
HAL Id: hal-00122749
https://hal.science/hal-00122749v1

Submitted on 8 Jan 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time Series Forecasting: Obtaining Long Term Trends
with Self-Organizing Maps

Geoffroy Simon, Amaury Lendasse, Marie Cottrell, Jean-Claude Fort, Michel
Verleysen

To cite this version:
Geoffroy Simon, Amaury Lendasse, Marie Cottrell, Jean-Claude Fort, Michel Verleysen. Time Series
Forecasting: Obtaining Long Term Trends with Self-Organizing Maps. Pattern Recognition Letters,
2005, 26 n° 12, pp.1795-1808. �10.1016/j.patrec.2005.03.002�. �hal-00122749�

https://hal.science/hal-00122749v1
https://hal.archives-ouvertes.fr

ha
l-

00
12

27
49

, v
er

si
on

 1
 -

 8
 J

an
 2

00
7

Time Series Forecasting: Obtaining Long Term Trends with

Self-Organizing Maps

G. Simona ∗, A. Lendasseb, M. Cottrellc, J.-C. Fortdc and M. Verleysenac†

aMachine Learning Group - DICE - Université catholique de Louvain
Place du Levant 3, B-1348 Louvain-la-Neuve, Belgium

bHelsinki University of Technology - Laboratory of Computer and Information Science
Neural Networks Research Centre
P.O. Box 5400, FIN-02015 HUT, FINLAND

cSAMOS-MATISSE, UMR CNRS 8595, Université Paris I - Panthéon Sorbonne
Rue de Tolbiac 90, F-75634 Paris Cedex 13, France

dLab. Statistiques et Probabilités, CNRS C55830, Université Paul Sabatier Toulouse 3 Route de
Narbonne 118, F-31062 Toulouse Cedex, France

Kohonen self-organisation maps are a well know classification tool, commonly used in a wide variety of problems,

but with limited applications in time series forecasting context. In this paper, we propose a forecasting method

specifically designed for multi-dimensional long-term trends prediction, with a double application of the Kohonen

algorithm. Practical applications of the method are also presented.

1. Introduction

Time series forecasting is a problem encoun-
tered in many fields of applications, as finance
(returns, stock markets), hydrology (river floods),
engineering (electrical consumption), etc. Many
methods designed for time series forecasting per-
form well (depending on the complexity of the
problem) on a rather short-term horizon but are
rather poor on a longer-term one. This is due to
the fact that these methods are usually designed
to optimize the performance at short term, their
use at longer term being not optimized. Further-
more, they generally carry out the prediction of
a single value while the real problem sometimes
requires predicting a vector of future values in
one step. For example, in the case of some a pri-
ori known periodicity, it could be interesting to
predict all values for a period as a whole. But
forecasting a vector requires either more complex

∗G. Simon is funded by the Belgian F.R.I.A.
†M. Verleysen is Senior Research Associate of the Belgian
F.N.R.S.

models (with potential loss of performance for
some of the vector components) or many distinct
single value predicting models (with potential loss
of the correlation information between the various
values). Methods able to forecast a whole vector
with the same precision for each of its components
are thus of great interest.

While enlarging the prediction horizon is of
course of primary interest for practitioners, there
is of course some limit to the accuracy that can
be expected for a long-term forecast. The limita-
tion is due to the availability of the information
itself, and not to possible limitations of the fore-
casting methods. Indeed, there is no doubt that,
whatever forecasting method is used, predicting
at long term (i.e. many time steps in advance) is
more difficult that predicting at short term, be-
cause of the missing information in the unknown
future time steps (those between the last known
value and the one to predict). At some term, all
prediction methods will thus fail. The purpose
of the method presented in this paper is not to

1

2

enlarge the time horizon for which accurate pre-
dictions could be expected, but rather to enlarge
the horizon for which we can have insights about
the future evolution of the series. By insights, we
mean some information of interest to the prac-
titioner, even if it does not mean accurate pre-
dictions. For example, are there bounds on the
future values ? What can we expect in average ?
Are confidence intervals on future values large or
narrow ?

Predicting many steps in advance could be re-
alized in a straightforward way, by subsampling
the known sequence, then using any short-term
prediction method. However, in this case, the
loss of information (used for the forecast) is ob-
viously even higher, due to the lower resolution
of the known sequence. Furthermore, such so-
lution does not allow in a general way to intro-
duce a stochastic aspect to the method, which
is a key issue in the proposed method. Indeed,
to get insights about the future evolution of a se-
ries through some statistics (expected mean, vari-
ance, confidence intervals, quartiles, etc.), sev-
eral predictions should be made in order to ex-
tract such statistics. The predictions should dif-
fer; a stochastic prediction method is able to gen-
erate several forecasts by repeated Monte-Carlo
runs. In the method presented in this paper, the
stochastic character of the method results from
the use of random draws on a probability law.

Another attractive aspect of the method pre-
sented in this paper is that it can be used to pre-
dict scalar values or vectors, with the same ex-
pected precision for each component in the case
of vector prediction. Having at disposal a time se-
ries of values x(t) with 1 ≤ t ≤ n, the prediction
of a vector can be defined as follows :

[x(t+1), . . . , x(t+d)] = f(x(t), . . . , x(t−p+1))+εt

(1)

where d is the size of the vector to be predicted,
f is the data generating process, p is the num-
ber of past values that influence the future values
and εt is a centred noise vector. The past val-
ues are gathered in a p-dimensional vector called
regressor.

