a determinant in the elementary symmetric functions e i [26, Cor. 7.16.2]: for any partition λ,

s λ = det e λ ′ j +i-j 1≤i,j≤λ1
, where λ ′ is the conjugate of λ. Apply this identity to λ = (k + 1) a . Then λ ′ = a k+1 and

s (k+1) a = det J (k) with J (k) = (e a+i-j ) 1≤i,j≤k+1 .
Now, specialize this to symmetric functions in the a + b variables V = (V 1 , . . . , V a+b ) where V i = -U i for all i. By ( 5), the elementary symmetric functions of the V i are

e i (V) = ω a-i ω a - 1 tω a χ i=a = - 1 tω a (χ i=a -tω a-i ) .
This shows that the matrix J (k) coincides with -(1 -tA (k) )/(tω a ), so that

s λ (V) = (-tω a ) -(k+1) F k+1 = (-1) a(k+1) s λ (U),
since s λ is homogeneous of degree a(k + 1). This gives the Schur expression of F k+1 .

Second proof via the kernel method. We adapt the step by step approach of Section 3 to count excursions of height at most k. Let W (k) (t, u) ≡ W (k) (u) be the generating function of non-negative walks of height at most k. As before, we count them by their length (variable t) and final height (u) with multiplicative weights ω s on the steps. We use notations similar to those of Section 3. When constructing walks step by step, we must still avoid going below level 0, but also above level k. This yields:

W (k) (u) = 1 + t s∈S ω s u s W (k) (u) -t i∈S,j≥0 i+j>k or i+j<0 ω i u i+j W (k) j ,
or, with min S = -b,

u b (1 -tP (u))W (k) (u) = u b -t k+a h=k+1 u b+h Z (k) h -t b h=1 u b-h Z (k) -h , (23) 
where

Z (k) h = i∈S,j≥0 i+j=h ω i W (k) j .
The series W (k) (u) is now a polynomial in u (with coefficients in the ring of power series in t). This implies that any root U i of the kernel K(u) = u b (1 -tP (u)) can be legally substituted for u in [START_REF] Schinzel | On reducible trinomials[END_REF]. The right-hand side and the left-hand side then vanish, and provide a system of a + b linear equations satisfied by the

Z h : For U = U i , with 1 ≤ i ≤ a + b, k+a h=k+1 U b+h Z (k) h + b h=1 U b-h Z (k) -h = U b /t.
In matrix form, we have M (k) Z (k) = C/t, where M (k) is the square matrix of size a + b given by

M (k) =      U a+b+k 1 U a+b+k-1 1 • • • U b+k+1 1 U b-1 1 U b-2 1 • • • 1 U a+b+k 2 • • • • • • 1 . . . . . . U a+b+k a+b U a+b+k-1 a+b • • • U b+k+1 a+b U b-1 a+b U b-2 a+b • • • 1      , Z (k) is the column vector (Z (k) k+a , . . . , Z (k) k+1 , Z (k) 
-1 , . . . , Z

-b ), and C is the column vector (U b 1 , . . . , U b a+b ). We are especially interested in the series

Z (k) -b = ω -b E (k) . Cramer's rule now gives Z (k) -b = (-1) b+1 t det(U a+b+k i , . . . , U b+k+1 i , U b i , U b-1 i , . . . , U i ) 1≤i≤a+b det M (k) , (24) 
provided det M (k) = 0. In view of the definition [START_REF] Knuth | The art of computer programming[END_REF] of Schur functions, this yields:

E (k) = Z (k) -b ω -b = (-1) b+1 tω -b U 1 • • • U a+b s k a (U) s (k+1) a (U)
.

Thanks to [START_REF] Osada | The Galois groups of the polynomials X n + aX l + b[END_REF], the generating function of excursions of height at most k can finally be rewritten

E (k) = (-1) a+1 tω a s k a (U) s (k+1) a (U)
.

