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Abstract

A canonical Particle Swarm Optimisation model requires only three
algebraic operators, namely “modifying a velocity”, “combining three ve-
locities”, and “applying a velocity to a position”, which can have a lot of
explicit transcriptions. In particular, for binary optimisation, it is possi-
ble to define a toolbox of specific ones, and to derive then some & la carte
optimisers that can be, for example, extremely efficient only on some kind
of problems, or on the contrary just reasonably efficient but very robust.
For “amatheurs” who would like to better understand the behaviour of

binary PSO algorithms an Appendix gives some theoretical results.

1 Canonical PSO and Binary model

1.1 Canonical PSO

A detailed description can be found in [CLE 04]. Let’s give here just
a quick one. As usually, in a search space of dimension D , we have
the following D-vectors for a given particle:

the position =

the velocity v

the best previous position p

the best previous position g found in its informant group.

We assume here the information links are initialised at random, and
re-initialised the same way after each non efficient iteration (i.e. the
best fitness value is still the same), except below for Derivation 100
that uses the classical circular neighbourhood. More precisely, each
particle informs itself and choose also at random K — 1 particles to
informs. So, conversely, it is important to note that each particle is
informed by a number of particles that is not necessary equal to K .



Positions and velocities are initialised at random as usually. After
that, at each time step, each move of a particle is computed by com-
bining three tendencies:

1. keeping some diversity, i.e. modifying the velocity. Most of the time, in
classical PSO, the direction is not modified

2. going back more or less towards the best previous position p, i.e. choosing
a point "around" p, usually by modifying the vector p — x

3. going more or less towards the best previous position g of the informants,
i.e. choosing a point "around" g, usually by modifying the vector g — x

This combination gives a new velocity that is “added” to the current
position to obtain the new one. This new position itself may be up-
dated to take some constraints into account. The most common ones
are "interval constraints": for each dimension, the position compo-
nent has to be in a given interval (continuous or discrete). More
generally, let’s define |a|,as a post-constraint k& applied to the vector
a.

The process can be summarised by

v @upig v e Duipig
x — xdv or d UV < lv]s
r — |z], x — TDv
v o— vl N E
where
ak means “modify the vector aby using a given method o
P abe means “combine the three vectors a , b, and ¢’
a®b means ““add” the two vectors a and b”.

In the first form, the velocity is “added” to the position and con-
strained only after that for the next iteration, as in the second form,
it is constrained before to be used to modify the position.

For example, the classical PSO equations are

vg — c1vg+rand(0,¢) (pg — xq) + rand (0,¢) (gg — xq)
Tq = Xq-+vq



For this algorithm, we have the following operator definitions:

a is “multiply each component by the same coefficient ¢;” (the direction
is then not modified)

B “applied to a , multiply each component of a—x by a random number
(uniform distribution) between 0 and ¢’

Tis identical to 8
) is “add the three vectors”
@ is “add the two vectors”

1.2 Toolbox

Now we have to give some precise definitions of the different operators
for binary optimisation. Note that there is always at least the interval
constraint x4 € {0,1}. In the table 1 you can see a set of possible
operators. The mod™ function is a modulo function giving only non
negative values. By choosing three operators in column A, one in
column B, one in column C, and two in column D, you can define a
new kind of binary optimiser. For example, an algorithm A1-A1-A3-
B1-C1-D1 (which is the pivot method defined below as Derivation
11) can be described as follows:

don’t use v

don’t use p

modify at random a constant bit number of g
use the modified g as the new position



[ Aa B:@abc | C.a®b [ D:la]
1 | nothing c b a
2| a a+b+c a+b INT (a) mod™*2
3 | modify at ran- | probabilistic —1+4+ INT (a)mod3
dom n bits, with | choice using
n randomly cho- | agbicq
sen between 1
and a constant
value
4 | modify at ran- | majority probabilistic =~ mapping
dom n bits with | choice using v =
n randomly cho- | agbgcy r = rand(0,1)
sen between 1 u>r = 1
and a decreasing ulr = 0
value
5 | multiply  each | probabilistic
bit by a different | choice using
random number | bgcg
6 | multiply  each | majority
bit by the same | choice using
random number | bgcg
7 | multiply  each
bit by  the
same  constant
number

Table 1: Toolbox example for Binary PSO. You can define an algorithm by
picking up operator definitions in each column. However, you still have to
precise some details, for example the decreasing rule for the random number
of bits to switch. Also some choices, like using only line 1, are completely
uninteresting

Note that some choices are meaningless or not consistent. For exam-
ple, with A2-A2-A2-B1-C1-D1-D1 the particles do not move at all!
Also, clearly, D3 does not make sense if applied to a position, as it
does if applied to a velocity, keeping it in {—1,0,1}. Some choices still
have to be more detailed, by giving the precise rules, for example
for the probabilistic choice, or the random number of bits to modify.
We will see that in the Derivation section. However, we have first
to decide on what kind of problems the resulting optimisers will be
tested.



2 Benchmarks

2.1 Some deceptive deceptive problems

In binary optimisation, it is very easy to design some algorithms that
are extremely good on some benchmarks (and extremely bad on some
others). It means we have to be very careful when we choose a test
function set. It is not rare that some authors use a too small bench-
mark set and conclude a bit too rapidly that their algorithm is an
improvement. For example, the benchmark used in [ALK 02] in or-
der to present the M-DiPSO algorithm contains only three problems
(described below) that the authors call "deceptive". By comparing
M-DiPSO to a genetic algorithm, the authors conclude that their
method is better.

What is wrong in this approach? The point is the three problems
they have chosen are in fact what we could call "deceptive deceptive
problems". I do not say M-DiPSO is not good, I just say this paper
does not really prove it (particularly for there are not enough details
to recode the algorithm, so there is no way to run it on other prob-
lems). As we will see, these precise problems can be solved extremely
quickly by some simple PSO derivations. In the following, |y| denotes
the sum of the bits of the string y.

2.1.1 Goldberg’s order-3

The fitness f of a bit-string is the sum of the result of separately
applying the following function to consecutive groups of three com-
ponents each:

0.9if [y| =0
.+ ) 06if |yl =1
@) =9 033y =2
1.0if |y| =3

For example, if the string is z = 010110101, the total valueis f; (010)+
f1(110) + f1(101) =0.9+0.34+0.3=1.5

If the string size is D, the maximum value is obviously D/3, for the
string 1111...111. In practice, we will then use as fitness the value
D/3 — f so that the problem is now to find the minimum 0.

2.1.2 Bipolar order-6

The fitness is the sum of the result of applying the following function
to consecutive groups of six components each:



1.0ifly] = Oor6

_J 0.0if|y] = 1lorb
f2(y) = 04if |y = 2or4
08if |y = 3

So the solutions are all combinations of sequences 6x1 and 6x0. In
particular, 1111...111 and 0000...000 are solutions. The maximum value
is D/6.

2.1.3 Miihlenbein’s order-5

The fitness is the sum of the results of applying the following function
to consecutive groups of five components each:

4.0ify = 00000

3.0ify = 00001

~} 2.0ify = 00011

Fy) = 1.0ify = 00111
3.5ify = 11111

0.0 otherwise

So the solution is 0000...000 and the maximum value is 3.5D/5 .