The knowledge of n values of the time series

(with n >> p and n >> d) means that relation
(1) is known for many (n−p−d+1) time steps in
the past. The modeling problem then becomes to
estimate a function f that models correctly the
time series for the whole set of past regressors.

The idea of the method is to segment the space
of p-dimensional regressors. This segmentation
can be seen as a way to make possible a local mod-
eling in each segment. This part of the method is
achieved using the Self-Organizing Map (SOM) [
1]. The prototypes obtained for each class model
locally the regressors of the corresponding class.
Furthermore, in order to take into account tem-
poral dependences in the series, deformation re-
gressors are built. Those vectors are constructed
as the differences between two consecutive regres-
sors. The set of regressor deformations can also
be segmented using the SOM. Once those two
spaces are segmented and their dependences char-
acterized, simulations can be performed. Using a
kind of Monte-Carlo procedure to repeat the sim-
ulations, it is then possible to estimate the distri-
bution of these simulations and to forecast global
trends of the time series at long term.

Though we could have chosen some other clas-
sical vector quantization (VQ) method as only the
clustering property is of interest here, the choice
of the SOM tool to perform the segmentation of
the two spaces is justified by the fact that SOM
are efficient and fast compared to other VQ meth-
ods with a limited complexity [2] and that they
provide an intuitive and helpful graphical repre-
sentation.

In the following of this paper, we first recall
some basic concepts about the SOM classification
tool. Then we introduce the proposed forecasting
method, the double vector quantization, for scalar
time series and then for vector ones. Next we
present some experimental results for both scalar
and vector forecastings. A proof of the method
stability is given in appendix.

2. The Kohonen Self-Organizing Maps

The Self-Organizing Maps (SOM), developed
by Teuvo Kohonen in the 80’s [1], has now be-
come a well-known tool, with established prop-
erties [3], [4]. Self-Organizing Maps have been

3

commonly used since their first description in a
wide variety of problems, as classification, feature
extraction, pattern recognition and other related
applications. As shown in a few previous works [
5], [6], [7], [8], [9], [10], the SOM may also be
used to forecast time series at short term.

The Kohonen Self-Organizing Maps (SOM)
can be defined as an unsupervised classifica-
tion algorithm from the artificial neural network
paradigm. Any run of this algorithm results in a
set, with a priori fixed size, of prototypes. Each
one of those prototypes is a vector of the same di-
mension as the input space. Furthermore, phys-
ical neighbourhood relation links the prototypes.
Due to this neighbourhood relation, we can eas-
ily graphically represent the prototypes in a 1- or
2-dimensional grid.

After the learning stage each prototype repre-
sents a subset of the initial input set in which
the inputs share some similar features. Using
Voronoi’s terminology, the prototype corresponds
to a centroid of a region or zone, each zone be-
ing one of the classes obtained by the algorithm.
The SOM thus realizes a vector quantization of
the input space (a Voronoi tessellation) that re-
spects the original distribution of the inputs. Fur-
thermore, a second property of the SOM is that
the resulting prototypes are ordered according to
their location in the input space. Similar vec-
tors in the input space are associated either to
the same prototype (as in classical VQ) or to
two prototypes that are neighbours on the grid.
This last property, known as the topology preser-
vation, does not hold for other standard vector
quantization methods like competitive learning.

The ordered prototypes of a SOM can easily be
represented graphically, allowing a more intuitive
interpretation: the 1- or 2-dimensional grid can
be viewed as a 1- or 2-dimensional space where
the inputs are projected by the SOM algorithm,
even if, in fact, the inputs are rather projected on
the prototypes themselves (with some interpola-
tion if needed in the continuous case). This pro-
jection operation for some specific input is pro-
ceeded by determining the nearest prototype with
respect to some distance metric (usually the Eu-
clidian distance).

3. The double quantization method

The method described here aims to forecast
long-term trends for a time series evolution. It
is based on the SOM algorithm and can be di-
vided into two stages: the characterization and
the forecasting. The characterization stage can
be viewed as the learning, while the forecasting
can be viewed as the use of a model in a general-
ization procedure.

For the sake of simplicity, the method is first
presented for scalar time series prediction (i.e.
d = 1 in (1)) and then detailed later on for vector
forecasting. Examples of the method application
to scalar and vector time series will be provided
in section 4.

3.1. Method description: characterization

Though the determination of an optimal regres-
sor in time series forecasting (at least in a non-
linear prediction case) is an interesting and open
question [11], it is considered here that the opti-
mal, or at least an adequate, regressor of the time
series is known. Classically, the regressor can
for example be chosen according to some statisti-
cal resampling (cross-validation, bootstrap, etc.)
procedure.

As for many other time series analysis methods,
conversion of the inputs into regressors leads to
n− p + 1 vectors in a p-dimensional space, where
p is the regressor size and n the number of values
at our disposal in the time series. The resulting
regressors are denoted:

xt
t−p+1 = {x(t), x(t−1), . . . , x(t−p+1)}, (2)

where p ≤ t ≤ n, and x(t) is the original time se-
ries at our disposal with 1 ≤ t ≤ n. In the above
xt

t−p+1 notation, the subscript index denotes the
first temporal value of the vector, while the su-
perscript index denotes its last temporal value.

The obtained vectors xt
t−p+1 are then manip-

ulated and the so-called deformations yt
t−p+1 are

created according to:

yt
t−p+1 = xt+1

t−p+2 − xt
t−p+1. (3)

Note that, by definition, each yt
t−p+1 is associated

to one of the xt
t−p+1. In order to highlight this

link, the same indices have been used.