Using [START_REF] Prodinger | The kernel method: a collection of examples[END_REF], we finally express the polynomial F k in terms of Schur functions:

F k = 1 E (0) • • • E (k-1) = (-1) k(a+1) (tω a ) k s k a .
We still have to prove that the determinant of M (k) is non-zero. Whether M (k) is singular or not, the following variant of (24) remains valid:

det M (k) Z (k) -b = (-1) b+1 t det(U a+b+k i , . . . , U b+k+1 i , U b i , U b-1 i , . . . , U i ) 1≤i≤a+b = (-1) b+1 t V (U) s k a (U) a+b i=1 U i ,
where V (U) denotes the Vandermonde in the U i 's. Since these series are distinct and non-zero, this shows that if det M (k) = 0, that is, s (k+1) a (U) = 0, then s k a (U) = 0 as well. But this would finally imply s 0 (U) = 0, while s 0 (U) = 1. Thus det M (k) = 0, and the second proof of Proposition 2 is now complete.

Generating functions of rectangular Schur functions

We will now prove Proposition 3, which connects the (algebraic) excursion generating function E to the polynomials F k occurring in the (rational) generating function E (k) counting excursions of height at most k. Now that we have expressed F k as a Schur function [START_REF] Labelle | Langages de Dyck généralisés[END_REF], Proposition 3 is a specialization of the following result. so that P (z) has degree n a -n exactly. It remains to determine P (1/u J ), for |J| = a. We specialize the expression (29) of P (z) to the case z = 1/u J . The only permutations σ having a non-zero contribution are those such that σ( a ) = J. Every such permutation σ can be written in a unique way σ = πτ σ J , where σ J is the shortest permutation sending a to J, and τ (resp. π) is any permutation on J (resp. c J). Thus, if J = {j 1 , . . . , j a } with j 1 < . . . < j a and c J = {k 1 , . . . , k b } with k 1 < . . . < k b , we have

P (1/u J ) = |I|=a,I =J (1 -u I /u J ) ε(σ J ) V n τ ∈S(J) ε(τ )τ u n-1 j1 • • • u b ja π∈S( c J) ε(π)π u b-1 k1 • • • u 0 k b = |I|=a,I =J (1 -u I /u J ) ε(σ J ) V n u b J V (J) V ( c J),
where V (J) denotes the Vandermonde in the variables u j , j ∈ J. This is easily seen to be equivalent to [START_REF] Stanley | Enumerative combinatorics[END_REF].

We can now complete the proof of Proposition 3. We combine the Schur expression of F k given in Proposition 2 with Proposition 4. Set n = a + b. The indeterminates u 1 , . . . , u a+b are specialized to U 1 , . . . , U a+b , and we obtain:

k≥0 F k z k = P ((-1) a+1 tω a z) Q((-1) a+1 tω a z) = N (t, z) D(t, z)
where D(t, z) = Q((-1) a+1 tω a z) is exactly the polynomial [START_REF] Carré | Plethysm of elementary functions[END_REF]. The dominant coefficient of P (z), given by (31), does not vanish when specializing u i to U i . Thus N (t, z) = P ((-1) a+1 tω a z) has degree n a -n exactly. We have already seen that the excursion generating function E given in Proposition 1 satisfies D(t, E) = 0. Now, since E = (-1) a+1 /(tω a U J ), with J = {b+1, . . . , a+b},

N (t, E) = P (1/U J ) = |I|=a,|I∆J|≥4
(1 -U I /U J ) by [START_REF] Stanley | Enumerative combinatorics[END_REF]. Recall that U b+1 , . . . , U a+b are the roots of K(u) with valuation -1/a, while the b other roots have valuation 1/b. This implies that U I = U J for I = J, so that N (t, E) = 0.

The degree of the excursion generating function

We conclude this paper by proving that the results stated in Section 2 are, in a sense, optimal. We have defined in [START_REF] Carré | Plethysm of elementary functions[END_REF] a polynomial D(t, z), of degree d a,b = a+b a , which satisfies D(t, E) = 0 and is the denominator of the rational series k F k z k . We prove that D(t, z) is irreducible in the following two cases:

• S = -b, a and ω -b , . . . , ω a are independent indeterminates, • S = {-b, a} with ω -b = ω a = 1 and a and b coprime.

In the first case, the kernel K(u) is essentially the general algebraic equation of degree a + b, so that the result may be predictable. The idea is that there are no non-trivial relations between the series U i . The second case is less obvious. Proposition 5. In the above two cases, the generating function of excursions with steps in S is algebraic of degree d a,b = a+b a . Its minimal polynomial is given by [START_REF] Carré | Plethysm of elementary functions[END_REF]. Recall, from Example 2 in Section 2.1, that E has sometimes degree less than d a,b (for instance when S = {±1, ±2} with weights 1).

