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Abstract 

In this paper, the response of a normally excited preloaded Hertzian contact is investigated in 

order to analyze the subharmonic resonance of order 2. The nonlinearity associated with 

contact losses is included. The method of multiple scales is used to obtain the non-trivial 

steady state solutions, their stability, and the frequency-response curves. To this end, a third 

order Taylor series of the elastic Hertzian contact force is introduced over the displacement 

interval where the system remains in contact. A classical time integration method is also used 

in conjunction with a shooting method to take into account losses of contact. The theoretical 

results show that the subharmonic resonance constitutes a precursor of dynamic responses 

characterised by loss of contact, and consequently, the resonance establishes over a wide 

frequency range. Finally, experimental validations are also presented in this paper. To this 

end, a specific test rig is used. It corresponds to a double sphere-plane contact preloaded by 

the weight of a moving mass. Experimental results show good agreements with theoretical 

ones. 



Nomenclature 

Latin characters 

 

A  amplitude of the subharmonic component of the response 

B  intermediate variable 

c  damping coefficient 

Dp differentiation with respect to independent time variables 

Dpq differentiation of order two with respect to independent time variables 

E  Young’s modulus 

f 0 linearized natural frequency 

Fexp  dimensionless experimental contact force  

F(q) dimensionless restoring contact force 

k  Hertzian constant  

m  rigid moving mass 

N  static load 

q(τ)  dimensionless displacement response 

R  ball radius 

t  time 

Tn  order n independent time variables 

z(t)  displacement response 

zs  static contact compression 

Greek characters 

 

β intermediate variable 

γ  intermediate variable 

ε  small parameter 

ζ  damping ratio 



λ detuning parameter 

ν  Poisson ratio 

σ  dimensionless level of the excitation force 

σ* first threshold of the dimensionless excitation force level 

σ**   second threshold of the dimensionless excitation force level 

τ  dimensionless time 

φ  phase of the subharmonic component of the response 

ω  circular frequency of the excitation force 

ω  dimensionless excitation circular frequency 

Ω  linearized natural circular frequency 

Accents 

^ indicates O(1) variable 

.
  differentiation with respect to time t or dimensionless time τ  



1. Introduction 

Hertzian contacts exist in many mechanical systems such as mechanisms and machines 

(gears, cam systems, rolling element bearings, to name a few). Under operating conditions, 

these contacts are often excited by dynamic normal forces superimposed on a mean static 

load. Under excessive excitation, contacts can exhibit undesirable vibroimpact responses, as a 

result of clearances introduced through manufacturing tolerances. The resulting dynamic 

behaviour is characterised by loss of contact and impacts, leading to excessive wear, surface 

damage and noise. 

In a previous paper [1], the dynamic behaviour of an idealized preloaded and non-sliding dry 

Hertzian contact was studied under primary resonance conditions. To this end, an 

experimental test rig was built in order to investigate the resonance in detail, including 

vibroimpact responses. Theoretical results were also presented showing good agreement with 

the main characteristics of the primary resonance. In a companion paper [2], analysis was 

extended to the case of vibroimpact responses under Gaussian white random normal 

excitation. 

The present work is concerned with the subharmonic response of the identical fundamental 

Hertzian contact under harmonic excitation. Several earlier papers discuss the dynamic 

response of Hertzian contacts [3–11], but to our knowledge, theoretical and experimental 

analyses of the 2-subharmonic resonance are rarely presented [12]. In this paper, the dynamic 

model studied is described in section 2. Theoretical results are presented in section 3, and 

finally experimental investigations and results are presented in section 4. 

2. The dynamic model 

2.1 Equation of motion 

The system under study corresponds to the single-degree-of-freedom impact oscillator 

shown in Figure 1. A moving rigid mass m is kept in contact with a flat surface and loaded by 



a static normal force N. Assuming a Hertzian contact law, the non-linear restoring contact 

force is derived from material properties and contact geometry [13]. When the system is 

excited by a purely harmonic normal force superimposed on the static load, the equation of 

motion may be written as follows: 

 
0for)cos1(

0for)cos1(2/3

<+=++
≥+=++

ztNzczm

ztNzkzczm

ωσ
ωσ

&&&

&&&
 (1) 

where z is the normal displacement of the rigid mass m measured such that z<0 corresponds 

to loss of contact, c is a damping coefficient, and k is a constant given by the Hertzian theory. 