4

Putting all yt
t−p+1 together in chronological or-

der forms another time series of vectors, the defor-
mations series in the so-called deformation space
to be opposed to the original space containing the
regressors xt

t−p+1. Of course, there exist n−p de-
formations of dimension p.

The SOM algorithm can then be applied to
each one of these two spaces, quantizing both the
original regressors xt

t−p+1 and the deformations
yt

t−p+1 respectively. Note that in practice any
kind of SOM map can be used, but it is assumed
that one-dimensional maps (or strings) are more
adequate in this context.

As a result of the vector quantization by the
SOM on all xt

t−p+1 of the original space, n1 p-
dimensional prototypes x̄i are obtained (1 ≤ i ≤
n1). The clusters associated to x̄i are denoted ci.
The second application of the SOM on all defor-
mations yt

t−p+1 in the deformation space results
in n2 p-dimensional prototypes ȳj, 1 ≤ j ≤ n2.
Similarly the associated clusters are denoted c′j .

To perform the forecasting, more information
is needed than the two sets of prototypes. We
therefore compute a matrix f(ij) based on the
relations between the xt

t−p+1 and the yt
t−p+1 with

respect to their clusters (ci and c′j respectively).
The row fij for a fixed i and 1 ≤ j ≤ n2 is the
conditional probability that yt

t−p+1 belongs to c′j ,
given that xt

t−p+1 belongs to ci. In practice, those
probabilities are estimated by the empirical fre-
quencies:

fij =
#{xt

t−p+1 ∈ ci and yt
t−p+1 ∈ c′j}

#{xt
t−p+1 ∈ ci}

(4)

with 1 ≤ i ≤ n1, 1 ≤ j ≤ n2.
Note that, for a fixed i, elements fij (1 ≤ j ≤

n2) sum to one; this justifies the fact that each
row of the matrix is an (empirically estimated)
probability law. Therefore the matrix will be
called transition matrix in the following.

The computation of this transition matrix com-
pletes the characterization part of the method.

3.2. Method description: forecasting

Once the prototypes in the original and defor-
mation spaces together with the transition matrix
are known, we can forecast a time series evolution
over a rather long-term horizon h (where horizon

1 is defined as the next value t + 1 for time t).
The methodology for such forecasting can be

described as follows. First, consider a time value
x(t) for some time t. The corresponding regressor
is xt

t−p+1. Therefore we can find the associated
prototype in the original space, for example x̄k

(this operation is in fact equivalent to determin-
ing the class ck of xt

t−p+1 in the SOM). We then
look at row k in the transition matrix and ran-
domly choose a deformation prototype ȳl among
the ȳj according to the conditional probability
distribution defined by fkj , 1 ≤ j ≤ n2. The
prediction for time t + 1 is obtained according to
relation (3):

x̂t+1
t−p+2 = xt

t−p+1 + ȳl, (5)

where x̂t+1
t−p+2 is the estimate of the true xt+1

t−p+2

given by our time series prediction model. How-
ever x̂t+1

t−p+2 is in fact a p-dimensional vector, with
components corresponding to times from t−p+2
to t + 1 (see relations (2) and (3)). As in the
scalar case considered here we are only interested
in a single estimate at time t + 1, we extract the
scalar prediction x̂(t + 1) from the p-dimensional
vector x̂t+1

t−p+2.
We can iterate the described procedure, plug-

ging in x̂(t + 1) for x(t) in (2) to compute x̂t+2
t−p+3

by (5) and extracting x̂(t + 2). We then do the
same for x̂(t + 3), x̂(t + 4), . . . , x̂(t + h). This
ends the run of the algorithm to obtain a single
simulation of the series at horizon h.

Next, as the goal of the method is not to per-
form a single long-term simulation, the simula-
tions are repeated to extract trends. Therefore
a Monte-Carlo procedure is used to repeat many
times the whole long-term simulation procedure
at horizon h, as detailed above. As part of the
method (random choice of the deformation ac-
cording to the conditional probability distribu-
tions given by the rows of the transition matrix)
is stochastic, repeating the procedure leads to dif-
ferent simulations. Observing those evolutions al-
lows estimating the simulation distribution and
infer global trends of the time series, as the evolu-
tion of its mean, its variance, confidence intervals,
etc.

It should be emphasized once again that the
double quantization method is not designed to

5

determine a precise estimate for time t + 1 but
is more specifically devoted to the problem of
longterm evolution, which can only be obtained
in terms of trends.

3.3. Generalisation: vector forecasting

Suppose that it is expected to predict vectors
xt+d

t+1 of future values of the times series x(t); xt+d
t+1

is a vector defined as:

xt+d
t+1 = {x(t + d), . . . , x(t + 2), x(t + 1)}, (6)

where d is determined according to a priori knowl-
edge about the series. For example when forecast-
ing an electrical consumption, it could be advan-
tageous to predict all hourly values for one day in
a single step instead of predicting iteratively each
value separately.

As above regressors of this kind of time series
can be constructed according to:

xt
t−p+1 = {xt

t−d+1, x
t−d
t−2d+1, . . . , x

t−p+d
t−p+1}, (7)

where p, for the sake of simplicity, is supposed to
be a multiple of d though this is not compulsory.
The regressor xt

t−p+1 is thus constructed as the
concatenation of d-dimensional vectors from the
past of the time series, as it is the concatenation
of single past values in the scalar case. As the
xt

t−p+1 regressor is composed of p/d vectors of
dimension d, xt

t−p+1 is a p-dimensional vector.
Deformation can be formed here according to:

yt
t−p+1 = xt+d

t−p+d+1 − xt
t−p+1. (8)

Here again, the SOM algorithm can be applied
on both spaces, classifying both the regressors
xt

t−p+1 and the deformations yt
t−p+1 respectively.