2.2 Some other problems
2.2.1 Clerc’s Zebra3

As already said, some PSO binary derivations are too good on the
three above problems. So I designed another problem, slightly modi-
fying the Goldberg’s ones, but that really deceives these derivations.

The fitness f of a bit-string is the sum of the result of separately
applying the following function to consecutive groups of three com-
ponents each. If the rank of the group is even (first rank=0):

0.9if |[y| =0
-y ) 06if|y[=1
Js W) =9 03if |y = 2
1.0if |y| =2

If the rank of the group is odd:



1.0if |y| =0

) 03ifjy| =1 . s
f3(y) = 0.6if |y = 2 So, the solution point is 111000111000... and the
0.9if |y| = 2

maximum value is D/3.Here again, we will use in practice as fitness the value
D/3 — f so that the problem is now to find the minimum 0.

2.2.2 Quadratic problem
It is defined by

f(z) =D+ z2Qx]
where @ is a DxD matrix.

For convenience, we can generate () at random, with a given density of
1 values. Note that we use here the classical binary (logical) algebra.
In particular we have a> = a, and a+a = 0 . So the problem is in
fact not that difficult, even for large instances, also for there usually
are several solutions. Some authors do solve some instances with 9000
variables [GLO 02], on a ten processors Cray though. I don’t have
one at hand, just a small laptop, so the example below will be far
more modest, with D = 100.

2.2.3 Multimodal problems

We use here the random problem generator defined in [KEN 98].
The parameters are the dimension D and the number of peaks. The
minimum value is 0.

First, the peaks are randomly put on the search space. The
landscape is defined by the following C code:

for(i = 0; i < peaks; i++)
for(j = 0; j < D; j++) landscapel[i] [j] = rand()&01;

After that, for each position x, the fitness is computed as follows:

f =0.0;

for (j = 0; j < peaks; j++)

{

f1 = 0.0;

for (k = 0; k < D; k++) if (x[k] = = landscapel[j][k]) fi++;
if (£f1 > £) £ = £1;

}

f=1-f/(double)D;



3 Binary PSO derivations

Actually, T have written about twenty PSO derivations for binary
optimisation, for it is quite easy by using the table 1. I present here
just the most interesting ones (their code number is purely arbitrary,
and referring to the C source code you can download from my site
Math stuff about PSO http://clerc.maurice.free.fr/pso/index.htm).

3.1 Derivation 0

According to the table 1 its codification is A1-A5-A5-B2-C2-D2-D3.
For this first one, let’s give a more complete explanation. As a x
component is either 0 or 1, to find another value we can add 0, 1
(modulo 2), or —1 (modulo 2). So the idea is to use velocities whose
components have just these three possible values{—1,0,1}, and to
combine the three tendencies so that the result is always 0 or 1 just
by using the modulo function. The pseudo-code of the algorithm is
given below.

For each particle
Initialise each x component at random in {0,1}. Set g =
x and p=2x .
Initialise each v component at random in {—1,0,1}.
Say the particle informs itself.
Initialise information links at random towards K —
1 particles (not necessarily different).
Loop as long as the stop criterion is not satisfied:
For each particle
Choose at random a coefficient ¢y in {—1,1}
Choose at random a coefficient ¢z in {—1,1}
Find the best informant (the one that has the best previous position g)
Apply the following transformations:
v — vte(p—x)+cez(g—1)
r «— x+wv
x «— (44 x)mod2
v «— (34+v)mod3—1
Compute the fitnessf (x)
If f(z) < f(p)then p— =z
If there has been no improvement of the best position in the whole swarm, re-initialise

As usually, the stop criterion is either "the solution has been found"
or "a given maximum number of evaluations has been done."

This algorithm looks quite similar to the classical PSO. However,
there is a trick, it is almost a hoax for it works extremely well on the



Pd 9a = | 0 1
0 0 rand {0,1}
1 rand {0,1} 1

Table 2: Choice of the new xgvalue “at the majority” for all possible values of
the two bits pygq

three above "deceptive deceptive" problems, and not at all on the
others. Try to guess why ...

3.2 Derivation 7

This one is more serious. Its codification is A1-A4-A4-B6-C1-D1. The
structure of the algorithm is the same as in Derivation 0 but here the
velocity is not used, and the two other tendencies are computed by
modifying at random some bits.

Then, for each dimension d, we have to choose between three possible
values. The final one is chosen "at the majority", according to the
table 2

To improve the convergence, the numbers of modified bits, i.e.
respectively n, , and ng4, are regularly decreased, according to the
number of evaluations 7T, if the previous iteration gave an
improvement (the best value found by the swarm is better than the
previous one). The following formulas are not arbitrary, but not
really proved either, so, for the moment, just say they are rules of
thumb:

After initialisation

In(K
co = 05ln(D)
_ K
=3
At each time step, if no improvement, z =z + 29
n, = 2D
P in(z) N )
0 7[71,(};—1) ifK >2
g n, else
P

3.3 Derivation 11

This is a simplification and a binary adaptation of the pivot method
[SER 97]. As we have seen, its codification is A1-A1-A3-B1-C1-D1.
The idea is to just look "around" the best previous position g of the
best informant, that is to say to modify at random a few number of
g components. The basic algorithm is the following



r — g
A «— INT(In(D))
p «— 14+ INT (rand(1,A))

choose at random p components of z, and switch them.

Difficult to define something more simple! In practice, for small D
values (< 20), it is sometimes a good idea to keep Aequal to 3. It is
important to note that due to the integer part function INT, the p
value is never equal to A + 1. So, for A = 3, we choose 2 or three
components to switch. There is here a subtility: it does not mean
we never switch just one bit, for there is a small probability that the
p components chosen at random are in fact the same. Actually, the
more intuitive variant with p «— rand(1,2,..., A)works sometimes far
better (for example on Multimodal problem), but also sometimes far
worse: it seems it is less robust.

3.4 Derivation 100

This derivation is an improvement of the original algorithm defined
by Jim Kennedy and Russ Eberhart [KEN 97]. Its codification is A7-
A5-A5-B2-C2-D4-D1. The only difference compared to the classical
(historical) continuous PSO is that each new component is set to 0 or
1 by applying a sigmoid transformation and a probabilistic rule.

Also, note that here the informant group is usually the classical circu-
lar one, and it is computed just once, at the beginning. For example,
for K = 3 and if the particles are numbered from 0 to S — 1, the in-
formants of the particle i are particles (i — 1) mod™S, i, (i +1)mod™S .
Of course, you can also use it with the random information links we
have defined above. Actually, it is then often better.

The movement equations are

C1 = 1
C2 = 2
C3 = 2
Vg — cvg +rand (0, c2) (pa — xa) + rand (0,¢3) (94 — a)
U — Xq+ g
N
T = rand(0,1)
r<u = xq+<1
r>u = x4+ 0

Note that for this algorithm it is sometimes better to use the "global
best" method to define the informants, i.e. K = S.

