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Abstract 
This study focus on the acoustical behavior of gearbox induced by the static transmission 
error under load (STE). An original method is developed allowing to compute simultaneously 
STE, meshing and bearings stiffnesses. These characteristics mainly govern the vibrational 
and the acoustical behaviors of the geared system. The proposed procedure is based on two 
computational methods allowing to calculate the STE and the bearing equilibrium which are 
integrated in a coupled computational procedure. The technique has been implemented to 
treat an illustrating example and compared to standard uncoupled approach. Comparative 
results concern the STE, meshing stiffness, bearings stiffnesses, shafts misalignments, critical 
eigenmodes and associated critical running speeds, housing vibratory response and radiated 
noise. 

1. Introduction 
It is well known that the static transmission error under load (STE) constitutes the main 
source of radiated gearbox noise [1]. Furthermore, there exist several operating speeds for 
which STE induces high vibratory and noise levels. Those critical speeds are related to the 
excitation in a resonant manner of some particular eigen-modes mainly governed by the mesh 
and bearings stiffnesses. So, an important key for predicting gear noise concerns the 
estimation of STE, mesh and bearing stiffnesses. Contact conditions and STE depend not 
only on teeth elasticity and manufactured errors, but also on bearings and shaft deformations. 
Actually, they modify the toothed wheels positions and by the way they introduce 
misalignments between mating teeth in the action plane. Otherwise, nonlinear bearings 
stiffnesses depend on generalized forces applied on shafts induced by the teeth load 
distribution. These generalized forces are a priori distinct from theoretical ones. So, in 
accordance with the gearbox design, interactions between meshing contact conditions and 
bearings deformations may exist. Unfortunately, in our knowledge, those interactions are not 
taken into account in standard approach. In this context, this study proposes a new modeling 
approach allowing to estimate simultaneously STE, meshing and bearings stiffnesses. More 
precisely, this modeling described in section 2 is based on a coupled calculation including 
non linear deformations of each bearing and meshing gear. In section 3, the proposed 



modeling is illustrated on an example of geared system. Comparisons with usual uncoupled 
approach are performed. Comparative results concern the STE, meshing stiffness, bearings 
stiffnesses, critical eigenmodes and related critical speeds, housing vibratory response and 
associated radiated noise. 

2. Review of the method 

2.1 STE computational method 
STE is obtained by solving the static equilibrium of the gear pair for a set of successive 
rotational positions of the driving wheel. For this end, the theoretical tooth contact lines 
contained in the action plane are discretized in a some number of slices. At each slice, the 
unknown contact load is assumed to be positive or null (column vector p). The calculus 
requires knowledge of C, the compliance matrix acting between slices. This matrix can be 
obtained from a previous 3D finite element model of the mating teeth. It requires also 
knowledge of manufacturing errors which are introduced as a vector e of initial gap at each 
slice. Finally, the in plane action misalignment (ϕ1-ϕ2) = φ induced by the shafts, bearings 
and housing deformations is taken into account separately from vector e. The contact problem 
to solve can be written as follows: 
   C p = d.i + e + φ.g   and   tp.i = N   with   pj ≥ 0  (1) 
Here, d represents the unknown STE, i is a vector of ones, g is a vector which localizes slices 
in the action plane and N is the total normal force transmitted through the action plane. Under 
some rearrangements, equation (1) is solved by using a modified simplex method [2]. The 
computation allows to obtain STE, load distribution along contact lines and then generalized 
forces Fk acting at each center Ok of the mating wheels. Mesh stiffness is also computed 
considering an increment on the normal force. 

2.2 Bearings equilibrium computational method 
Consider the static equilibrium of an elastic shaft supported by two rolling element bearings 
A and B which are mounted in rigid housing. Assume the shaft subjected at a point G to an 
arbitrary generalized force vector F which induces generalized reaction force vector at each 
bearing RA and RB. By introducing the shaft as two linear FEM super-elements with their 
stiffness matrices assumed to be known, one can obtain [3] the shaft equilibrium equation as 
follows: 
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  (2) 

xA, xB and xG are respectively the generalized displacement vectors at each point A, B and G. 
Now, consider the equilibrium of the rolling element bearing A. One can obtain non linear 
relations between the generalized inner ring displacement xA and bearing reaction force RA 
considering non linear forces acting on each rolling element, i.e. Qj = Qj (Tj xA). Here, Tj is a 
simple transformation matrix allowing to precise local displacement of the inner ring relative 
to the outer ring at the rolling element. Bearing reaction force is then given by: 
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Reaction force at bearing B is obtained in a similar manner. Substituting RA, RB in equation 
(2) leads to: 
 [ ]{ } { }{ } { } { }0FxRxK =−− )(   (4) 
This non linear equation is generally solved by a Newton-Raphson method. Further, if 
necessary, elasticity of the housing can be introduced in the same manner as shaft elasticity. 
To conclude, computation allows to obtain bearing reaction forces, bearing stiffness matrices, 
generalized displacement and then in plane action misalignment φ. 