We then have n1 prototypes x̄i in the original
space, with 1 ≤ i ≤ n1, associated to classes ci.
In the deformation space, we have n2 prototypes
ȳj, 1 ≤ j ≤ n2, associated to classes c′j .

A transition matrix can be constructed as a
vector generalisation of relation (4):

fij =
#{xt

t−p+1 ∈ ci and yt
t−p+1 ∈ c′j}

#{xt
t−p+1 ∈ ci}

(9)

with 1 ≤ i ≤ n1, 1 ≤ j ≤ n2.
The simulation forecasting procedure can also

be generalised:

• consider the vector input xt
t−d+1 for time t.

The corresponding regressor is xt
t−p+1;

• find the corresponding prototype x̄k;

• choose a deformation prototype ȳl among
the ȳj according to the conditional distri-
bution given by elements fkj of row k;

• forecast x̂t+d
t−p+d+1 as

x̂t+d
t−p+d+1 = xt

t−p+1 + ȳl; (10)

• extract the vector

{x̂(t + 1), x̂(t + 2), . . . , x̂(t + d)}

from the d first columns of x̂t+d
t−p+d+1;

• repeat until horizon h.

For this vector case too, a Monte-Carlo pro-
cedure is used to repeat many times the whole
longterm simulation procedure at horizon h.
Then the simulation distribution and its statistics
can be observed. This information gives trends
for the long term of the time series.

Note that using the SOM to quantize the vec-
tors xt

t−p+1 and yt
t−p+1, the method reaches the

goal of forecasting vectors with the same precision
for each of their components. Indeed each com-
ponent from regressors xt

t−p+1 and yt
t−p+1 has the

same relative weight while the distance between
the considered regressor and prototype is com-
puted in the SOM algorithm. None of the xt

t−p+1

or yt
t−p+1 components have thus a greater impor-

tance in the modification of the prototype weight
during the learning of the SOM.

3.4. Extensions

Two important comments must be done.
First, as illustrated in both examples below,

it is not mandatory (in equations (1), (2), (6),
(7)) to consider all successive values in the re-
gressor; according to the knowledge of the series
or to some validation procedure, it might be in-
teresting to select regressors with adequate, but
not necessarily successive, scalar values or vectors
in the past.

Secondly, the vector case has been illustrated
in the previous section on temporal vectors (see

6

equation (6)). An immediate extension of the
method would be to consider spatial vectors, for
example when several series must be predicted si-
multaneously. The equations in the previous sec-
tion should be modified, but the principle of the
method remains valid.

3.5. Method stability

The predictions obtained by the model de-
scribed in the previous subsections should ide-
ally be confined in the initial space defined by
the learning data set. In that case, the series of
predicted values yt

t−p+1 is said to be stable. Oth-
erwise, if the series tends to infinity or otherwise
diverges, it is said to be unstable. The method
has been proven to be stable according to this
definition; a proof is given in appendix.

4. Experimental results

This section is devoted to the application of
the method on two times series. The first one is
the well-known Santa Fe A benchmark presented
in [12]; it is a scalar time series. The second
time series is the Polish electrical consumption
from 1989 to 1996 [6]. This real-world problem
requires the prediction of a vector of 24 hourly
values.

4.1. Methodology

In the method description, the numbers n1 and
n2 of prototypes have not been fixed. Indeed,
the problem is that different values of n1 (n2)
result in different segmentations in the original
(deformation) space and in different conditional
distribution in the transition matrix. The model
may thus slightly vary.

Selecting the best values for n1 and n2 is an
important question too. Traditionally, such hy-
perparameters are estimated by model selection
procedures such as AIC, BIC or computationally-
costly resampling techniques (Leave-One-Out, k-
fold cross validation, bootstrap). As it will be
shown further in this paper, exact values of n1

and n2 are not necessary, as the sensitivity of the
method around the optimums is low. A simple
validation is then used to choose adequate val-
ues for n1 and n2. For that purpose the available
data are divided into three subsets: the learning,

the validation and the test set. The learning set
is used to fix the values of the model parameters,
such as the weights of the prototypes in the SOM
and the transition matrix. The validation set is
used to fix meta-parameters, such as the numbers
n1 and n2 of prototypes in the SOM maps. The
validation set is thus used for model selection.
The test set aims to see how the model behaves
on unused data that mimic real conditions.

The selection of n1 and n2 is done with regards
to an error criterion, in our case a sum of squared
error criterion, computed over the validation set
V S:

eSSE =
∑

y(t+1)∈V S

(y(t + 1) − ŷ(t + 1))2. (11)

Once n1 and n2 have been chosen, a new learn-
ing is done with a new learning set obtained
from the reassembled learning and validation sets.
This new learning is only performed once with op-
timal values for n1 and n2.

Note that, hopefully, the sensitivity of the
method to specific values of n1 and n2 is not high.
This has been experimentally verified in all our
simulations, and will be illustrated on the first
example (Santa Fe A) in section 4.2.