10



| Algorithm | 30D | 60D | 90D | 150D |
GA 0.58 (100000) | 4.05 (100000) [ 5.55 (100000) | 13.26 (100000)
M-DiPSO 0 (5417) 0 (26368) 0 (39885) 0 (75150)
Derivation 0 (30) 0 (31) 0 (32) 0 (32)
0982 K2
Derivation 0 (372) 0 (400) 0 (411) 0 (426)
0 S35 K3

Table 3: Goldberg’s order-3 problem for different dimensions. Fitness and num-
ber of evaluation, averaged over 10 trials for GA and M-DiPSO, over 1000 for
Derivation 0

4 Results

4.1 Pure strategies

‘We now apply each derivation on each problem, just “as it is”. We will
see later how to add more adaptation or to combine some of them. For
easier comparison, we use here most of the time the same swarm size
(35), although for some problems best results can be obtained with
a different value. As usually, a small K parameter is often better for
difficult problems, so we use either 2 or 3. For Derivation 11 and
Derivation 100, we also try K = S. As pointed out in [CLE 05], using
just such "extreme" values is enough to give us a pretty good idea
of the algorithm efficiency. In the following results, each strategy is
coded by something like "11 S35 K3", meaning:

use of Derivation 11
swarm size 35
each particle informs itself, and 2 particles chosen at random after each

time step if there has been no improvement

4.2 Derivation 0 on "deceptive deceptive problems"

First, let us try our “hoax” on the three deceptive deceptive problems
we have seen in section 2. Results with GA and M-DiPSO are coming
from [ALK 02]. As you can see on the tables 3 to 5, results with
Derivation 0 are indeed too good to be honest. Note that for GA
and M-DiPSO, only 10 runs had been launched by the authors, as
Derivation 0 has been ran 1000 times in order to reduce the standard
deviation (not noted here). In the tables the first number is the mean
best fitness value found and the second one (in parenthesis) the mean
number of evaluations. The stop criterion is either a solution is found
or the number of evaluations is 100000.

11



| Algorithm | 30D | 60D | 90D | 150D |
GA 0.32 (100000) | 1.52 (100000) [ 3.08 (100000) [ none
M-DiPSO 0 (15690) 0 (45902) 0 (83348) none
Derivation 0 (21) 0 (22) 0 (22) 0 (21)
052 K2
Derivation 0 (254) 0 (265) 0 (266) 0 (266)
0 S35 K2

Table 4: Bipolar order-6 problem. Fitness and number of evaluation, averaged
over 10 trials for GA and M-DiPSO, over 1000 for Derivation 0

| Algorithm | 30D \ 60D \ 90D \ 150D \
GA 0.95 (100000) | 11.7 (100000) | 24.1 (100000) | 55.75 (100000)
M-DiPSO 0 (5354) 0 (15344) 0 (42358) 0 (88488)
Derivation 0 (24) 0 (25) 0 (25) 0 (25)
092 K2
Derivation 0 (268) 0 (285) 0 (294) 0 (299)
0 S35 K2

Table 5: Miihlenbein’s order-5 problem. Fitness and number of evaluation,
averaged over 10 trials for GA and M-DiPSO, over 1000 for Derivation 0

Of course, there is a trick. The point is Derivation 0 works well only
on this kind of problem. By "this kind of problem", I mean a problem
for which either 111...111 or 000...000 is a solution. And the trick is it
is quite difficult to guess it just by reading the algorithm. For other
problems, as we will see now, it doesn’t work at all.

4.3 All derivations on all problems
4.3.1 Performance curves

For each problem and for each derivation, we plot the success rate
over 100 runs, for a range of maximum numbers of evaluations 7.
The swarm size is always equal to 35, and several K values have
been tested. Only the best one is retained, except for Derivation 100
for which there are two plots for the two best ones, just to see the
difference. The purpose of these figures is not to decide whether an
algorithm is better than another one or not, for it is here impossible
(the benchmark problems have precisely been chosen for that!), but
to point out some rules and, if I dare say, some “non rules’:

e on a given problem, if algorithm A is better than algorithm B for a given
T, it is better for any greater T value. False: see for example 5 and
derivations 7 and 11

12



e if an algorithm is excellent on some problems, it is very bad on some
others. It seems to be true, according to the figures, but it is not, as we
will see later

e a problem with a lot of local optima is more difficult. Meaningless: it
depends on the algorithm. See for example the figure 6, where Derivation
100 is excellent on the Multimodal problem

Goldberg's order 3, 30D

g . s r\(]\/_{w'\‘,\;'\_f

100% o

r

80% -

B0% o

0535 K3
—7 535 K3
m—]1 535 K35
—100 535 K3

Rate

40%

20% -

0%

T T T T 1
) 20000 40000 60000 BO00D 100000

Max. eval.

Figure 1: Goldberg’s order 3. Success rate vs maximum number of evaluations

Bipolar order 6, 30D
100% |

80% o

60% -

0535K3

Rate s 7 535 K3
11 535 K35
40% o — 100 535 K3

20%
0% T T T T 1
0 20000 40000 60000 80000 100000
Max. eval.

Figure 2: Bipolar order 6. Success rate vs maximum number of evaluations
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Muhlenbein's order 5, 30D

100% =

80%

60%

0535K3
T 535 K3
— 11 535 K1
— 100 535 K3

Rate

40%

20%

0% == T T T T 1
0 Zoooo 40000 50000 80000 100000

Max. eval.

Figure 3: Miihlenbein’s order 5. Success rate vs maximum number of evaluations

Zebra3, 30D
100%
BO% -
B0%
0535K3
Rate —_— 7535K3
m— 11 535 K3
ool —— 100535 K3
20% -
o 20000 40000 80000 80000 looo00
Max. eval.

Figure 4: Zebra3. Success rate vs maximum number of evaluations
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Quadratic 100D, density 1

100%

B0% —

60% —

0535 K3
s 7 535 K3
w11 535 K3
— 100 535 K3

Rate

40% -

20% -

T T T T 1
] 10000 20000 30000 40000 50000
Max. eval.

Figure 5: Quadratic. Success rate vs maximum number of evaluations

Multimodal 100D, 20 peaks
100%

B0%

60% -

0535K2
— ] 535K2
w11 535 K2
—— 100 535 K2
— 100 535 K35

Rate

40%

20% -

0%

T T T 1
] 5000 10000 15000 20000
Max. eval.

Figure 6: Multimodal. Success rate vs maximum number of evaluations

For the Multimodal problem (100 dimensions, 20 peaks), the choice
K = 3 gives very bad results. For example, for Derivation 7, the
success rate for at most 20000 evaluations is completely null. With K =
2, we obtain more reasonable success rates. However, for Derivation

15



| [ 0535 [ 7835 | 11 535 | 100 S35

Goldberg 100% | 60% 78% 99%
Bipolar 100% 58% 89% 84%
Miihlenbein 100% | 85% 18% 0%
Zebra3 0% 60% 78% 4%
Quadratic 22% | 4% 87% 72%
Multimodal 0% 54% 25% 86%
Mean 54% | 65% | 63% 58%
Standard dev. | 47% | 11% 29% 40%

Table 6: Mean success rates and standard deviations

100, the best information links topology is what is usually called the
“global best” one, i.e. each particle is informed by the whole swarm

(K = S = 35).