2.3 Coupled computation 
The STE computation provides the generalized force vector F acting on shafts and function 
of misalignment φ, i.e. F=H(φ). The bearings computation provides misalignment φ from F, 
i.e. φ = g(F). Combining the two procedures leads to: 
 0)(h))((g =φ−φ=φ−φ H   (5) 
We propose to solve equation (5) by using again a Newton-Raphson procedure. It needs 
knowledge of the derivative h’(φ) respect to φ. To this end, we consider the composed 
function and evaluate the derivative in two steps from: 
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All the derivatives have been estimated numerically. The coupling computation does not need 
to modify the original methods. This is the main advantage of the proposed method. In our 
practical applications, we have used a program developed in our research team for the STE 
computation, and a program named SHARC© developed by the company “SNR Roulements” 
for the bearings computation. This last includes shafts and housing elasticity. 

2.4 Vibratory and noise computation 
Methodology is described in [4-6]. The vibratory calculation is based on a Finite Element 
model including meshing and bearings stiffnesses. Dynamic response for each degree of 
freedom (in particular d-o-f on the housing) is obtained by using an efficient method named 
Iterative Spectral Method [7]. This method allows to treat forced response of parametric 
systems (periodic mesh stiffness). Complex velocity response of the housing constitutes data 
for the acoustical problem which is solved from a boundary element method based on a direct 
integral formulation. Power sound level is directly derived from the calculation. In this paper, 
only a estimated power sound level is given on the assumption of a radiation efficiency equal 
to one. 

3. Results 

3.1 Studied geared system 
In order to exhibit the relevance of the proposed method, we have compared results obtained 
with and without considering coupling effect. Characteristics of the studied geared system are 
given in table 1. The housing is almost a parallelepiped with one radiated noise face 
(190x120x5 mm). The applied torque is 60 N.m, this corresponds to quarter design load. 
Manufacturing errors and tooth surface modifications are introduced with characteristics 
given in table 2. Ball bearings with 20° nominal contact angles are chosen in this application. 
Shaft are 32 mm diameter, and 40 mm length. Gears are localized in the middle shaft. 



 
Table 1: Characteristics of the studied 

geared system 
 Pinion Driven wheel 

Number of teeth 35 49 
Shifting coeff. 0.4 0.4 

Module 2 mm 
Tooth face width 16 mm 

Pressure angle 20° 
Helix angle 25° 

 
Table 2: Combined tooth surface 

characteristics 
Lead slope + 15 µm 

Profile slope 0 µm 
Lead crowning + 5 µm 

Profile crowning + 5 µm 

3.2 STE, mesh stiffness, bearing stiffness and shaft misalignment 
Firstly, we compare STE obtained by our technique with those obtained by a standard 
uncoupled method. Result is given in figure 1. 
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Figure 1: Static transmission error under load 

 
In fact, regarding the load distribution, adaptation of the misalignment (induced in part by 
bearings deformations) is taken into account with the coupled method. Consequently, average 
misalignment is equal to –421 µrad with the coupled method instead of –110 µrad which 
affect the load distribution (see figure 2). 
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Figure 2: Teeth load distribution : (A) uncoupled and (B) coupled methods

 



As the contact length is larger for the coupled method, we obtain mesh stiffness equal to 
306 N.µm-1 instead of 280 N.µm-1. Also the bearings stiffness matrices are seriously affected 
(see table 3). 
 
 

Table 3: generalized bearings stiffness matrices 
Bearing stiffness with the uncoupled calculus 

 Fx (daN) Fy (daN) Fz (daN) Mx (mm.daN) My (mm.daN) 
x (mm) 8723 -2802 2122 -13615 -38010 
y (mm) -2802 3514 -1040 17073 13615 
z (mm) 2122 -1040 843 -6992 -14349 
θx (rad) -13615 17073 -6992 114803 91552 
θy (rad) -38010 13615 -14349 91552 257232 

Bearing stiffness with the coupled calculus 
 Fx (daN) Fy (daN) Fz (daN) Mx (mm.daN) My (mm.daN) 

x (mm) 9648 -1299 2473 -6965 -42831 
y (mm) -1299 4756 -532 23719 6965 
z (mm) 2473 -532 974 -4153 -16183 
θx (rad) -6965 23719 -4153 145666 54369 
θy (rad) -42831 6965 -16183 54369 283894 

 

3.3 Dynamic mesh force and vibratory housing response 
Dynamic mesh force RMS value versus the output shaft speed is displayed in figure 3. As we 
can see, some differences appear in levels as in occurrence of critical speeds. 
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Figure 3: Dynamic mesh force RMS value (N) vs. the output shaft speed (tr/min) 

 
The time and space averaged mean square velocity of the housing is displayed in figure 4. 
Another time, some discreapencies are obtained. With the assumption of a radiation 
efficiency equal to one, difference between power radiated noise can be respectively 
estimated at about 64, 66 and 61 dB for the critical speeds quoted A, B and C in figure 4, 
instead of  67, 68 and 67 dB with the uncoupled calculation. 
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Figure 4: Time- and space-averaged mean square velocity of the housing (m²/s²) vs. the 

meshing frequency (Hz); A, B, C: critical speeds. 

4. Conclusion 
In this paper we developed a new method for the calculation of STE that takes into account 
the bearings deformations in a coupling manner. For the chosen gearbox, the interest of this 
method is demonstrated. In the short future it will be interesting to try different gearboxes 
system in order to analyze in which configurations the interaction between bearing 
deformations and mesh equilibrium is not negligible. 
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