Another crucial question is the sensitivity of
the method to various runs of the SOM algo-
rithm (with the same n1 and n2 values). Indeed
it is well known that initial conditions largely in-
fluence the exact final result of the SOM algo-
rithm (by final result it is meant the prototype
locations, and their neighborhood relations) [13].
Nevertheless, as mentioned above, the neighbor-
hood relations of the SOM are used for visual-
ization purposes only; they do not influence the
results of the forecast. Moreover, the location
of the centroids are used to quantize the space
(therefore allowing the estimation of the empiri-
cal conditional frequencies of the clusters); small
variations in the centroid location have thus a
low influence on each prediction generated by the
method, and an even lower one on the statistics
(mean, confidence intervals, etc.) estimated from
the predictions. This last result has been con-
firmed experimentally in all our simulations, for
which no significant difference was observed after
different runs of the two SOM algorithms.

7

4.2. Scalar forecasting: Santa Fe A

The Santa Fe A time series [12] has been ob-
tained from a far-infrared-laser in a chaotic state.
This time series has become a well-known bench-
mark in time series prediction since the Santa Fe
competition in 1991. The completed data set con-
tains 10 000 data. This set has been divided here
as follows: the learning set contains 6000 data,
the validation set 2000 data, and test set 100
data. Note that the best neural network mod-
els described in [12] do not predict much more
than 40 data, making a 100-data test set a very

long-term forecasting.
Here, the regressors xt

t−p+1 have been con-
structed according to

xt
t−p+1 = {x(t), x(t − 1), x(t − 2),

x(t − 3), x(t − 5), x(t − 6)}.(12)

This choice is made according to previous expe-
rience on this series [12]. In other words, d = 1,
p = 6 (as value x(t − 4) is omitted) and h = 100.

In this simulation, Kohonen strings of 1 up to
200 prototypes in each space have been used. All
the 40 000 possible models have been tested on
the validation set. The best model among them
has 179 prototypes in the regressor space and 161
prototypes in the deformation space. After re-
learning this model on both the learning and val-
idation sets, 1000 simulations were performed on
a horizon of 100. Then the mean and confidence
interval at 95% level were computed, giving infor-
mation on the time series trends. Figure 1 shows
the mean of the 1000 simulations compared to
the true values contained in the test set, together
with the confidence interval at 95% level. Figure
2 shows a zoom on the first 30 values. In fig-
ure 3, we can see 100 simulations for the same 30
values. Note the stability obtained through the
replications. For a simpler model with n1 = 6
and n2 = 8 (used for illustrations purposes), fig-
ure 4 shows the code vectors and regressors (resp.
deformations) in each class; table 1 shows the cor-
responding transition matrix.

From figure 2, it should be noted that the
method gives roughly the first 25 values of the
time series, a result that is not so far from those
obtained with the best neural network models of
the Santa Fe competition [12].

Figure 1. Comparison between the mean of
the 1000 simulations (solid) and the true values
(dashed), together with confidence intervals at
95% level (dotted).

Figure 2. Comparison for the first 30 values be-
tween the mean of the 1000 simulations (solid)
and the true values of the test set (dashed), to-
gether with confidence intervals at 95% level (dot-
ted).

From figure 1, we can infer that the series mean
will neither increase nor decrease. In addition,
the confidence interval does contain the whole
evolution of the time series for the considered 100
future values. The trend for long term forecasting
is thus that the series, though chaotic, will show

8

some kind of stability in its evolution for the next
100 values.

As all the 40 000 models have been generated
and learned, the influence of varying the n1 and
n2 values can be observed. This influence is il-
lustrated in figure 5. It is clear from this figure
that there is a large flat region around the op-
timal values; in this region, all models general-
ize rather equivalently. This justifies, a posteri-
ori, the choice of a simple resampling method to
choose n1 and n2.

Figure 3. 100 simulations picked out at random
from the 1000 simulations made for the Santa Fe
A long-term forecasting.

0.12 0 0 0 0 0 0.23 0.66
0.67 0.30 0 0 0 0 0.02 0.01
0.05 0.55 0.40 0 0 0 0 0
0.03 0 0.30 0.54 0.13 0 0 0
0 0 0 0 0.50 0.48 0.02 0

0.06 0 0 0 0 0.34 0.56 0.04

Table 1
Example of transition matrix, here with n1 = 6
and n2 = 8 as in figure 4. Note that in each row,
the frequency values sum to one.

Figure 4. The code vectors and associated curves
in the regressor (top) and deformation (bottom)
spaces (when n1 = 6 and n2 = 8). The code
vectors are represented in white as 6-dimensional
vectors (according to (12)). Regressors (resp. de-
formations) belonging to each class are shown in
black.

Figure 5. Impact of the variation of n1 and n2 on
the model generalization ability for the Santa Fe
A time series.

4.3. Vector forecasting: the Polish electri-

cal consumption

As second example, we use the Polish electrical
load time series [6]. This series contains hourly
values from 1989 to 1996. The whole dataset con-

9

tains about 72 000 hourly data and is plotted in
figure 6. Due to the daily periodicity of the time
series, we are interested in daily predictions. This
is thus an illustration of the case d > 1, since it
seems natural to forecast the 24 next values in one
step (the next day), the time window becoming
daily instead of hourly.

Figure 6. The Polish electrical consumption time
series, between 1989 and 1996.

Having now at our disposal 3000 xt
t−p+1 data

of dimension 24, we use 2000 of them for the
learning, 800 for a simple validation and 200 for
the test. Since the optimal regressor is unknown,
many different regressors were tried, using intu-
itive understanding of the process. The final re-
gressor is:

xt
t−p+1 = {xt

t−24+1, x
t−24
t−48+1, x

t−48
t−72+1,

xt−144
t−168+1, x

t−168
t−192+1}, (13)

that is the 24 hourly values of today, of yester-
day, of two, six and seven days ago. This regres-
sor is maybe not the optimal one, but it is the
one that makes the lowest error on the validation
set in comparison with other tested ones. Since
the regressor contains p = 5 data of dimension
d = 24, we work in a 120-dimensional space. We
then run the algorithm again on the learning set
with values for n1 and n2 each varying from 5 to
200 prototypes by steps of 5. The lowest error is

made by a model with n1 = 160 and n2 = 140
respectively.