4.3.2 Robustness versus efficiency

What do you prefer: never bad results or sometimes excellent ones?
Unfortunately, it appears that the and is not really possible, at least
with just the simple mono-strategies we have defined. Table 6 in-
dicates the averaged success rates and the standard deviations over
the six problems. We clearly see that Derivation 0 and Derivation
100 can be used in the second case, as Derivation 7 is the only one
that is never really bad, and quite robust (small standard deviation).
However, it is also never excellent.

Now, it wouldn’t be very interesting to just notice that whitout try-
ing to explain what happens. The two keywords are adaptation and
DPNP (Distribution of Possibilities for the Next Positions), as ex-
plained in [CLE 05]. For all derivations but Derivation 100, there
is a rudimentary adaptation of the information links, for they are
modified at random if there has been no improvement. However,
Derivation 0 has the poorest DPNP, for the confidence coefficients
have just two possible values, 1 and —1. It is then not surprising that
this algorithm is very good on some “suitable” problems, but most of
the time very bad. The DPNP for Derivation 100 is more complete,
so it is a bit better, but still not very robust, for the topology of
the information links is constant: on some problems, this “circular”
topology is not a good one.

Derivation 7 and 11 both have a quite good DPNP, but 7 is more

adaptive, for the number of modified bits is decreased if there has
been some improvement. That is why it is the most robust (the

16



smallest standard deviation). However, it is possible to design some-
thing better, by adding more adaptation or by combining two “pure”
strategies

5 Adaptive strategies

As some performances are sometimes very different for different K
values, a more robust algorithm may be obtained just by modifying
K during the process. Similarly, it is perfectly possible to use several
derivations chosen more or less cleverly after a given number of non
efficient time steps (no improvement). Also, some more clever adap-
tive rules can be used, like a kind of “taboo”to limit the DPNP. As
it is not the purpose of this paper to describe in detail an adaptive
binary PSO, I just give below a few examples of what can be done
even with very simple rules.

5.1 Derivation 16 = Derivation 11 with taboo

One of the three tendancies in the classical PSO equations can be seen
as ‘“keeping more or less the same velocity”. However, just applied
“as it is” for a binary problem, it is meaningless. If the position is
0 and the velocity is 1, applying two times the same velocity to the
position gives again 0, as the underlying idea of this tendency is on
the contrary ‘“keep moving in this direction”.

A possible way to convey this idea for a binary problem is to say
something like “if a component has just been modified, don’t modify
it again for the next move”. So the particle needs at least three moves
to possibly go back to the same position.

Let’s apply this “taboo” rule to the simplest derivation we have seen,
i.e. Derivation 11. Note that this pivot method is already quite good
for almost all our test functions, except for the Multimodal problem.
As we can see on figure 7, the resulting algorithm is then never bad

assuming that we choose the right K value for each problem.
This illustrates that adding just one adaptation rule is sometimes not
enough. Here, we would need another rule saying how to modify K
during the process.

5.2 Combining strategies

As it clearly appears that some derivations are pretty good on some
problems, and pretty bad on some others, another idea is to automat-
ically decide during the search process which one has to be used. So,
from time to time, the algorithm has to check if it would be a good

17



Derivation 16 (11+Taboo)
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Figure 7: Adding a “taboo” rule to Derivation 11. Only results with the best K

values are shown

| 16 S35 (11+Taboo) | 16/0_parall S35 K3 | 16/0_seq S35 K3 |

Goldberg 67% K3 99% 99%
Bipolar 83% K35 98% 99%
Miihlenbein 89% K1 99% 99%
Zebra3 67% K3 50% 52%
Quadratic 85% K3 7% 81%
Multimodal 7% K35 68% 79%
Mean 78% 82% 85%
Standard dev. 8% 18% 17%

Table 7: Mean success rates and standard deviations when using some adap-
tations. On the whole, the algorithme is better. With the taboo option, it is
also more robust (small standard deviation), but the best K value is not always
the same. So the sequential approach, in which another strategy (derivation) is
chosen if there has been no improvement for a while, is the most interesting
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idea to switch to another strategy. A theoretical reasoning detailed
in [CLE 05] shows that a good estimation of the number of time steps
between two such adaptations is A = % (the idea is to give enough
time so that information can spread all over the swarm). Note that
in complete adaptive systems, neither S nor K are constant, but we
don’t consider here this case. To give an idea of the process, let’s
suppose we have to choose just between two strategies. There are
mainly two ways to do that: by doing parallel trials or sequential
trials.

5.2.1 Parallel trials

This method is quite expensive in terms of number of evaluations but
nevertheless better than all the ones we have seen. At a given time
t all values defining the current status of the swarm are saved and,
from this starting point, the algorithm tries the strategy already in
use and after that another one for A iterations. If the final result is
better, this second strategy is kept until the next check time.

As Derivation 16 was already the best, we can now try to combine it
with say Derivation 0. Of course, it is just to illustrate the process
for, in practice, Derivation 0 is far too specific to really be useful.
Times t at which the trials are done are A, 24, 34, etc. As we can
see on table 7, the results are on the whole better, but the standard
deviation is not as small as with the previous method (with taboo):
18% versus 8%. However, the good point is that there is no need to
look for the best K value: the “standard” one 3 can be kept for all
problems of our benchmark function set.

5.2.2 Sequential trials

Here the iterations are not repeated with another method. Simply, if
there has been no improvement during A iterations, another strategy
is chosen. Let’s try again with Derivation 16 and 0. On table Twe see
that it is slightly better than the previous one, and have the same
robustness property for the K value. It is also easier to code. So we
may say it is our best choice.

5.3 Saving computation time

As you may have noted, for some of the objective functions the fit-
ness is computed by “accumulating” some positive elements (Gold-
berg, Bipolar, Miihlenbein, Zebra3). In such a case it is not always
necessary to completely compute the fitness: we can stop as soon as
there is no hope to find a better value than the one that is memo-
rised. Note that this trick is not specific to binary optimisation. For
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Figure 8: Saved computational time (mean over 10 runs for each maximum
number of evaluations). By not completely computing some fitness values, as
soon as it is absolutely sure the position has not been improved, it is possible
to significantly reduce the computational time if each fitness evaluation is quite
time comsuming

example it can be used for all optimisation problems where the fitness
is a distance, usually an Euclidean one.

This can be seen as a kind of small adaptation. Let us see in detail the
process for the Zebra3 function. Let f,.;; be the memorised fitness
value. It means the maximum value ever found by the current particle
iS frmar = D/3 — frest- Now the fitness is computed by progressively
adding D/3 values, each one being at most equal to 1. Let f(d) the
partial sum of the d first 3-bit sub-strings. The maximum value that
we can hopefully reach is then f(d) + D/3 — d. If this value is equal
to or smaller than f,,,, there is no need to continue: in any case we
won’t use the real fitness value, for we need it only if the position
is improved. Of course for initialisation the computation must be
complete, but after that it can save time.

How much? For small K values, a simplified model can estimate it
as a function of the number of “best neighbours” and of the swarm
size (see 7.6.4). As we can see on figure 8 the saving may be quite
significant. Note that in this figure the saving is not given in terms
of time (which is, anway, depending on the computer in use), but
in terms of elementary operations. For Zebra3, if a given fitness
evaluation is stopped after having added the partial values of d 3 bits
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substrings, the saving is estimated by (D — 3d) /D.