Furthermore, σ  controls the level of the excitation and ω denotes the excitation angular 

frequency. 

When the excitation force is zero, the static contact compression zS is given by  
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we introduce the linearized contact natural frequency Ω and the damping ratio ζ given by 
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and rescale Eq. (1) by defining 
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The dimensionless equation of motion is obtained as follows [1] 
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In this equation, overdot indicates differentiation with respect to the dimensionless time τ, and 

ω  is the dimensionless excitation circular frequency defined as follows 

 
Ω

= ωω  (8) 

It should be noted that loss of contact now corresponds to the inequality 
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2.2 Approximation of the elastic contact force 

In order to use the analytical method of multiple scales, the restoring elastic contact force is 

approximated by expanding the non-linearity in a third-order Taylor series around the static 

load. In this way, both quadratic and cubic non-linearities appear naturally, and the 

approximate elastic restoring force is given as follows 
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Then, the final dimensionless equation appropriate for the use of the method of multiple 

scales is: 
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This equation remains valid if the following inequality is satisfied 

 348.1−≥q  (12) 

This inequality guarantees positive values for the approximate restoring force. In other words, 

this inequality corresponds to the loss of contact condition for the approximate system. 

Furthermore, the absolute difference between the actual and the approximate elastic restoring 

force is less than 0.01 in the range  –1 < q < 1. Comparison is shown in Figure 2. 

3. The theoretical response to the order-2 subharmonic excitation 

3.1. Multiple scales method 



Initially, the method of multiple scales is used [14-15]. To this end, the ordering  

 qq ˆε= , ζεζ ˆ= , σεσ ˆ=  (13) 

is assumed in Eq. (11) where circumflexes indicate O(1) variables. As a result, the excitation 

appears at the same order as the free response (i.e. at the order ε 0), and the damping appears 

at the same time as the quadratic non-linearity (i.e. at the order ε 1). Then Eq. (11) becomes, 

omitting circumflexes in Eq. (13), 
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By introducing new independent time variables Tn = ε n t (with n = 0, 1, 2), expanding q in 

power series of  ε,  
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and equating coefficients of like powers of ε , one obtains the following system of 

perturbation equations at the first three ε orders [15]: 
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To analyse the subharmonic resonance of order 2, one expresses the nearness of the external 

excitation frequency to twice the linearized natural frequency by introducing the detuning 

parameter λ defined according to 

 λεω += 2  (18) 



Solving system (16), eliminating secular terms and retaining steady state solutions leads to the 

non-trivial steady state response at the ε order as follows 
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where  

 
)1(2 2ω

σ
−

=B  (20) 

In Eq. (19) the phase φ is given by 
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where  
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Also, the amplitude A of the component at one half the excitation frequency is determined by 

the following frequency response equation 
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Next, it is easy to precise the regions of existence of parameter space where subharmonic 

responses exist, by determining the real roots of Eq. (23). The stability of the solutions can 

also be easily obtained [15]. Introducing the two critical values defined by 
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one can distinguish the three following regions, illustrated in Figure 3 for the case ζ = 0.005. 

In region I defined by σ > σ 2 , the trivial response (or 1T-periodic response) is unstable and 

subharmonic responses are always excited. In region II defined by σ 1 < σ  < σ 2 and ω  < 2 , 

the trivial response is stable and it coexists with two subharmonic responses, one of which 

stable, the other unstable. For this case, the stable subharmonic response can be excited 

depending on the initial conditions. In region III, when σ  < σ 1 and ω  < 2, or when 

σ  < σ 2 and ω  > 2, the trivial 1T-periodic response is always stable and subharmonic 

response can never be excited. In other words, the curve σ  = σ 2 corresponds to the 

subharmonic bifurcation which is subcritical when ω < 2 and critical when ω > 2. Following 

these results, one obtains a critical excitation level σ * which can be viewed as a threshold 

beyond which the subharmonic resonance is always excited. This value is given according to 
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and if ζ <<1: 

 ζσ 36* ≈  (27) 

Beyond this threshold, the subharmonic resonance exhibits a softening behaviour shown in 

Figure 4. This figure displays the frequency response curve obtained for σ = 0.5 and ζ = 0.01. 