Another model is then learned with 160 and
140 parameter vectors in each space with the new
learning set, now containing 2000+800 data. The
forecasting obtained from this model is repeated
1000 times. Figure 7 presents the mean of the
1000 simulations obtained with 24-dimensional
vectors and with horizon h limited to 40 days (a
single plot of the whole 24 * 200 predicted val-
ues becomes unreadable). For convenience, fig-
ure 8 shows a zoom and a comparison between
the mean of those 1000 long-term predictions and
the real values. A confidence interval at 95% level
is also provided.

Figure 7. Mean of the 1000 simulations at long
term (h = 40).

From figure 8, it is clear that the mean of the
prediction at long term will show the same peri-
odicity as the true time series and that the values
will be contained in a rather narrow confidence
interval. This fact denotes a probable low varia-
tion of the series at long term.

Figure 9 shows 100 predictions obtained by the
Monte-Carlo procedure picked up at random be-
fore taking the mean. See that different simula-
tions have about the same shape; this is a main
argument for determining long-term trends.

Finally, as in the previous example, the influ-
ence of n1 and n2 can be observed. In figure 10,

10

Figure 8. Comparison between the true values
(dashed), the mean of the predictions (solid) and
the confidence interval at 95 % level (dotted).

Figure 9. Plot of 100 simulations chosen at ran-
dom from the 1000 simulations.

a very large flat region is also present around the
best model. Sub-optimal selection of the n1 and
n2 values will thus not penalize too heavily the
model generalization abilities.

5. Conclusion

In this paper, we have presented a time series
forecasting method based on a double classifica-
tion of the regressors and of their deformations
using the SOM algorithm. The use of SOMs

Figure 10. Impact of the variation of n1 and n2

on the model generalization ability for the Polish
electrical consumption problem.

makes it possible to apply the method both on
scalar and vector time series, as discussed in sec-
tion 3 and illustrated in section 4. A proof of the
method stability is given in appendix.

The proposed method is not designed to obtain
an accurate forecast of the next values of a series,
but rather aims to determine long-term trends.
Indeed, its stochastic nature allows repeating sim-
ulations by a Monte-Carlo procedure, allowing to
compute statistics (variance, confidence intervals,
etc.) on the predictions. Such a method could
also be used for example in the financial context,
for the estimation of volatilities.

Acknowledgements

We would like to thank Professor Osowsky from
Warsaw Technical University for providing us the
Polish Electrical Consumption data used in our
example.

REFERENCES

1. T. Kohonen, Self-organising Maps, Springer
Series in Information Sciences, Vol. 30,
Springer, Berlin, 1995.

2. E. de Bodt, M. Cottrell, P. Letremy, M. Ver-
leysen, On the use of Self-Organizing Maps
to accelerate vector quantization, Neurocom-

11

puting, Elsevier, Vol. 56 (January 2004), pp.
187-203.

3. M. Cottrell, J.-C. Fort, G. Pagès, Theoretical
aspects of the SOM algorithm, Neurocomput-
ing, 21, p119-138, 1998.

4. M. Cottrell, E. de Bodt, M. Verleysen, Koho-
nen maps versus vector quantization for data
analysis, European Symp. on Artificial Neu-
ral Networks, April 1997, Bruges (Belgium),
D-Facto pub. (Brussels), pp. 187-193.

5. M. Cottrell, E. de Bodt, Ph. Grégoire, Sim-
ulating Interest Rate Structure Evolution on
a Long Term Horizon: A Kohonen Map Ap-
plication, Proceedings of Neural Networks in
The Capital Markets, Californian Institute of
Technology, World Scientific Ed., Pasadena,
1996.

6. M. Cottrell, B. Girard, P. Rousset, Forecast-
ing of curves using a Kohonen classification,
Journal of Forecasting, Vol. 17, pp. 429-439,
1998.

7. J. Walter, H. Ritter, K. Schulten, Non-linear
prediction with self-organising maps, Proc. of
IJCNN, San Diego, CA, 589-594, July 1990.

8. J. Vesanto, Using the SOM and Local Mod-
els in Time-Series Prediction, In Proceed-
ings of Workshop on Self-Organizing Maps
(WSOM’97), Espoo, Finland, pp. 209-214,
1997.

9. T. Koskela, M. Varsta, J. Heikkonen, and
K. Kaski, Recurrent SOM with Local Linear
Models in Time Series Prediction, European
Symp. on Artificial Neural Networks, April 11
1998, Bruges (Belgium), D-Facto pub. (Brus-
sels), pp. 167-172.

10. A. Lendasse, M. Verleysen, E. de Bodt, M.
Cottrell, Ph. Grégoire, Forecasting Time-
Series by Kohonen Classification, European
Symp. on Artificial Neural Networks, April
1998, Bruges (Belgium), D-Facto pub. (Brus-
sels), pp. 221-226.

11. M. Verleysen, E. de Bodt, A. Lendasse, Fore-
casting financial time series through intrin-
sic dimension estimation and non-linear data
projection, in Proc. of International Workcon-
ference on Artificial and Natural Neural net-
works (IWANN’99), Springer-Verlag Lecture
Notes in Computer Science, n 1607, pp. II596-

II605, June 1999.
12. A. S. Weigend, N.A. Gershenfeld, Times

Series Prediction: Forecasting the future
and Understanding the Past, Addison-Wesley
Publishing Company, 1994.

