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On inverse problems in electromagnetic field
in classical mechanics at fixed energy

Alexandre Jollivet

Abstract. In this paper, we consider inverse scattering and inverse boundary
value problems at sufficiently large and fixed energy for the multidimensional
relativistic and nonrelativistic Newton equations in a static external electro-
magnetic field (V,B), V € C? B € C! in classical mechanics. Developing
the approach going back to Gerver-Nadirashvili 1983’s work on an inverse
problem of mechanics, we obtain, in particular, theorems of uniqueness.

1 Introduction

1.1 Relativistic Newton equation. Consider the Newton-Einstein equation in
a static electromagnetic field in an open subset 2 of R", n > 2,

p=—-VV(x)+ iB(x)i,

_ i 1.1

p \/17%, (1.1)
dp dx

where x = x(t) is a C' function with values in Q, p = £, & = % and
V € C?(Q,R) (i.e. there exists V € C?(R", R) such that V restricted to Q is
equal to V), B € Fuag(2) where Fp,04(Q) is the family of magnetic fields on
0, ie. Frag(Q) = {B' € C1(Q, A,(R)) | B' = (B}), 3% By () + 5% By (x)+
%B{J(az) =0, r€D,ikl=1...n}and A,(R) denotes the space of n xn
real antisymmetric matrices.

By [|[V]|cz.q we denote the supremum of the set {|d2V (z)| | = € Q,
J = (rsdn) € (NU{O}H)™, D" Ji < 2} and by ||B|lc1q we denote the
supremum of the set {|#B;x(z)| | x € Q, i,k =1...n,j = (j1,.,Jn) €
(NU {0}, S0, ji < 1

The equation (1.1) is an equation for x = z(¢) and is the equation of
motion in R™ of a relativistic particle of mass m = 1 and charge e = 1
in an external electromagnetic field described by V' and B (see [E] and, for
example, Section 17 of [LL]). In this equation x is the position of the particle,
p is its impulse, t is the time and c is the speed of light.

For the equation (1.1) the energy

P2

E=c\/1+ 5t V(z(t)) (1.2)
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is an integral of motion. We denote by B, the euclidean open ball whose
radius is ¢ and whose centre is 0.

In this paper we consider the equation (1.1) in two situations. We study
equation (1.1) when

Q2 = D where D is a bounded strictly convex in the strong sense

open domain of R" n > 2, with C? boundary. (1.3)
And we study equation (1.1) when
Q=R"and |02V (2)| < B,/ + |z]) ] z e R", n > 2, (1.4)

102 Bi o (2)| < Bjopea (1 + J2) 7171l w e RY,

for [j1] < 2,]jo| < 1,4,k =1...n and some o > 1 (here j is the multiindex
je (Nu{oh)", |7l = >, ji and | are positive real constants).

For the equation (1.1) under condition ([.3), we consider boundary data.
For equation (1.1) under condition ([.4), we consider scattering data.

1.2 Boundary data. For the equation (1.1) under condition ([[.J), one can
prove that at sufficiently large energy E (i.e. £ > E(||V||c2.p, [|Bllct,p, D)),
the solutions z at energy F have the following properties (see Properties 2.1
and 2.2 in Section 2 and see Section 6):

for each solution z(t) there are 1,1y € R, t; < t5, such that
x € C3([ty,ta], R™), z(t1), x(t2) € OD, x(t) € D for t €]ty, ta], (1.5)
x(s1) # x(s9) for s1, 89 € [t1,1a], 81 # Sa;

for any two distinct points g, ¢ € D, there is one and only one solution
x(t) = z(t, F, qv, q) such that x(0) = qo, z(s) = ¢ for some s > 0.
(1.6)
Let (o, q) be two distinct points of dD. By sy g(E, qo, ¢) we denote the time
at which z(t, E, o, q) reaches ¢ from qo. By kov.s(E,q,q) we denote the
velocity vector (0, E, qo, q). By kv.s(E, qv,q) we denote the velocity vector

i‘<8V,B(E7 qo, Q)7 E7 qo, q) We consider kO,V,B<E7 qo, q)7 kV,B<E7 qo, Q)u do, 4 €
0D, qy # q, as the boundary value data.