This result is in agreement with the behaviour of the system under primary resonance 

conditions in the sense that the frequency response curve is bent to low frequency (softening 

behaviour) [1].  



Figure 5 shows the minimum value of the displacement response when subharmonic 

resonance occurs. By considering the approximate system, Eq. (11), one can see that the 2-

subharmonic response leads to contact loss. In fact, we have always observed this behaviour 

which constitutes a general trend of the system. The question can now be stated as follows: 

does the 2-superharmonic response always lead to loss of contact for the original dynamic 

model defined by Eq. (7)? This question requires a more detailed analysis of superharmonic 

resonance condition. We therefore supplement this theoretical study by a numerical 

investigation described as below. 

3.2. Continuation method  

In order to achieve dynamic responses including loss of contact, a classical numerical time 

integration explicit scheme is used, i.e. the central difference method. The interest of using an 

explicit scheme is the estimation of the non linear restoring force which is not required at each 

time step by a non-linear solver, like the Newton-Raphson method. The counterpart is to use a 

sufficiently small time step examining both the period of the response and the linearized 

natural frequency of the system. In our simulations, we have imposed a time step 10000 times 

less than the period of the response. Further, a specific computing method devoted to 

nonlinear problems is used, namely the shooting method combined with a continuation 

technique. For details of these known methods, see for example references [16, 17]. In our 

case, the shooting method is similar to tracking fixed points on a Poincaré map. To this end, 

we have chosen a Poincaré section equivalent to a stroboscopic section at a period 1 or 2 

times the period of the external excitation. Finally, the required Jacobian matrices attached to 

the fixed points are evaluated via a numerical rule. Actually, these can not be analytically 

determinate because of the non regular characteristic of the non-linear restoring force. One 

can also notice that the stability of the response and the kind of bifurcations can be deduced 

from the eigenvalues of the Jacobian matrices. 



Figure 6 shows a typical frequency-response curve which is obtained for the same values as 

used in Figures 4 and 5 (σ = 0.5 and ζ = 1 %). As we can see in the upper part (Figure 6(a) ), 

the subharmonic resonance is very strong as it is established over a wide frequency range. 

Actually, the downward jump frequency appears to be very low (ϖ ≈ 0.475). As one observes 

in the lower part (Figure 6(b) ) which is the frequency-response curve detailed around ϖ ≈ 2, 

we confirm the multiple scales method result, i.e. the fact that the subharmonic resonance 

initiates vibroimpact responses. This is of great importance in a practical point of view when 

vibroimpacts lead to excessive wear, surface damage and excessive noise. 

In order to describe the bifurcation set obtained by the used numerical shooting method, we 

have tracked the 1T-periodic response for different values of σ  and identified frequencies for 

which subharmonic bifurcations occur. This can be done by computing the multipliers or 

eigenvalues of the Monodromy matrix related to the associated fixed point. Remind that 

subharmonic bifurcation occurs when one of the multipliers leaves the unit circle in the 

complex plane by the –1 value. Comparison of the results with those obtained by the multiple 

scales method is given in Figure 7. As we can see, very good agreement between the two 

approaches occurs. 

In our simulations, we have found that the loss of contact nonlinearity is also at the origin of 

subharmonic responses which then exhibite impacts. To illustrate this result, Figure 8 displays 

an example of frequency response curve obtained with an excitation amplitude σ  quite lower 

than the threshold value σ * defined by Eq. (26). As we can see, these subharmonic responses 

take place on an isola, i.e. a loop in the bifurcation set, delimited by a couple of saddle-node 

bifurcations. This isola establishes itself in the interval 1< ω < 2, which is coherent with the 

softening character of the loss of contact nonlinearity. Figure 9 displays the saddle-node 

bifurcation curve in the ω   − σ  plane which circumscribes the region where isola takes place. 