13. E. de Bodt, M. Cottrell, M. Verleysen, Sta-
tistical tools to assess the reliability of self-
organizing maps, Neural Networks, Elsevier,
Vol. 15, Nos. 8-9 (October-November 2002),
pp. 967-978.

14. G. Fayolle, V. A.Malyshev, M. V. Menshikov,
Topics in constructive theory of countable
Markov chains, Cambridge University Press,
1995.

Appendix

Method stability

Intuitively, the stability property of the method
is not surprising. Indeed, the model is designed
such that it will mostly produce predictions that
are in the range of the observed data. By con-
struction, deformations are chosen randomly ac-
cording to an empirical probability law and the
obtained predictions should stay in the same
range. If, for some reason, the prediction is about
to exceed this range during one of the simulations,
the next deformations will then tend to drive it
back inside this range, at least with high proba-
bility. Furthermore, as simulations are repeated
with the Monte-Carlo procedure, the influence of
such unexpected cases will be reduced when the
mean is taken to obtain the final predictions. The
following of this section is intended to prove this
intuitive result.

The proof consists in two steps: it is first
shown that the series generated by the model
is a Markov chain; secondly, it is demonstrated
that this particular type of Markov chain is sta-
ble. In order to improve the readability of the
proof, lighter notations will be used. For a fixed
d and a fixed p, notation Xt will represent the
vector xt

t−p+1. The last known regressor will be
denoted X0. The prototype of a cluster C′

j of de-
formations will be noted Yj . Finally, hats will
be omitted for simplicity as all regressors Xt are
estimations, except for t = 0.

12

To prove that the series is a Markov chain, we
consider the starting vector of the simulation at
time 0. The corresponding initial regressor of the
series is denoted X0, and C0 is the corresponding
SOM cluster in the regressor space. The defor-
mation that is applied to X0 at this stage is Y0.
Then the next values of the series are given by
X1 = X0 + Y0, X2 = X0 + Y0 + Y1, . . . , with
Y0, Y1, . . . drawn randomly from the transition
matrix for clusters C0, C1, . . . respectively. The
series Xt is therefore a Markov chain, homoge-
neous in time (the transition distribution are not
time dependant), irreducible and defined over a
numerable set (the initial Xt are in finite num-
ber, and so are the deformations).

To show the stability of this Markov chain and
thus the existence of a stationary distribution,
Foster’s criterion [14] is applied. Note that this
criterion is a stronger result which proves the er-
godicity of the chain, which in turns implies the
stability. Foster’s criterion is the following:

A necessary and sufficient condition for an ir-
reducible chain to be ergodic is that there exists
a positive function g(.), a positive ε and a finite
set A such that:

∀x ∈ Ω : E(g(Xt+1)|Xt = x) < ∞,
∀x /∈ Ω : E(g(Xt+1)|Xt = x) − g(x) ≤ −ε.

(14)

Since the Markov chain is homogenous, it is
sufficient to observe transition Y0 from X0 to X1.
The same development can be deduced for any
other transition.

The demonstration is done for two-dimensional
regressors but can be generalized easily to other
dimensions. Note that in the following, we use
g(.) = ‖.‖2 in (14).

Before going in further details, let us remark
that for a SOM with at least 3 classes in general
position, class C0 covers less than a half plane.
Furthermore, we have to distinguish two cases for
each cluster. First, the cluster may be included in
a finite compact from IR2. The second case is the
case of an infinite cluster i.e. of a cluster which
may does have any neighbour in some direction;
this happens to ckusters on the border of the map.

The first case is easely proved. Since ‖X0‖ <

(a) A Cluster within an
acute angle

(b) A Cluster within
an obtuse angle

Figure 11. Notations for the cone containing an
unbounded cluster of a SOM; see text for details.

R0, where R0 can be any constant, then we have
by triangular inequality:

E(‖X1‖) < R0 + ‖Y0‖
≤ R0 + maxj(‖Yj‖).

(15)

As the deformations Yj are in finite number, the
maximum of their norm is finite. This proves the
first inequality of (14) in an obvious way for the
first case (i.e. bounded cluster case).

The other case thus appens when ‖X0‖ → +∞.
This happens in unbounded clusters. The un-
bounded cluster case is much more technical to
prove.

Looking at figure 11, we see that each un-
bounded cluster is included in a cone with ver-
tex A and delimited by the normalized vectors
a1 and a2. There are two possibilities: either a1

and a2 form an acute angle, either an obtuse one,
as shown in figure 11(a) and figure 11(b) respec-
tively.

Before going on and applying Foster’s criterion,
note that the three following geometrical proper-
ties can be proven:

Property 1.

Denoting

lim
‖x‖→∞

x

‖x‖
· ai = δi, (16)

13

we have δ1 and δ2 both positive in the acute angle
case, while either δ1 or δ2 is positive for an obtuse
angle. Indeed, using the origin O, we define:

−→
Ox =

−→
OA +

−→
Ax. (17)

We thus have:

x

‖x‖
· ai =

−→
OA · ai

‖x‖
+

−→
Ax

‖
−→
Ax‖

‖
−→
Ax‖

‖x‖
· ai (18)

which can be bounded by a strictly positive con-

stant as
−−→
OA·ai

‖x‖ → 0 and ‖
−→
Ax‖
‖x‖ → 1 for ‖x‖ → +∞.

Property 2.

