
HAL Id: hal-00122799
https://hal.science/hal-00122799

Preprint submitted on 5 Jan 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Confinements and Biases in Particle Swarm
Optimisation

Maurice Clerc

To cite this version:

Maurice Clerc. Confinements and Biases in Particle Swarm Optimisation. 2006. �hal-00122799�

https://hal.science/hal-00122799
https://hal.archives-ouvertes.fr


Confinements and Biases in Particle Swarm Optimisation
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ABSTRACT. All PSO versions do present one or more biases, often in favor of the center of the search space. An important factor that induces such biases is the method  

used to keep  particles inside the search space. We compare here nine methods on a few benchmark functions, and the results suggest another one which is less biased.  

Furthermore this study also suggests how to adaptively modify the search space for each move. Thanks to these two simple modifications the resulting PSO is both more  

robust and more effective.
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1. Introduction

In Particle Swarm Optimisation sometimes a particle tends to leave the search space. Several methods are used to 
prevent this, but they all induce a bias, most of the time in favour of the centre of the search space and also quite often 
in favour of the boundaries. We can see that by progressively "shifting" a few classical benchmark functions and by 
comparing the results, success rate or best mean value, over a given number of runs.  Fortunately not all methods give 
the same biases, so it is possible two combine two of them in order to obtain a less biased one. 

2. Exposing the bias

In [1] C. Monson compare some very different PSO algorithms (i.e. having different velocity update equations) in 
order to see if they are biased and how much. He finds that they all have an origin-seeking bias, more or less important. 

 Here the approach is a bit different. We start from the standard PSO algorithm, as it is given on the Particle Swarm 
Central [2], and we just modify the method that prevents  particles to leave the search space, i.e. the confinement 
method. As we will see, there is usually not just one bias, and not necessarily on the centre of the search space.

Standard PSO

For more details, see the Particle Swarm Central <ref>. In short, this version is very near of the original one, with 
just a few improvements. So, the main features are the following ones:

– constant swarm size, given by the formula S=102sqrt 2D where  D  is the dimension of the 
search space

– neighbourhood redefined at random after each unsuccessful  iteration (i.e.  without  improvement of the best 
solution). In order to do that each particle informs itself and choose at random K others that it will inform. In the 
standard,  K=3 . Note that it does not mean that the neighbourhood of each particle is of size 3. It can take 
any value between 1 (just itself) and S  (the whole swarm).

– For each particle and for each dimension the next move is computed according to the following pseudo-code, 
with the usual notations:

The two last instructions define the confinement method. Let us call it Confinement 0 (Standard) and let us define 
now some others. For simplicity the formulas are given just for dimension 1.
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v t1v t rand0..cpt −x t rand 0..cpgt −xt
x t1 x t v  t1
if x t1xmax then x t1 xmax ; v t10
if x t1xmin then x t1 xmin ; v t10



Confinement -2 (No confinement)

No confinement at all. Of course, it is possible only if the function is defined outside the search space., which is the 
case in the examples below.

Confinement -1 (No confinement + artificial landscape)

Still no confinement, but outside the search space the fitness is defined by a linear increasing function.

Confinement 0 (Standard)

We have already seen the formulas. Here is the diagram.

Confinement 1 (Deterministic Back)

In the following tests we choose =0.5 .

Confinement 2 (Random Back)

Note that the random coefficient is different for each dimension. 

Confinement 3 (Consistent)

Just like Standard, but the velocity is modified so that after clamping we still have 

 x t1 x t v  t1
The confinement is then given by:
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if x t1xmax then x t1 xmax ; v t1− v t1
if x t1xmin then x t1 xmin ; v t1− v t1

if x t1xmax then x t1 xmax ; v t1−rand 0..1v t1
if x t1xmin then x t1 xmin ; v t1−rand 0..1v t1

if x t1xmax then f x  f xmaxx t1−xmax

if x t1xmin then f x  f xminxmin−x t1

Current pos ition

Theoretical 
new pos ition

New pos ition

New velocity



For the following confinements (4, 5, and 6) the velocity is modified so that when applied to the position we are 
sure that the new position is inside the search space.

Confinement 4 (Hyperbolic)

Confinement 5 (Relativity Like)

Just for fun, and based on the famous formula that adds two velocities according to a maximum velocity vmax :

Note that this operation is not commutative. However preliminary tests seem to show that the six possibilities give 
equivalent results.
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if x t1xmax then x t1 xmax ; v t1 xmax−x t 
if x t1xmin then x t1 xmin ; v t1 xmin−x t 

if v t10thenv t1
v t1

1∣ v  t1
xmax−x t ∣

else v t1
v t1

1∣ v t1
x t −xmin

∣

addv1 ,v1=
v1v2

1
v1v2

vmax
2

v t1add v t ,add rand0..cpt −x t,rand 0..cpg t −x t 



Confinement 6 (Random Forth)

This one is coming from [3]

Results

We now try these methods on classical functions:

All search spaces are defined so that the solution is right on the centre, even for Rosenbrock. When the success rate 
(over 100 runs) is not null, it is given. If it is null, the mean best value is given: the smaller the better. 
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if v t1x t xmax then v t1rand0..xmax−x t 
if v t1x t xmin then v t1rand0..x t−xmin