Remark 1.1. For qo,q € 9D, qy # q, the trajectory of z(t, E, qo, q) and
the trajectory of z(t, E, q, qo) are distinct, in general.

Note that in the present paper we always assume that the aforementioned
real constant E(||V||c2.p, | Bl|ct.p, D), considered as function of
|\Vllc2,p and || B||c1 p, satisfies

E(M, A2, D) < E(N,, Ny, D) if Ay < X, and Ay < A}, (1.7)

2



for )\1,)\2,)\’1,)«2 S [0,+OO[

1.3 Scattering data. For the equation (1.1) under condition ([[-4), the following
is valid (see [Y]): for any (v_,z_) € B. x R", v_ # 0, the equation (1.1) has
a unique solution z € C?(R,R") such that

x(t) =v_t+x_ +y_(t), (1.8)

where y_(t) — 0, y_(t) — 0, as t — —oo; in addition for almost any
(v_,x_) € B. xR" v_ #0,

r(t) = vyt + 24 +y4 (1), (1.9)

where U4+ 7& 07 |’U+| <C vy = G(U_,$_), Ty = b(U_,{L‘_), y-l—(t) - Oa y+(t) -
0, as t — +o0.
For an energy E > c? the map Sg : Sgp X R®" — Sp x R" (where

Se={veB.||v=c\/1- (%)2}) given by the formulas
Uy = (I(U_,{L‘_), Ty = b(’U_,ZL‘_), (110)

is called the scattering map at fixed energy F for the equation (1.1) under
condition ([.4). By D(Sg) we denote the domain of definition of Sg. The
data a(v_,z_), b(v_,xz_) for (v_,z_) € D(Sg) are called the scattering data
at fixed energy E for the equation (1.1) under condition ([[-4).

1.4 Inverse scattering and boundary value problems. In the present paper, we
consider the following inverse boundary value problem at fixed energy for the
equation (1.1) under condition ([[.3):

Problem 1 : given kv 5(E, q,q), kov.s(E,qo,q) for all gy, q € 0D,
qo # q, at fixed sufficiently large energy E, find V' and B.

The main results of the present work include the following theorem of unique-
ness for Problem 1.

Theorem 1.1. At fized E > E(||V||c2.p, || Bllcr.p, D), the boundary data
kv.s(E, q.q), (q0,q) € 0D x 0D, qy # q, uniquely determine V, B.

At fized E > E(||V|c2,p, || Bllct,p, D), the boundary data ko yv,p(E, g0, q),
(q0,q) € OD x OD, qo # q, uniquely determine V, B.

Theorem 1.1 follows from Theorem 3.1 given in Section 3.
In the present paper, we also consider the following inverse scattering
problem at fixed energy for the equation (1.1) under condition ([4):

Problem 2 : given Sg at fixed energy E, find V and B.
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The main results of the present work include the following theorem of unique-
ness for Problem 2.

Theorem 1.2. Let A € R™ and let D be a bounded strictly convez in the
strong sense open domain of R™ with C* boundary. Let V;,V, € C2(R™, R),
By, By € CY(R”, An(R)) N Fynag (BR™), max(|[Vi 2., [Vallez, 0 | Br e, | B
lcrp) < A, and supp(V1) U supp(Vz) Usupp(By) U supp(Bs) C D. Let S%,
be the scattering map at fized energy E subordinate to (V,, B,) for p=1,2.

Then there exists a nonnegative real constant E(\, D) such that for any E >
E()\7D)7 (‘/1731) = (‘/2732) Zf and Only Zf Sl = S%}

Theorem 1.2 follows from Theorem 1.1, ([.7) and Proposition 2.1 of
Section 2.