We define b1 such that the angle (a1, b1) is +π
2 .

Similarly b2 is defined such that the angle (b2, a2)
is also +π

2 . Then, for both the acute and obtuse
angle cases, we have:

inf
x∈C

−→
Ax

‖x‖
· bi = ri > 0, (19)

where C is the considered cone which has border
vectors a1 and a2.

Rewrite the first term of (19) as:

inf
x∈C

−→
Ax

‖x‖
· bi = inf

x∈C

−→
Ax

‖
−→
Ax‖

‖
−→
Ax‖

‖x‖
· bi; (20)

the result is obtained easily since ‖
−→
Ax‖
‖x‖ → 1 when

‖x‖ → +∞.

Property 3.

Assume that:

Eµ0
(Y0) · a1 < 0 and Eµ0

(Y0) · a2 < 0 (21)

where µ0 is the empirical distribution correspond-
ing to class C0 in the transition matrix. Denoting

Eµ0
(Y0) · ai = −γi < 0 (22)

with γi > 0, then we have:

Eµ0
(Y0) · bi < 0 (23)

for either i = 1 or i = 2 in case of an acute angle
(figure 12(a)) or for both of i = 1 and i = 2 for
the obtuse case (figure 12(b)).

(a) Acute angle case. (b) Obtuse angle case.

Figure 12. Third geometrical property, see text
for details.

Note that the initial assumption can easily be
proved numerically.

Those three properties will be used as lemmas
in the following. Now we can apply Foster’s cri-
terion for the unbounded cluster case.

Foster’s criterion

Considering an unbounded class C0 and
the corresponding transition distribution, with
g(x) = ‖x‖2, we have

E(g(X1)|X0 = x) − g(x)
= E(g(X0 + Y0|X0 = x) − g(x)
= E(‖X0 + Y0‖

2|X0 = x) − ‖x‖2

= 2‖x‖
[

x·Eµ0
(Y0)

‖x‖ +
Eµ0

(‖Y0‖
2)

2‖x‖

]

.

(24)

The second term between the brackets can be
bounded by a strictly positive constant α0. In-
deed, as ‖Y0‖

2 is finite, Eµ0
(‖Y0‖

2) < M0 is also
finite. Therefore, for α0 > 0 and ‖x‖ > M0

α0

, we
have

1

‖x‖
Eµ0

(‖Y0‖
2) < α0. (25)

For the first term, we chose either i = 1 or i = 2
such that:

{

lim
‖x‖→+∞

x

‖x‖
· ai = δi > 0,

Eµ0
(Y0) · bi < 0.

(26)

14

In case of an unbounded cluster, those two con-
ditions are fulfilled using Properties 1. and 3.

By hypothesis, suppose that i = 2 satisfies
those two conditions (26). The term Eµ0

(Y0) can
be decomposed in the (b2, a2) basis. Then, for
‖x‖ sufficiently large, as:

• Eµ0
(Y0) · a2 = −γ2 by Property 3.;

•
x

‖x‖
· a2 >

δ2

2
by Property 1.;

• Eµ0
(Y0) · b2 < 0 by Property 3.;

•
x

‖x‖
· b2 ≥

r2

2
as

−→
Ox =

−→
OA +

−→
Ax and by

Property 2.;

we have

x

‖x‖
Eµ0

(Y0)

≤ (Eµ0
(Y0) · a2)

︸ ︷︷ ︸

=−γ2

(
x

‖x‖
· a2

)

︸ ︷︷ ︸

>
δ2
2

+ (Eµ0
(Y0) · b2)

︸ ︷︷ ︸

<0

(
x

‖x‖
· b2

)

︸ ︷︷ ︸

≥
r2

2

< −γ2
δ2

2
,

when ‖x‖ is large enough, denoted here ‖x‖ > L0.
The same development can be achieved using

i = 1 to satisfy the two initial conditions (26).
We obtain:

x

‖x‖
Eµ0

(Y0) < −γ1
δ1

2
, (27)

when ‖x‖ > L′
0.

Equation (24) can now be simplified in:

E(g(X1)|X0 = x) − g(x)

= 2‖x‖
[

x·Eµ0
(Y0)

‖x‖ +
Eµ0

(‖Y0‖
2)

2‖x‖

]

< 2‖x‖
[
−α0 + 1

2α0

]

= −2‖x‖α0

2 ,

(28)

where ‖x‖ > K0 = max(L0, L
′
0) and α0 in (25) is

chosen such that α0 = min
(

γ1δ1

2 , γ2δ2

2

)

.

This development has been done for cluster C0.
All values α0, M0, L0, K0 depends on this cluster

C0. Now considering all unbounded clusters Ci

and taking α = infCi
αi and K = supCi

Ki, we
have:

∀‖x‖ ≥ K :
xEµ0

(Y0)

‖x‖
+

Eµ0
(‖Y0‖

2)

2‖x‖
< −

α

2
< 0.

(29)

Finally, we obtain, using (29) in (28):

E(g(X1)|X0 = x) − g(x) < −α‖x‖, (30)

where the right member tends to −∞ for ‖x‖ →
+∞.

To conclude, we define the set Ω used in Fos-
ter’s criterion according to

Ω =

(
⋃

i∈I

Ci

)
⋃

{X0| ‖X0‖ < K} , (31)

where I denotes the set of bounded cluster in-
dexes as discussed in the introduction to the
proof. With this definition, the above develop-
ments prove Foster’s criterion (14). Thus the
Markov chain defined by the Xi for i > 0 is er-
godic, and admits a unique stationary distribu-
tion.