The key tool is the study of the Galois group of the polynomial K(u). We begin with a condition implying the irreducibility of D(t, z). Lemma 6. Let S be a finite set of steps with weights ω s ∈ K. Let a = max S, -b = min S and n = a + b. Let K(u) be the polynomial in u, with coefficients in K(t), defined by (4).

If the Galois group of K(u) over K(t), seen as a permutation group of the U ′ i s, is the full symmetric group S n , then the product U 1 . . . U b of the small roots of K(u) has degree d a,b = a+b a . In other words, the polynomial D(t, z) given by (7) is irreducible. Proof. The extension K(t, U 1 , . . . , U n ) of K(t) is normal by construction, and separable since we have assumed K to be of characteristic 0. Assume that the Galois group of K(t, U 1 , . . . , U n ) over K(t) is S n . By the main result of Galois theory, the correspondence Φ between subgroups G of S n and sub-extensions

L of K(t, U 1 , . . . , U n ) defined by Φ(G) = L = {x ∈ K(t, U 1 , . . . , U n ) : σ(x) = x for all σ ∈ G} is bijective. Its inverse is given by Φ -1 (L) = G = {σ ∈ S n : σ(x) = x for all x ∈ L}.
Moreover, the degree of K(t, U 1 , . . . , U n ) over L is |G|.

In particular, let L = K(t, U 1 • • • U b ) be the extension of K(t) generated by the product of the small roots. Given that U 1 , . . . , U b have valuation 1/b in t, while U b+1 , . . . , U a+b have valuation -1/a, the only permutations σ of S n that leave U 1 . . . , U b unchanged are those that fix the set b . That is, Φ

-1 (L) ≃ S b × S a . Thus K(t, U 1 , . . . , U n ) has degree a!b! over L, degree (a + b)! over K(t), so that L = K(t, U 1 • • • U b ) has degree a+b a over K(t).
We now apply the above lemma to prove Proposition 5. Proof of Proposition 5. In the first case, K(u) is the general equation of degree n = a + b. It is well-known that its Galois group is S n . See for instance [START_REF] Stewart | Galois Theory[END_REF].

In the second case, we want to prove that the Galois group of K(u) = u b -t(1+u a+b ) over Q(t) is S n , with n = a+ b. This has been proved for trinomials u a+b + αu b + β with two indeterminate coefficients α and β (see [START_REF] Smith | General trinomials having symmetric Galois group[END_REF][START_REF] Cohen | The Galois group of a polynomial with two indeterminate coefficients[END_REF]), and for some trinomials with rational coefficients [START_REF] Osada | The Galois groups of the polynomials X n + aX l + b[END_REF][START_REF] Cohen | Galois groups of trinomials[END_REF]. The latter results are of course harder that the former. Given that we could not find any reference dealing with trinomials involving exactly one indeterminate coefficient, we will rely on the strong results obtained for trinomials of Q[u].

We first note that it suffices to prove that the trinomial u b -t 0 (1 + u a+b ) has Galois group S n over Q for some rational number t 0 . Since a and b are coprime, Theorem 8 of [START_REF] Schinzel | On reducible trinomials[END_REF] implies that there exist only finitely many α ∈ Z such that u a+b + αu b + 1 is reducible. Thus we can choose α ∈ Z, coprime with n = a + b, and such that the above trinomial is irreducible. Then by [START_REF] Osada | The Galois groups of the polynomials X n + aX l + b[END_REF]Thm. 1], this trinomial has Galois group S n over Q.

Concluding remarks and questions

The degree of the excursion generating function

We have shown in Section 6 that the degree of E is maximal, equal to a+b a , both in the generic case and in the two-step case. This can be extended to all set steps such that K(u) has at least two (algebraically independent) indeterminate coefficients, using the results of [START_REF] Cohen | The Galois group of a polynomial with two indeterminate coefficients[END_REF].