Remark 1.2. Note that for V € CZ(R",R), if E < ¢* +sup{V(z) | z €
R™} then Sk does not determine uniquely V.

Remark 1.3. Theorems 1.1 and 1.2 give uniqueness results. In this
paper we do not prove and do not obtain stability results for Problem 1 and
for Problem 2.

1.5 Historical remarks. An inverse boundary value problem at fixed energy
and at high energies was studied in [GN] for the multidimensional nonrela-
tivistic Newton equation (without magnetic field) in a bounded open strictly
convex domain. In [GN] results of uniqueness and stability for the inverse
boundary value problem at fixed energy are derived from results for the
problem of determining an isotropic Riemannian metric from its hodograph
(for this geometrical problem, see [MR], [B] and [BG]).

Novikov [N2] studied inverse scattering for nonrelativistic multidimen-
sional Newton equation (without magnetic field). Novikov [N2] gave, in par-
ticular, a connection between the inverse scattering problem at fixed energy
and Gerver-Nadirashvili’s inverse boundary value problem at fixed energy.
Developing the approach of [GN] and [N2], the author [J3] studied an inverse
boundary problem and inverse scattering problem for the multidimensional
relativistic Newton equation (without magnetic field) at fixed energy. In [J3]
results of uniqueness and stability are obtained.

Inverse scattering at high energies for the relativistic multidimensional
Newton equation was studied by the author (see [J1], [J2]).

As regards analogs of Theorems 1.1, 1.2 and Proposition 2.1 for the
case B = 0 for nonrelativistic quantum mechanics see [N1], [NSU], [N3]
and further references therein. As regards an analog of Theorem 1.2 for the
case B = 0 for relativistic quantum mechanics see [I]. As regards analogs of
Theorems 1.1, 1.2 for the case B # 0 for nonrelativistic quantum mechanics,



see [ER], [NaSuU] and further references given therein.
As regards results given in the literature on inverse scattering in quantum
mechanics at high energy limit see references given in [J2].

1.6 Structure of the paper. The paper is organized as follows. In Section 2, we
give some properties of boundary data and scattering data and we connect
the inverse scattering problem at fixed energy to the inverse boundary value
problem at fixed energy. In Section 3, we give, actually, a proof of Theorem
1.1 (based on Theorem 3.1 formulated in Section 3). Section 4 is devoted to
the proof of Lemma 3.1 and Theorem 3.1 formulated in Section 3. Section
5 is devoted to the proof of Lemma 2.1 and Proposition 3.1 formulated in
Section 2 and in Section 3. Section 6 is devoted to the proof of Properties
(2.1) and (2.2). In Section 7, we give results similar to Theorems 1.1, 1.2 for
the nonrelativistic case.

Acknowledgement. This work was fulfilled in the framework of Ph. D.
thesis research under the direction of R.G. Novikov.

2 Scattering data and boundary value data

2.1 Properties of the boundary value data. Let D be a bounded strictly convex
open subset of R", n > 2, with C? boundary.

At fixed sufficiently large energy E (i.e. £ > E(||V|c2.p,||Bllc1.p, D)
> ¢ + sup,cp V(2)) solutions z(t) of the equation (1.1) under condition
(L.3) have the following properties (see Section 6):

for each solution x(t) there are t1,t, € R,#; < ty, such that

x € C3([ty, ta], R"), z(t1), x(t2) € OD, x(t) € D for t €]ty ta],

x(s1) # x(sq) for sy, 59 € [t1, 2], 51 # s, (1) o N(x(t1)) <0 (2.1)
and Z(tg) o N(z(tg)) > 0, where N(z(t;)) is the unit outward

normal vector of 9D at xz(t;) for i = 1, 2;

for any two points qo,q € D, q # qo, there is one and only one solution

x(t) = x(t, F, qv, q) such that x(0) = go, z(s) = ¢ for some s > 0;

(0, E, qo,q) € C*((D x D)\G,R"), where G is the diagonal in D x D;

(2.2)

where o denotes the usual scalar product on R™ (and where by “i(0, E, qo, q)
€ CY((D x D)\G,R™)” we mean that (0, E, qo, q) is the restriction to (D x
D)\G of a function which belongs to C*((R" x R")\A) where A is the diag-
onal of R™ x R™).