In this Figure, the excitation amplitude threshold quoted σ ** (σ ** ≈ 0.165) corresponds to 



the isola formation at a frequency close to 1.5. It is found quite lower than the preceding one 

σ * defined by Eq. (26). Up to this threshold, we observe that isola rapidly grows when the 

excitation amplitude increases until it meets the preceding flip bifurcation close to ω  = 2 and 

σ = σ *. For these conditions, one can assume the existence of an unstable transcritical 

bifurcation. Actually, this last takes place very close to the conditions σ = 0.336 and ζ = 1 %, 

as illustrated in Figure 10. 

The result is of great importance as it proves that the subharmonic resonance initiated by the 

Hertzian nonlinearity almost always induces vibroimpact responses in a wide frequency 

range. 

4. Experimental validation 

4.1. Test rig 

The main goals of our experimental study are to confirm the excitation level threshold value 

defined by Eq. (26) and to confirm the occurrence of vibroimpact responses initiated by 

subharmonic resonance conditions. In order to perform these experimental validations, we 

have used a test rig similar to that described in references [1-2]. The used test rig is depicted 

in Figure 11. It consists on a 25.4 mm diameter SAE 52100 steel ball preloaded between two 

horizontal SAE 52100 steel flat surfaces. The first one is fixed to a heavy rigid frame and the 

second one is rigidly fixed to a vertically moving cylinder. Compliance of a rough and weakly 

loaded contact obtained experimentally can be different from the theoretical compliance 

supplied by the Hertz equation. So, to take into account this problem, planes were ground to 

obtain roughness Ra < 0,4 µm. Ball roughness is also weak (Ra < 0.03 µm). Then, as we will 

see, asperities will be quite smaller than contact deflection and contact area. The double 

sphere-plane dry contact is preloaded by a static normal load N = 69.7 N, which corresponds 

to the weight of the moving cylinder (m = 7.1 kg). By assuming identical mechanical 



properties for the ball and the discs, the constant k of the restoring elastic force expression is 

deduced from the double sphere-plane Hertzian contact as follows [13]: 

 
)1(23 2ν−
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where E is the Young’s modulus (210 GPa), ν is the Poisson ratio (0.29) and R is the ball 

radius (12.7 mm). Then, the main theoretical characteristics of the experimental system are: 
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Contact is normally excited by a suspended vibration shaker. Harmonic normal force is 

applied to the moving cylinder and superimposed on the static load. Excitation force and 

normal force transmitted to the frame through the contact are measured by piezoelectric force 

transducers. Classical charge amplifiers are used for all responses. 

4.2. Measured natural frequency and damping ratio 

Linearized contact frequency (f0 = 270.6 Hz) and equivalent viscous damping ratio (0.5 %) 

are measured from the almost linear contact dynamic behaviour under very low external input 

amplitude [1, 6]. The experimental natural frequency is close to the theoretical one since the 

relative error is less than 0.15 %, and the damping ratio value is coherent with preceding 

studies [1-2, 6]. 

4.3. Experimental subharmonic resonance  

For this set of experimental results, it is important to say that good repeatability was always 

observed. Experimental subharmonic resonance is exhibited for external input amplitude 

σ  up to 20 %. This value can be considered as the critical excitation level σ * theoretically 

defined by Eq. (26) or Eq. (27). By considering the measured viscous damping ratio (0.5 %), 



the experimental ratio, that is (σ * /ζ )exp ≈ 40, appears to be in a good agreement with the 

theoretical one, that is (σ * /ζ )th = 36. Figure 12 displays a typical result obtained for an 

external input amplitude σ  ≈ 30 %. It consists on the frequency response curves for the two 

first harmonics of the transmitted force, quoted H1 and H2 and respectively associated to the 

external input frequency ω  and to its first harmonic 2ω . The jump discontinuities associated 

to the 2-subharmonic resonance are clearly observed. In particular, tracking the H2 component 

allows to identify one of the two flip bifurcations. The subharmonic resonance leads to 

intermittent loss of contact. This source of nonlinearity noticeably dominates the dynamic 

behaviour of the system. Actually, Figure 13 shows that it strongly bends the frequency 

response curve to low frequency with a downward jump frequency less than the linearized 

contact natural frequency. So, for decreasing external input frequency, dynamic vibroimpact 

response is established over a wide frequency range, at least from 2Ω to Ω. In fact, this result 

is obtained for all the experimental conditions, even for an external input amplitude close to 

the amplitude threshold σ * ≈ 20 %.  