6 Some possible future general improvements

The improvement techniques presented below are inspired by some
less specific (continuous) PSO versions, but may also be as source of
inspiration for some other versions. That is why I call them “general”.

6.1 Initialisation

When you have decided to use S particles, you also have to define the
starting configuration. Usually the initial positions are completely at
random. However, it has been experimentally shown that starting
from a more evenly distribution (by using centroidal Voronoi tesse-
lations) significantly improves the performance for some continuous
test functions as soon as the dimension is high [RIC 03]. So it would
be interesting to do the same for binary problems. The first question
is then “How to do that?” in this specific case. More precisely, is
it possible to define a specific algorithm better than the one used in
[RIC 03], that needs a lot of computation. And the second one is of
course “Is it useful’”? Preliminary results seem to show it is not so
obvious.

6.1.1 Definition of a regular distribution

First, let us give a precise definition of what means here “a more
evenly distribution”, or regular distribution. We have S binary posi-
tions {s1,..., $;,...Ssg} to define in the binary search space B . For a given
s; let I;its “influence domain”, defined by

I, ={z,x € B,Vj,j#i,d(z,s;) <d(z,s;)}

where d is the Hamming distance. Actually, we define here a binary
Voronoi tessellation. Let V; be the “volume” of [;, i.e. its number of
elements. The distribution is perfectly regular if all V; have the same
value. However, it is not always possible, so a regular distribution will
simply be one that minimise the variance of the V;, i.e. the quantity
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6.1.2 Building a regular distribution

It is quite easy to write a deterministic algorithm that progressively
builds a regular distribution. The idea is to add the particles one at
a time, and for each bit to try both values 0 and 1, trying to keep the
distances between particles as big as possible. Pseudo-code

s1 = 000...000

For each particle i, from 2 to S

{
For each dimension d, from 1 to D
{

5i(d)=0// Try 0
Compute the distances from s; to the s; with j <1
Compute the mean mp, and the variance vy of these distances
Do the same with s;(d) =

1, and compute the mean m;, and the variance v
If my > mg then s;(d) =1; continue with next d
If m; <mp then s;(d) =0; continue with next d
// Case mip =my
If v <wvp then s;(d) =1 else s;(d) =0;
}

}

Examples

For D =4, S = 3 the algorithm gives

s1 = 0000
sy = 1111
S3 = 0101

The “volumes” of the influence domains are respectively 9, 10, and 9.
There is no way to do better, simply for 2* is not divisible by 3. For
any position z, there exists at least one particle s; so that d(z,s;) <
2. For D = 3, and S = 4, we have 2P/S = 2, and the algorithms
indeed gives a perfectly regular distribution {000,111,010,101}, with
all “volumes” equal to 3:

I, = {000,001,100}
I, = {111,011,110}
I; = {010,011,110}
I, = {101,001,100}
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Random inititiali- | Regular initialisation
sation -+ random ‘“rotation”

Goldberg 80,36 % 80,48 %

Bipolar 90,37 % 90,56 %

Miihlenbein 11,72 % 12,52 %

Zebra3 80,67 % 80,56 %

Quadratic 85,34 % 85,44 %

Multimodal 53,55 % 54,75 %

Mean 67,00 % 67,39 %

Table 8: Influence of a regular initialisation on the success rate. Here the swarm
size is “optimum”, and the improvement is very small

In practice, once you have such a regular distribution, it is a good
idea to build some others, obtained by randomly “rotating” it. You
just have to add the same random binary vector to all the s;. Note
that for adding you have to use the binary algebra, for which
14+1=0.

6.1.3 Result comparison

We now try to compare the result with the classical pure random
initialisation on the one hand, and with randomly rotated regular
distributions on the other hand. It is easier to see the differences
when using small swarms. We use here the “optimal swarm size”, as
computed below in 7.1.2, i.e. S =12 for D = 30, and S = 20 for D = 100.
Table 8 is build as the one in 4.3.2. However here only Derivation 11
with K = 3 has been used. As we can see, with these swarm sizes there
is almost no difference with regular initialisation, just most of the time
a very slight improvement. Also (it is not reported in the table), the
standard deviation of the mean best value is slightly smaller. So,
at least for small dimensions (< 100) it is not really worthwhile to
use a regular distribution. However it would be interesting to check
it in high dimension, for the rate swarm_size/search space volume
becomes quite small.

6.2 When the unit is the tribe

We have always used expressions like “update the memory of the
particle”. However it may be interesting to work at a higher level,
by considering a whole set of particles as an “unit” and by modifying
the memory of this “unit”.
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Let’s call here tribe at time step ¢ the set of the informants of a
particle z;, including itself, i.e. what we have above called its in-
formant group. Note that it is not exactly the same concept that
has been used for a complete adaptive PSO version (precisely called
TRIBES), in which the swarm size and the information links are ju-
diciously modified during the process [ONW 04, CLE 05] . Here,
the meaning is weaker, and the swarm size is still constant. The
very basic principle of a simple PSO can now be symbolicaly written

Ty41 < tribal _memory @ creativity

where “tribal memory” means “the set of the best known positions
by the tribe/informant group”, and “creativity” means “some random-
ness”. Note that this equation is quite important for it summarises
all PSO versions. For example in Derivation 11, a new position of a
given particle is computed by

1. looking for g, the best of the best positions known by the informants of
the particle (make use of the tribal memory)

2. choosing the new position z’ at random “around” g (creativity)

3. if 2/ is better than the best position p known by z, then replace p it by 2’
However, if we work at the tribe level, there are some other ways for
the step 3. In particular, this two ones are quite intuitive

3a. for all best positions p known by the tribe, if 2’ is better than p,
then replace p by z’. It means several memories may be modified.

3b. if p is the worst of the best positions known by the tribe, and if x’ is
better than p, then replace p by z’. It means the modified memory
is not necessarily the one of the current particle.
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7 Appendix for “amatheurs”

A remarkable property of binary PSO is that a lot of behaviours can
be modelled just by carefully counting some well chosen configura-
tions, in order to compute some probabilities. It is then possible to
give some practical formulas for the main parameters, namely the
swarm size, the number of informants of a particle and the number
of bits to switch at each time step.

7.1 Swarm size
7.1.1 A spherical search space

In a classical (discrete) Euclidean space, the number of points at
distance § from g is increasing like 6”. In a binary space with the
Hamming distance (number of bits to switch) it is equal to C¢ (the
number of possibilities to choose § elements amongst D, which gives
a well known bell shape curve, centered on D/2. In particular there
is just one point at distance D. Like on a sphere of radius D/2, the
number of points at distance ) begins to increase and then decreases.
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7.1.2 Swarm size estimation

Let’s suppose the initialisation is “perfect”, that is to say each particle
has about the same number of positions in the search space that are
closer to it than to the other particles. The search space can then be
seen as a union of “cells”, and each cell contains about 2/S positions.
Let g be a particle, and we are looking around g by switching at most
A bits, as in Derivation 11. The number of positions we can reach
this way is Z?:o C’%. So, in order to be able to reach any position in
the cell, we have to find the smallest “radius” A so that

Zcé>£ (1)
b=g

Although there is no simple formula to derive A from 1, it is always
possible to numerically compute it when D and S are given, and to
tabulate some curves A vs S. The good news is that as soon as § is
greater than a given value (which is a priori depending on D), this
radius decreases very slowly when S increases.