Remark 2.1. If B € CY(D, A,(R)) and B € Fpuy(D) (where A, (R)
denotes the space of n x n real antisymmetric matrices), then at fixed energy
E > E(||V|lc2.p, || Bllct.p, D) solutions z(t) of equation (1.1) under condition
(L.3) also have properties (2.1), (2.2) (see Section 6).

We remind that the aforementioned real constant E(||V||c2.p, | Bllct,p,
D), considered as function of |V'||c2 p and || B||c1 p, satisfies ([7). In addi-
tion, real constant E(||V||c2.p, || Bllct.p, D) has the following property: for

any C? continuation V of V on R", and for any B € C'(R", A,(R)) such
that B = B on D, one has

E(|"7”C27Dzo,57

‘BHCl,Dzo,sv Droﬁ) - E(”VHCQ,Dv ”BHCI,D7 D), ase — 0,
(2.3)
where D, . = {zo+ (1+¢)(x —x¢) | € D} for any zp € D and € > 0 (note
that D,, . is a bounded, open, strictly convex (in the strong sense) domain
of R™ with C? boundary).
Let E > E(||V]|c2.p, |Bllci.p, D). Consider the solution x(t, E, qo, q)
from (2.2) for qo,q € D, qo # q. We define vectors kyp(E, qo,q) and

ko,v,B(E, qo, Q) by

kV,B(EanQ) = i(SV,B(anOaQ)7E7q07q)a
kO,V,B(E7QO7Q) = $(07E7QO7Q>7

where we define s = sy g(E, qo, ¢) as the root of the equation
x(Saan07q) =q, $> 0.

For ¢y = q € D, we put sv.e(E,q,q) =0.
Note that

—2

|ko,v,5(E, q0,q)| = c\/l — (W) ’
-2
\kv.s(E, q,q)| = c\/l _ (M) |

for (¢, q0) € (D x D)\G.
Using Properties (2.1) and (2.2), we obtain

Lemma 2.1. At fived E > E(||V||c2,p, | Bllc1,p, D), we have that
sv.3(E, q0,q) € C(D x D,R), syp(E,q,q) € C'((D x D)\G,R) and
kv,s(E, q,q) € C'((D x D)\G,R").

We consider kyp(E, qo,q), kov.s(E,q,q); q,q € 0D, qo # q as the
boundary value data.

(2.4)



Remark 2.2. Note that if z(¢) is solution of ([[LJ]) under condition
([3), then z(—t) is solution of ([]) with B replaced by —B € Fyuay(D)
under condition ([.3). Hence the following equalities are valid: at fixed E >
E([Vllc2,p, I Bller,p, D),

kov.e(E,q,9) = —kv-5(E,q, ), (2.5)
k:V,B(anOaQ) = _k:O,V,—B(EacJaQO)’ (26)
SV7B(E7quQ) = SV,—B(Ea(LqO))

for go,q € D, qo # g

2.2 Properties of the scattering operator. For equation (1.1) under condition
(L.4), the following is valid (see [Y]): for any (v_,z_) € B. x R™, v_ # 0,
the equation (1.1) under condition ([.4) has a unique solution x € C?*(R, R")
such that

z(t) =v_t+ax_+y_(t), (2.8)

where y_(t) — 0, y_(t) — 0, as t — —oo; in addition for almost any
(v_,z_) € B.xR" v_ #0,

z(t) = vpt + x4 +y4 (D), (2.9)

where U4 7£ 07 ‘U+‘ <6 vy = CL(U,,I‘,% Ty = b(U,,I‘,), er(t) - 07 y+<t)
— 0, as t — 4o00.
The map S : B. x R" — B, x R" given by the formulas

vy =a(v_,z_), xy =blv_,x_) (2.10)

is called the scattering map for the equation (1.1) under condition ([[.4). The
functions a(v_,z_), b(v_,z_) are called the scattering data for the equation
(1.1) under condition ([[.4).