It would be interesting to study more cases, in particular those involving a symmetry, which reduces the degree. Assume S = -S, and ω -s = ω s for all s ∈ S. In particular, a = b. Then, as discussed in Example 2, the small and large roots of K(u) are simply related by U a+1 = 1/U 1 , . . . , U 2a = 1/U a . This implies that many products

U i1 • • • U ia , with i 1 < • • • < i a , are actually of the form U j1 • • • U j a-2k
for some k > 0. The products that reduce in that way have a minimal polynomial that strictly divides

Q(z) = |I|=a (1 -zU I ).
The non-reducing products U i1 • • • U ia are the 2 a terms U

I = U ±1 1 • • • U ±1 a . Thus Q(z) = ε∈{±1} a
(1 -zU ε ), is a polynomial in z and t that divides Q(z), and vanishes at z = E. Hence in the symmetric case, E has degree at most 2 a .

One could try to study systematically the cases S = -a, a or S = {±1, ±a}. When S = {±1, ±2}, we have seen in Example 2 that E has degree 4. The Galois group G of K(u) = u 2 -t(1 + u) 2 (1 -u + u 2 ) over Q(t) can be seen to isomorphic to the dihedral group D 4 . More precisely, G = {id, (1, 2, 3, 4), [START_REF] Ayyer | The number of [old-time] basketball games with final score n : n where the home team was never losing but also never ahead by more than w points[END_REF][START_REF] Banderier | Basic analytic combinatorics of directed lattice paths[END_REF][START_REF] Banderier | Generating functions for generating trees[END_REF][START_REF] Banderier | Combinatoire analytique des chemins et des cartes[END_REF], (1, 3)(2, 4), (1, 2) [START_REF] Banderier | Generating functions for generating trees[END_REF][START_REF] Banderier | Basic analytic combinatorics of directed lattice paths[END_REF], [START_REF] Ayyer | The number of [old-time] basketball games with final score n : n where the home team was never losing but also never ahead by more than w points[END_REF][START_REF] Banderier | Basic analytic combinatorics of directed lattice paths[END_REF](2, 3), (1, 3), (2, 4)}. The subgroup that leaves U 1 U 2 invariant is the subgroup of index 4 generated by (1, 2) [START_REF] Banderier | Generating functions for generating trees[END_REF][START_REF] Banderier | Basic analytic combinatorics of directed lattice paths[END_REF]. This explains why E = -U 1 U 2 /t has degree 4.

The generating function of rectangular Schur functions

We proved in Section 5 that, for symmetric functions in n variables, the generating function of rectangular Schur functions of height a is rational:

k≥0 s k a z k = P (z) Q(z) ,
where Q(z) is given by ( 25) and has degree n a , while P (z) has degree n a -n. We have given two expressions of P (z) in terms of the u i 's (see [START_REF] Viennot | Heaps of pieces. I. Basic definitions and combinatorial lemmas[END_REF](30))), and proved that P (1/u J ) has a simple expression [START_REF] Stanley | Enumerative combinatorics[END_REF]. However, we have no expansion of P (z) in symmetric functions, other than We have used the Schur basis rather than the elementary basis because it seems, from these examples, that the coefficient of z i in P (z) is either Schur-positive or Schur-negative. The conversions to Schur functions have been made with the package ACE [START_REF] Veigneau | ACE, an Algebraic Combinatorics Environment for the computer algebra system MAPLE: User's Reference Manual[END_REF].

P (z) =

The height of random excursions

Pick an excursion of length n, uniformly at random. Its height is a random variable H n . For Dyck paths, it is known that H 2n / √ n converges in distribution to a theta law [START_REF] De Bruijn | The average height of planted plane trees[END_REF], which also describes the height of the Brownian excursion [START_REF] Kennedy | The distribution of the maximum Brownian excursion[END_REF]. We expect this to hold for our general excursions as well. One indication of the universality of this law can be given in terms of trees. Via a simple bijection, the height of a random Dyck path of length 2n becomes the height of a random plane tree with n edges. It has been proved that the height of other varieties of trees, like simple trees, also follows, in the limit, a theta law [START_REF] Flajolet | The average height of binary trees and other simple trees[END_REF].

The average height of plane trees -that is, of Dyck paths -was derived in [START_REF] De Bruijn | The average height of planted plane trees[END_REF] from an expression of E (k) that is equivalent to our Schur expression of this series. Is it possible, using the asymptotic tools developed in [START_REF] Banderier | Basic analytic combinatorics of directed lattice paths[END_REF] for unbounded excursions, to work out the law of the height of general excursions by starting from our Schur expression of E (k) ?