Standard

Parabola/Sphere 10% 4% 26% 6% 16%
30% 20% 34% 44% 36%
34,2 36,2 35,0 34,8 30,8
59,6 60,1 58,4 54,5 59,4

No 
confinement

No 
confinement 
+ artificial 
landscape

Deterministic 
back =0.5

Random 
back 

Griewank
Rosenbrock
Rastrigin

Table 2: Offset = 0%. Results with ten confinements methods

Consistent Hyperbolic Relativity like Random forth

Parabola/Sphere 16% 95% 72% 12% 86%
38% 53% 40% 38% 42%
39,6 30,2 24,9 32,1 32,7
56,9 39,7 40,7 56,7 46,8

Hybrid 
Hyperbolic+
Random 
back

Griewank
Rosenbrock
Rastrigin

Table 1: Benchmark functions

Search space

Parabola/Sphere 9000
9000

40000
40000

Max. 
number 
of eval.

[-100,100]30

Griewank [-100,100]30

Rosenbrock [-9,11]30

Rastrigin [-10,10]30



Table  2 show  the  result  (also  for  a  hybrid  method,  which  is  explained  below).  As  we can  see  "Hyperbolic" 
confinement is extremely good. Too good to be honest, in fact, so we will now try with a quite big offset of 90%. It 
means, for example, that the solution for Griewank is on (90, 90,...,90).

Now results are quite different. In particular "no confinement" with or without artificial landscape is not a good 
choice.  The two best ones are now "Random back" confinement, and "Consistent" confinement.  We can also already 
see that the bias is not always in favour of the centre of the search space. We now more carefully study what happens 
when progressively modifying  the offset,  from 0% to 100%.  We have do that  for  all  quite  "contrasted"   pairs  of 
confinement methods, but  (Hyperbolic, Random back) is the most interesting one.  Results are on figures 1 to 4.

These figures also show the results obtained with a "hybrid" method, i.e. a combination of the two other ones, and 
with an adaptive one, as it is explained below.

3. Reducing the bias

Principle of the hybrid method

Each particle, at each time step chooses at random (50/50) between two confinement methods. When using Random 
Back and Hyperbolic, we find the curves shown on figures 1 to 4. 

Comments on results

All confinements methods have the same kind of bias for Rosenbrock: worse near of the centre of the search space. 
So, of course, the hybrid one does the same. However for the other problems, it does better.  For example Random 
Back is good for Rastrigin and bad for Parabola/Sphere,  as it  is the contrary for Hyperbolic.  So the hybrid gives 
acceptable results for all functions. It is far more robust than the other "single" methods.

Conclusion and future work

Studying in detail some biases of several confinement methods in Particle Swarm Optimisation suggested us to use 
a  hybrid  one,  more  robust.  This  modification  of  the  standard  PSO give  really  better  results,  particularly  for 
difficult  functions.   However  standard  PSO by  itself  is  not  the  best  on  the  market  and,  anyway,  it  is  still  a 
parametric version. So the idea is now to include this modification in the parameter free PSO called TRIBES [4]. 
As TRIBES already uses several strategies it should be easy to add new ones, or to replace some of them by new 
ones. 

DRAFT 2006-03-12

 Standard

Parabola/Sphere 0,01 0,02 25% 4% 25%
4% 12% 15% 48% 50%

28,6 34,9 25,7 23,0 23,9
81,7 64,7 28,0 38,2 37,8

No 
confinement

No 
confinement 
+ artificial 
landscape

Deterministic 
back =0.5

Random 
back 

Griewank
Rosenbrock
Rastrigin

Table 3: Offset=90%. Results with ten confinements methods

Consistent Hyperbolic Relativity like Random forth

Parabola/Sphere 32% 59% 50% 32% 74%
42% 27% 35% 18% 36%
24,0 23,1 22,0 23,7 23,4
34,7 302,1 235,1 30,1 96,5

Hybrid 
Hyperbolic+
Random 
back

Griewank
Rosenbrock
Rastrigin



References

[1] C. K. Monson and K. D. Seppi, "Exposing Origin-Seeking Bias in PSO," presented at GECCO'05, Washington, DC, USA, 2005,  
pp. 241-248.

[2] Particle Swarm Central, http://www.particleswarm.info
[3] X.-F. Xie, W.-J. Zhang, and Z.-L. Yang, "Varying the Topology and the Probability of Adding Perturbations in Dissipative 

Particle Swarm Optimisation," submitted at GECCO 2006.
[4] M. Clerc, Particle Swarm Optimization: ISTE (International Scientific and Technical Encyclopedia), 2006, translated from: M. 

Clerc, L'optimisation par essaims particulaires. Versions paramétriques et adaptatives: Hermès Science, 2005.

DRAFT 2006-03-12



DRAFT 2006-03-12

Illustration 1: Parabola/Sphere - Success rate versus (diagonal) offset
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Illustration 2: Griewank - Success rate versus offset
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Illustration 3: Rosenbrock - Best mean valus vs offset (the smaller the better)
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Illustration 4: Rastrigin - Best mean value vs offset (the smaller the better)
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