So, as we can see on figure 9, the radius is almost the same (about 10
for D = 30, and about 40 for D = 100) for any swarm size between 20
and 50. It means that for for a given “search effort” of T evaluations,
using S = 20 orS = 50 will give more or less the same success rate, and
more or less the same mean number of evaluations for the successful
runs. Actually, because of the way PSO works, it is better to have as
many iterations as possible, for the information has then more time to
be spread between particles [CLE 05] . As this number of iterations
is equal to T'/S, it means the smallest “acceptable” S value is the best
one.

It is then possible to build a simplified formula giving a swarm size
that is good for a large range of dimensions. In order to do that, for
each D the curve A vs S is interpolated by a three times differentiable
one, and we are looking for the Sy value that minimise the curvature
radius. After that, a good estimation of the wanted S,,;, value can
be performed in three steps:

1. find the point O = (Sp, A (Sp)) where the osculator circle has the smallest
radius R

2. find the center C of this circle. Let S’ be its first coordinate

3. define S, by Spin = INT (S’ + 0.5), i.e. the nearest integer value.

According to the shape of the curve, we could say it is indeed a point
where the “fat” part begins.
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First, let us find a differentiable function that approximates Z&A:o ce,.
It is quite easy by using a logistic curve, for example

2D
H(A)= 1+ e (A-BD)

By solving the equation H (A) = 2P /S we find a formula for A

In(S—-1)

A(S)=pD - (2)

The 7 coefficient can be tabulated, but it is easier to use a good
approximation given by

__n
7T 1y Dn
with v; = 4.5 and v, = 0.54.
We have then A’ (S) = —ﬁ, A" (S) = 7(571_1)2, and A" (S) = —ﬁ.

Now, for A”is always positive, the radius curvature is given by the
classical formula

(1 + A/2)3/2

A//

We are looking for the S value for which it is minimum. The equation
R =0 gives us

3A"— (14+A?)A"A” =0
and we finally have to solve
3y (S-1)°+2(S—-1)*+2=0
Let us define X = (S —1)> and p = —2/3y . Then the equation becomes

X3 4+ pX +p=0. By applying the Cardan formula, we find that the
real solution is

sl p o [p* p* sl p  [p* p?
=1 _£ LAl NN R
So=1+ \/2+ 4*27+\/2 T

and the value we are looking for is then

1 A/Q
Spuin = INT (50 —a o 0.5)
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Figure 9: Maximum radius. If the distribution of the particle is enough evenly,
any point of the search space is at a distance of the nearest particle at most
equal to this radius. As expected, this radius decreases when the swarm size
increases, but very slowly as soon as the swarm is big enough. These curves can
be approximated by a differentiable model

As A’ is negative and A" positive, it is as expected greater than Sj.
For D = 30, we find Sy = 2.41, and S,,;, = 12. For D = 100, Sy = 2.56, and
Smin == 21. The whole process is quite complicated but now we have a
theoretical formula, we can find some far more simple empirical ones
that give similar values, at least for not too high dimension (typically
smaller than 500), for example

Spmin = INT (9.5 + 0.124 (D — 9)) (3)

Using such “optimal” swarm sizes usually slightly increases the ef-
fectiveness, particularly when 7T is too small to obtain a high success
rate. For example, for the 30D Zebra3 function and 7" = 15000 the suc-
cess rate is 29% with S = 12, as it is 22% with S = 35 (with Derivation
11).

7.2 Performance curve model

Let’s try to model the performance curves "Success rate vs Maximum
number of evaluations". Let s(7T') be such a curve. It may be easier to
understand what happens if we suppose each success rate is estimated
by running N times the algorithm (on a given problem). So Ns(T) is
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the number of successful runs, that is to say the number of runs that
have found a solution after at most T evaluations.

Now let’s consider N runs with a greater maximum evaluation number
T + AT. It is quite obvious there are at least Ns(T) successful ones
(we neglect here the probabilistic fluctuations), found during the first
T evaluations. What about the N — Ns(T) other ones? They still
have AT evaluations to possibly find a solution. It seems reasonable
to apply to them a success rate proportional to the previous one,
i.e. us(T)AT. So, finally, the total number of successful runs is
Ns(T)+ps(T)(N — Ns(T)) AT . By dividing by N, we obtain the new
success rate:

s(T+ AT) =5 (T) + s (T) (1 — 5 (T)) AT (4)

This is a classical iterative equation for a logistic curve. The s function

is given by:

_ 1 T

(6% = (m — 1) etto (5)
s(T) = L

TraenT
Theoretically, if the model was perfect, we could take 7Ty, = 1 and
then, if there is just one solution, s (7y) = 2P (i.e. the probability to
find the solution just by chance at the very beginning). However, of
course, the model is not perfect, and it doesn’t match then very well
(far too pessimistic), so it is better to "forget" the first equation, and
to consider there are two independent parameters, @ and p(another
way, which is equivalent and might be more intuitive, is to start from
a “reasonable” T, value, say 1000, to consider that s (Tp) is a parameter,
and to compute «). Then, by running the algorithm N times with
two different maximum number of evaluations 7} and 7, we obtain
two success rate estimations s (77)and s (72). From then, it is easy to
compute the two parameters, by solving the system

{S(Tl) - m
s(y) = 1y
We find
1/s(T1)—1
IS T;T1 ln(ljng;;A)
a = 73(:1&)*1 et
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Figure 10: Model for performance curves for the Multimodal problem. Thanks
to such a model, it is something possible to estimate how many evaluations
will be needed to reach a given success rate, just after having ran the optimiser
with two different small maximum numbers of evaluation (see Derivation 7).
However it does not work for all strategies (see Derivation 11)

For example, we can try this model for some strategies on the Multi-
modal 100D problem. As we can see on figure 10, with just two points
rapidly computed with quite small numbers of evaluations, we some-
times can have a pretty good idea of the whole performance curve
(see Model 7 S35 K2). However with some less efficient strategies
the adequacy is not that good (see Model 11 S35 K2), for the model
tends here to be too optimistic for high number of evaluations. So it
still has to be refined.

However, it is always possible to adjust quite well the sigmoid curve
to the real one by directly carefully choosing the two parameters «
and p. After all, it is just a 2D optimisation problem! As we can
see from the equations 5, the p parameter is the most important:
it characterizes how efficient is the algorithm on the given problem.
For example, for the basic strategies, these characteristic values are
respectively 0 for Derivation 0, which is completely unefficient, 0.0009
for Derivation 7, 0.0002 for Derivation 11, and 0.004 for Derivation
100, which is largely the best one.
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7.3 Probability distributions
7.3.1 Switching bits

Let g be a position (a D-vector). Let’s suppose we are looking at
random around g, more or less like in Derivation 11. It means:

1. choose a maximum number of bits to switch, A in [1, D]

2. choose at random (uniform distribution) a given number k of bits to
switch, k in [1, A] .Note that for Derivation 11, & is in [2, A].