1

 1 

Figure 1 .

 1 Figure 1. Left: A Dyck path of length 16 and height 4. Right: An excursion (generalized Dyck path) of length 8 and height 7, with steps in S = {-3, 5}. sequence (F k ) k satisfy a linear recurrence relation? Of what order? How can one determine this recursion? Note that any linear recursion of order d, of the form d

5 + z 6 e 2 e 2 5 -z 7 e 2 2 e 2 5 + z 10 e 4 5 .+2z 8 e 5 e 5 7 -2z 9 e 2 5 e 5 7 +z 10 e 3 5 e 5 7 -z 11 e 4 5 e 5 7 +3z 14 e 10 7 -z 15 e 5 e 10 7 +2z 16 e 2 5 e 10 7 -z 21 e 15 7 .

 555577777 while for a = 2 and b = 3, Q(z) ≡ 1 -ze 2 -2z 5 e 2 and for a = 5 and b = 2, Q(z) ≡ 1-ze 5 -3z 7 e 5 7 From the above examples, one may suspect that, in the two-step case, the coefficient of z k in Q(z) is always a monomial. Going back to the polynomial D(t, z), and given that e a (U) = (-1) a+1 tω a and e a+b (U) = (-1) a+b ω -b ω a ,

Proposition 4 .

 4 Let 1 ≤ a ≤ n. The generating function of rectangular Schur functions of length a in n variables u 1 , . . . , u n is k≥0 s k a z k = P (z) Q(z)

(- 1 ) 2 = 1 -s 4 z 2 . 5 + (s 53 3 2 2 + s 4 3 2 3 + s 4 2 3 3 1 ) z 6 -2 s 54 2 3 2 2 z 7 + (s 5 3 3 3 + s 64 3 3 2 + s 5 2 4 3 2 ) z 8 -(s 5 5 2 + s 74 5 ) z 9 -s 6 2 5 2 4 2 z 10 + (s 6 4

 1212523167328259104 j e j [e a ] s k a , which comes directly from the fact that P (z) = Q(z) k≥0 s k a z k . It would be interesting to find a simpler expression for the coefficients of P (z). The term (-1) j , in particular, leaves hope for possible simplifications, which may in turn allow us to compute P (z) more efficiently. Let us give the expression of P for a few values of a and n: for a = 2 and n = 4,P (z) = 1 -e 4 zFor a = 2 and n = 5,P (z) = 1 -e 4 z 2 + e 5,1 z 3 -e 5 2 z 5 = 1 -s 1 4 z 2 + s 2,1 4 z 3 -s 2 5 z 5 .For a = 3 and n = 6,P (z) = 1 -s 21 4 z 2 + (s 2 4 1 + s 321 4 ) z 3 -s 3 2 2 2 1 2 z 4 -(s3 5 + s 52 5 ) z 54 + s 765 4 ) z 11 -s 76 4 5 z 12 + s 7 6 z 14 .

In language theoretic terms, the words of S * that encode these bounded excursions are recognized by a finite automaton.
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where

has degree n a in z and P (z) has degree n a -n. (We have used the notation u I = i∈I u i .) Moreover, for all J of cardinality a,

Proof. Let us write n = a + b. By definition of Schur functions,

where

where σ acts on functions of u 1 , . . . , u n by permuting the variables:

where Q(z) is given by [START_REF] Stanley | Enumerative combinatorics[END_REF] and

The above expression suggests that the degree of P (z) could be as large as n a -1, while we claim it is only n a -n. To explain this gap, it suffices to notice that the determinant (27) vanishes for k ∈ {-n + 1, -n + 2, . . . , -1}. Thus the sum over k in [START_REF] Veigneau | ACE, an Algebraic Combinatorics Environment for the computer algebra system MAPLE: User's Reference Manual[END_REF] could just as well start at k = -n + 1, giving:

This provides the following alternative expression of P (z):

The right-hand side is a polynomial in z of degree (at most) n a -1, and this polynomial is the product of P (z) and z n-1 . This shows that P (z) has degree at most n a -n. Moreover, by extracting the coefficient of z ( n a )-1 in the above identity, one finds: 
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