Finally, time histories of the dimensionless normal force observed in subharmonic resonance 

conditions are displayed in Figures 14 and 15. Notice that the contact force Fexp is 

dimensionalized after centered it regards to the static load as follows:  
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So, contact is lost when the dimensionless normal contact force is under the -1 value. 

These are obtained in the same conditions that those imposed in Figure 12, i.e. with an 

external input amplitude σ  ≈ 30 %. The flip bifurcation is clearly identified when the period 

of the normal force is twice of its of the external excitation. Time histories show also the 

hardening behaviour of the dynamic system in compression and its softening behaviour in 



extension. Finally, plates shown in Figure 15 correspond to the flight duration when loss of 

contact occurs. 

5. Conclusion 

In this study, the dynamic response of an impacting Hertzian contact subjected to an order-2 

subharmonic excitation is analyzed. The critical excitation level beyond which subharmonic 

resonance always occurs is theoretically predicted and experimentally confirmed. Beyond this 

excitation level,  response is quickly characterized by vibroimpacts and the dynamic 

behaviour is mainly governed by loss of contact nonlinearity. Although contact stiffness is 

modelled by a linear law in most o classical impact models, we showed that the nonlinearity 

inherent in the Hertzian law or more general law, contact laws cannot be ignored if one 

wishes to predict vibroimpact response, because it is this nonlinearity which initiates the 

subharmonic resonance. 
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Captions for Figures 

Figure 1. Dynamic model of the single-degree-of-freedom impact oscillator. 

Figure 2. The dimensionless restoring contact force model (thick line) and its approximate 

form defined by Eq. (10) (thin line). 

 

Figure 3. Bifurcation set in the ω   − σ  plane for ζ = 0.5%. 

Figure 4. Frequency response curve A(ω  ) exhibiting the subharmonic resonance (σ = 0.5, 
ζ = 1 %). 

 

Figure 5. Frequency response curve Min(q) exhibiting loss of contact under the expected 
value q = −1.348, see Eq. (12), and for σ  = 0.5 and  ζ = 1 %. 

 

Figure 6. Frequency peak to peak response curve of q obtained by the shooting method for 

σ = 0.5 and  ζ = 1 % : (a) the complete response curve; (b) the detail of the response curve 

around ϖ = 2 (I: 1T-stable responses; II: 2T-stable responses without loss of contact; III:  2T-

stable responses with loss of contact; IV: 2T-unstable responses without loss of contact; V: 

2T-unstable responses with loss of contact). 

 

Figure 7. Bifurcation set (Flip bifurcation) in the ω   − σ  plane for ζ = 0.5% obtained by the 

multiple scales method (─) and the continuation method (�). 

 

Figure 8. Frequency peak to peak response curve of q exhibiting the isola of the 2T-periodic 
response and obtained by the shooting method for σ = 0.2 and ζ = 1 %. 

 

Figure 9. Bifurcation set in the ω  − σ  plane for ζ = 1 %. Thick line represents the saddle 

node bifurcation for the 2T response associated with the isola. In this figure is also reported 

the bifurcation set associated with the order-2 subharmonic resonance induced by the Hertzian 

law (thin line). 

 

Figure 10. Frequency peak to peak response curve of q exhibiting the unstable transcritical 
bifurcation (σ = 0.336 and ζ = 1 %). Thick line : stable response; thin line unstable response. 

 

Figure 11. Photo of the used dynamic test rig. 

 

Figure 12. Experimental H1 (a) and H2 (b) harmonic response curves versus the 

dimensionless excitation circular frequency ω  (with ω  >1.9) and obtained for a 

dimensionless excitation force σ  ≈ 30 %.  