3. choose k times at random (uniform distribution) a bit in g, and switch it

The question is: what is the probability p (D, J, A) to find a point that
is at the Hamming distance § of g7 Or, in other words, what is the
probability distribution around ¢? Let’s see what happens for each
possible k& value. Obviously, if £ < ¢ there is no way to find such
a point. For greater k values, we have to compute the number of
surjections s (k,0) from a set with k elements to a set with § elements.
For § = 1, this number is of course just 1, and for other values, we
have the classical formula

s(k,0) =6 (s(k—1,8)+s(k,d—1))

and we can then progressively compute all these numbers of surjec-
tions. Now, for a given D and a given §, there are C possible combina-
tions. For a given k we consider all possible § values, and, at last, each
k value has the probability 1/A to be chosen. So, finally, we obtain our
probability by the formula

S s(k8)CY

A
k:Z (k,i) Ch

p(D,5,A) =

This quantity tends towards 1/A when A/D tends towards zero. So
the resulting distribution tends to be uniform, although it is not for
small D values, as shown on figure 11.

Intuitively, it could seem better to use for k£ a bell-shape distribution
in order to privilegiate small § values, for example something like

1/8

A
Zl/i

proba (k =0) = (6)
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Figure 11: Probability to find a position at distance dwhen the “radius” A is
equal to3, and whith & € {1,A}. It tends to be uniform when the dimension
increases

D=10
— = D=30
—a— D=100
= D=30 bell shape k

Distance from g

Figure 12: The first three curves show the probability to find a position at
distance dwhen the ‘radius” A is equal to3, and withk € {2, A} as in Derivation
11. The probability to switch just one bit is not null, but very low. The last

curve is obtained when the k distribution is a bell-shape one given by equation
?9
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Some preliminary tests are not really convincing. Also, Derivation
11 works pretty well with a distribution that gives on the contrary a
very low weight to positions at distance 1 (see figure 12). However,
the “search power”, as defined below, is a bit higher, so it may be
worthy to more carefully study this approach.

7.4 Informant group size
7.4.1 Exact formula

‘We have seen that each particle generates at random K —1 information
links. It is perfectly possible that two or more of these links point
towards the same particle. So, an interesting question is to estimate
how many information links a given particle receives, or, in other
words, what is the mean size of its informant group.

Let’s call A this particle. When another particle B generates its links,
the probability that none of them reachs A is simply ((S —1)/5). And
of course on the contrary the probability that B does inform A is the
complement to 1 of this value. Now, if the informant group size is
exactly L (not taking A into account), it means that L other particles
do inform A and that the S — 1 — L other don’t. There are 0571 such
possibilities. So, finally, the probability that exactly L other particles
inform A is given by

L
S_1 K-1 S_1 (K-1)(S—1-L)
n (9K, L) =C§_, (1 - (S) ) (S) (7)

The mean value we are looking for is then

S—1

L=> n(S K,L) (8)

L=0

We just have to add 1 for the complete informant group that include
the particle itself.

7.4.2 Example

We can apply these formulas to an example with say S = 35. For the three
curves on 13 (on the left) the mean values are respectively 1.9 for K = 3, 7.8 for
K =10, and 21.3 for K = S = 35. So, although it could intuitively seem that
these numbers should be more or less equal to S/K, there are always smaller,
even for K = S.
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Figure 13: Informant groupe size for different K values (on the left), and mean
group size (on the right). The swarm size S is equal to 35. As the links are
randomly chosen, even when K = S the mean number of informants of a given
particle is significantly smaller than S

7.4.3 Simplified formula

Formula 8 to find the mean informant group size is a bit complicated.
We can make an approximation by noting that the curves on figure
13 are almost symmetrical, and the maximum value for 7 (S, K, L) is

then reached on a L value just a bit smaller than L. We have to solve

L=MAX] (Cé_l (1- u)LuS_l_L)

As the curve is (almost) symmetrical we can write for any p value
smaller than L

Cg—l (1 _ U)p uS*l*P — C;L_;P (1 _ U)QL—p uS7172L+P

<

In particular this must be true for p = L — 1. The idea is of course
here that if L is the point where the maximum is reached, the function

value must be the same for L—1 and for L+1. It gives us immediately

E(Z+1) iy
<51E)(51E+1>_< )
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D [ 1 ] 2 3 Total

10 0.037 | 0.0427 | 0.002000 | 0.048
30 0.011 | 0.0086 | 0.000074 | 0.012
100 0.003 | 0.0008 | 0.000002 | 0.003

30, bell-shape | 0.018 | 0.0006 | 0.000039 | 0.019
30, uniform 0.011 | 0.0007 | 0.000082 | 0.012

Table 9: Some search powers. For a given dimension (here 30) it seems a bell
shape distribution should be better. However in practice it is not always the
case, probably for with such a distribution the swarm tends to be trapped in a
local optimum

‘We now just have to solve a second degree equation, and we find

= ()

o
a = 1—«

b = 142a(S-1) 1+ (9)
c = —a(S-1)5

L

= L (bt VI dao)

Now the formula?7 is itself quite complicated, so finding its maximum

is not so easy. Let’s define u = (%)Kﬁl.

As we can see on figure 13, this simplified formula gives a result that
is almost perfect.

7.5 Search power

We can define a partial power search (for one particle) as the prod-
uct p (D, 9, A) (I/C’,‘%) i.e. “probability to reach a position at distance
0”x”probability for a position to be a that distance”. The total power
search is then the sum over all § values:

A

w1 (D7A):Zp(D’65A)/C%
6=1

For S particles, we find

ws (D,A) =1— (1 —w; (D,A))°

i.e. simply w; (D,A)S if wy (D, A) is small enough.
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100D multimedal problem. Swarm diameter evolutior
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Figure 14: Swarm diameter evolution. When the process converges the swarm
tends to “collapse”, as intuitively expected. If there is no convergence it tends
to cover all the search space, that is to say the diameter tends towards D

7.6 Why In(D)?

7.6.1 Swarm diameter

The precise definition is “the maximum distance between any pair of
particles”. Actually we can consider two diameters: the one of the
memory-swarm, that is to say the swarm of best previous positions
[CLE 05], and the one of the current swarm. We are mainly interested
in this last one, for we will use it to define an adaptive A radius. Let
> be the swarm. So the formula for the diameter © at time t is

@(t):MAXx c v
e X

(h(2,2))

where h (z,2') is the Hamming distance between the positions z and

z'.

As the swarm tends to converge, its diameter decreases, as we can
see on figure 14when Derivation 11 is used. On the same figure there
is also the evolution given by Derivation 0. Here the process does
not converge at all: the swarm is more and more “spread” all over
the search space, and the diameter tends towards the dimension of
the binary problem, i.e. the length of the bit string.
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Figure 15: Number of pivots evolution. No matter the process converges or not,
it has the same random evolution (left figure). However, as intuitively expected,
it decreases when the mean informant group size increases (right figure). The
probabilistic model gives a quite good approximation, except that it should be
refined for high K values

7.6.2 Number of pivots

Let’s call here pivot a particle which is the best informant for another
one (at a given time step). During the process the number of pivots
w (t) can easily be computed at each iteration. Intuitively it should
decrease whent the mean informant group size increases, and this is
indeed true. What is not so intuitive is that it does not depend on
the fact that the process convergences or not, as we can see on figure
15 (left part).