 

Figure 13. Experimental H1 (a) and H2 (b) harmonic response curves versus the 

dimensionless excitation circular frequency ω  (with ω >0.9) and obtained for a 

dimensionless excitation force σ  ≈ 30 %. 

 

Figure 14. Time histories of the dimensionless normal force Fexp versus the dimensionless 

time (ω  τ / 2 π) for ω   = 2.023 (a),  2.020 (b) and 2.014 (c) and obtained for a dimensionless 

excitation force σ  ≈ 30 %. 



 

Figure 15. Time histories of the dimensionless normal force Fexp versus the dimensionless 

time (ω  τ / 2 π) for ω   = 1.996 (a),  1.914 (b) and 1.848 (c) obtained for a dimensionless 

excitation force σ  ≈ 30 %. 
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Figure 1. Dynamic model of the single-degree-of-freedom impact oscillator. 

 

J. PERRET-LIAUDET and E. RIGAUD. 

 



-1

0

1

2

3

4

-2 -1 0 1 2 3

(1 + 2 q /3)3/2

1 + q + q 2 / 6 − q 3 / 54

q

F(q)

 
 

Figure 2. The dimensionless restoring contact force model (thick line) and its approximate 

form defined by Eq. (10) (thin line). 
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Figure 3. Bifurcation set in the ω   − σ  plane for ζ = 0.5%. 
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Figure 4. Frequency response curve A(ω ) exhibiting the subharmonic resonance (σ  = 0.5, 
ζ = 1 %). 
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Figure 5. Frequency response curve Min(q ) exhibiting loss of contact under the expected 
value q = −1.348, see Eq. (12), and for σ  = 0.5 and  ζ = 1 %. 
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Figure 6. Frequency peak to peak response curve of q obtained by the shooting method for 

σ = 0.5 and  ζ = 1 % : (a) the complete response curve; (b) the detail of the response curve 

around ω  = 2 (I: 1T-stable responses; II: 2T-stable responses without loss of contact; III:  2T-

stable responses with loss of contact; IV: 2T-unstable responses without loss of contact; V: 

2T-unstable responses with loss of contact). 
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Figure 7. Bifurcation set (Flip bifurcation) in the ω   − σ  plane for ζ = 0.5% obtained by the 

multiple scales method (─) and the continuation method (�). 
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Figure 8. Frequency peak to peak response curve of q exhibiting the isola of the 2T-periodic 
response and obtained by the shooting method for σ = 0.2 and ζ = 1 %. 
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Figure 9. Bifurcation set in the ω  − σ  plane for ζ = 1 %. Thick line represents the saddle 

node bifurcation for the 2T response associated with the isola. In this figure is also reported 

the bifurcation set associated with the order-2 subharmonic resonance induced by the Hertzian 

law (thin line).  
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Figure 10. Frequency peak to peak response curve of q exhibiting the unstable transcritical 
bifurcation (σ = 0.336 and ζ = 1 %). Thick line : stable response; thin line unstable response. 
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Figure 11. Photo of the dynamic test rig. 
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Figure 12. Experimental H1 (a) and H2 (b) harmonic response curves versus the 

dimensionless excitation circular frequency ω  (with ω  >1.9) and obtained for a 
dimensionless excitation force σ  ≈ 30 %. 
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Figure 13. Experimental H1 (a) and H2 (b) harmonic response curves versus the 

dimensionless excitation circular frequency ω  (with ω >0.9) and obtained for a 
dimensionless excitation force σ  ≈ 30 %. 
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Figure 14. Time histories of the dimensionless normal force Fexp versus the dimensionless 

time (ω  τ / 2 π) for ω   = 2.023 (a),  2.020 (b) and 2.014 (c) and obtained for a dimensionless 

excitation force σ  ≈ 30 %. 
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Figure 15. Time histories of the dimensionless normal force Fexp versus the dimensioneless 

time (ω  τ / 2 π) for ω   = 1.996 (a),  1.914 (b) and 1.848 (c) obtained for a dimensionless 

excitation level force σ  ≈ 30 %. 
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