Now, during a process we can compute the mean number of pivots,
and see how it is modified for different K values on a given prob-
lem. Let us call & (S, K) this number. A very simplified theoretical
approach tell us that is does not depend on the problem, and should
be given by something like
S S—-L 1S S-L
& (S, K) = 2<E+ 5 >_2 =+ (10)

This formula is obtained just by evaluating a minimum number, a
maximum number, and by computing the mean. As we can see on
figure 15 (right part) it gives a curve that fits quite well with the real
one.

7.6.3 Choosing the A radius

For Derivation 11 we used a constant “radius” that is to say a constant
maximum number of bits to switch. The formula given is A = In (D).
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However this is just an empirical oversimplification of a more exact
formula, and valid only if the swarm size is near of the optimum. A
better formula needs to continuously (i.e. at least at each iteration
t) compute the swarm diameter O (¢) and the number of pivots w ().
It is not very difficult but it spends some computing time.

If ©(t) = D (the maximum possible value) the search space is com-
pletely “covered” in probability if the DNPP (Distribution on Next
Possible Positions) around each pivot has a radius equal to INT (1 + D/w (t))
(the “1” is here because w (t) is usually not an exact divisor of D).
More generally, the hypothesis is that at each time step the solu-
tion point is still inside (or very near of) the convex envelope de-
fined by the swarm. And then the radius has just to be equal to
INT (140 (t) /w(t)). It appears that setting A(which we will now
write A (¢)) to this value indeed gives a better algorithm, and it is
really worthwhile to try exactly this formula. However, we may have
sometimes A (t) =1 or A(t) = 2, which are quite bad for some prob-
lems, even near of the end of the process. So, a more robust compro-
mise is to use the following formula:

A(t) = MAX (3,1+ 0 (t) Jw () (11)

Note that the algorithm can now clearly be seen as an adaptive one.
As we can see on figure 16 it is significantly better for the Multimodal
problem than the one with the constant A=In (D). Also, as for this last
one the best K value was 2, it is now 3, as for most of problems. For
the other problems we have studied here there is no real difference.

7.6.4 Saved computational time estimate

Let us suppose the run converges. The idea is that after a while
all best known positions are very near of the solution, and all cur-
rent positions are very near of these ones. For example, for Zebra3
(or Goldberg, Bipolar, Miihlenbein) let us call a sequence a k-bits
substring that is used to progressively compute the fitness. The hy-
pothesis is then that the best common known positions have just one
“bad” sequence, and the current positions have just two. Let n be the
total number of sequences. When examinating each sequence of the
current position, from 1 to n, the evaluation can be stopped as soon
as a bad one is found, for it is then already sure that the current po-
sition is not better than the previous best one . We have to compute
the elementary probability of the following event:

e the sequence s is bad
e all sequences 1 to s — 1 are good (for we haven’t stopped before)

e we know there are two bad sequences
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Figure 16: Improvement with an adaptive A radius. For the multimodal prob-
lem results are far better (Derivation 11g) than with the constant one (Deriva-
tion 11). For the five other problems (not shown here) they are similar. Note
that the best K value for Derivation 11g is now the “standard” one 3
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This probability is given by the formula

In such a case, the rate
of saved time is “—*. Of course, if s = n, no time can be saved. Finally
the total rate of saved time is given by summing over all possible s
values

o(n) = m Z (n—s)? = 2n3; ! (12)

For Zebra3, whe have n = D/3 = 10, which gives o (10) ~ 0.63. For
Miihlenbein, we find o (6) ~ 0.61. Both values are quite near of the
real ones, as we can see on figure 8 (the averages over the last 20 runs
are 0.626 and 0.634).

7.7 The fundamental hypothesis

The underlying hypothesis of PSO is that “nearer is better”. If x and
y are two positions in the search space, and if z*is a solution point
(i. e. the function f to minimise reachs its minimum in z*), then the
hypothesis is the following:

distance (z,z*) < distance (y,z") = f (z) < f (y) (13)

Note that this hypothesis is also the fundamental one for almost any
iterative optimisation algorithm. The more it is true, the more the
algorithm can be efficient. For example, if it is always true, for any
z and y, then even a simple pseudo-gradient algorithm would easily
find the solution, for it simply means there is no local optima and
not “flat” areas. For binary optimisation, as the search space is finite
(2P elements) it is theoretically easy to compute the “truth value”
of this hypothesis, by checking all pairs (z,y). If H is the number of
pairs that respect the hypothesis 13, then the truth value is simply
the rate H/ (2P~1 (2P —1)).

In practice, of course, as soon as the dimension is high, one can only
have an estimation by sampling at random a given rate of such pairs,
say 10%.

Even like that, dimension 30 is far too much for my small computer,
so I did it for dimension 12 (or 10 for Muhlenbein, for it has to
be a multiple of 5). Results are given in table 10. It appears that
this truth value is a better estimation of the practical difficulty for
iterative algorithms like PSO than the theoretical one (see below
the definition), at least for the simplest form, with just one particle.
Therefore it was tempting to define a Trap function that does not
respect the hypothesis, in order to deceive the algorithm.
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7.7.1 Theoretical difficulty

It is just the probability to find a solution by chance ([BAR 03]).
As this value is usually very small (for example 27!? for Goldberg
12D), comparisons are easier to do by using the opposite of the log-
arithm ([CLE 05]) . So, for example, for Goldberg 12D the difficulty
is —in (2_12) = 12In (2) = 3.6. For Bipolar 12D, which has 4 solutions,
the difficulty is 12in (2) — In (4) = 3.0.

7.7.2 Trap function

The idea is to design a test function that does not respect at all the
fundamental hypothesis, or as least, as few as possible. Let = be a
position, i.e. a bit string. As previously, |z| denotes the sum of the
bits. Then, the fitness f of our Trap function is defined by

0 i el =0
Jrrap (@) = { 1/ |x| else

For almost all (z,y) pairs ‘“farer is better”. The hypothesis is valid
only for pairs with = or y equal to the solution 000...000. It is easy
to compute that the truth value of the hypothesis is then 1/ (2D — 1).
As expected, all the methods we have seen fail to find the solution
(except, of course, the “hoax” Derivation 0, for it is precisely designed
to easily find the solution 000...000 ).
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Truth value

Success rate Derivation
11, S1 K1 800 evaluations

Theoretical dif-
ficulty

Goldberg 12D 0.15
69% 3.6

Bipolar 12D 0.54
90% 3.0

Zebra3 12D 0.06
46% 3.0

Muhlenbein 10D 0.08
63% 3.6

Trap 12D 0.00024

0% 3.6

Table 10: Truth value of the hypothesis “Nearer is better”. For each function,
the value has been estimated by sampling 10% of all possible pairs of positions.
The truth value estimate the practical difficulty for an iterative algorithm like
PSO, which has nothing to do with the theoretical one
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