By D(S) we denote the domain of definition of S; by R(S) we denote the
range of S (by definition, if (v_,z_) € D(S), then v_ # 0 and a(v_,z_) # 0).

The map S has the following simple properties (see [Y]): D(S) is an
open set of B. x R™ and Mes((B. x R")\D(S)) = 0 for the Lebesgue measure
on B, x R"™ induced by the Lebesgue measure on R" x R"; the map S :
D(S) — R(S) is continuous and preserves the element of volume; for any
(v,z) € D(S), a(v,z)? = v2

For E > 2, the map S restricted to

Sp={(_,2_) € BexR" | Ju_| = 1|1 — (E)z}
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is the scattering operator at fixed energy F and is denoted by Sg.
We will use the fact that the map S is uniquely determined by its re-
striction to M(S) = D(S) N M, where

M=A{(v_,z_) € B. x R"|v_ #0,v_z_ = 0}.

This observation is based on the fact that if z(t) satisfies (1.1), then z(t +1t¢)
also satisfies (1.1) for any ¢y € R. In particular, the map S at fixed energy
E is uniquely determined by its restriction to Mg(S) = D(S) N Mg, where
Mg =YXgNM.

2.3 Relation between scattering data and boundary value data. Assume that
V € C(D,R), B € Cy(D, A, (R)), B € Frag(D). (2.11)

We consider equation (1.1) under condition ([.3) and equation (1.1) under
condition ([.4). We shall connect the boundary value data kv p(E,qo,q),
k’07v7B(E, qo, q) for £ > E(HVHC’Q,Da ||B||C’1,Da D) and (q, QQ) S (8D><8D)\8G,
to the scattering data a, b.

Proposition 2.1. Let E > E(||V||c2p, ||Bl|lcr.p, D). Under condition
(B:11), the following statement is valid: sy g(E, qo,q), kv.s(E, q,q), kov.s(E,
qo,q) given for all (q,q0) € (0D x OD)\OG, are determined uniquely by the
scattering data a(v_,x_), b(v_,z_) given for all (v_,x_) € Mg(S). The con-
verse statement holds: sy,p(E, qo.q), kv.s(E, q,q), kov.s(E,q,q) given for
all (¢, q0) € (0D x0D)\OG, determine uniquely the scattering data a(v_,z_),
b(v_,z_) for all (v_,z_) € Mg(S).

Proof of Proposition 2.1. First of all we introduce functions y, 7— and 74
dependent on D.

For (v,z) € R"\{0} x R", x(v,z) denotes the nonnegative number of
points contained in the intersection of 0D with the straight line parametrized
by R — R" t — tv+x. As D is a strictly convex open subset of R y (v, z) <
2 for all v,x € R", v # 0.

Let (v,z) € R"\{0} x R". Assume that y(v,z) > 1. The real 7_(v, z)
denotes the smallest real number ¢ such that 7_(v,z)v + x € 9D, and the
real 7, (v, z) denotes the greatest real number ¢ such that 7, (v, z)v+x € 0D
(if x(v,z) =1 then 7_(v,z) = 74 (v, x)).

Direct statement. Let (qo,q) € (0D x dD)\OG. Under conditions (2:1) and
from (2.1) and (2.2), it follows that there exists an unique (v_,z_) € Mg(S)
such that

X(U_,ZE_) =2,
Go=z_+71_(v_,2_)v_,
qg="bv_,x_)+ 1 (alv_,z_),b(v_,x_))a(v_,z_).
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In addition, sy 5(E, qo, q) = 74+ (a(v_,z_),b(v_,z_))—7_(v_,z_) and ky p(E,
qo,q) = a(v_,z_) and ko v,s(E, qo,q) = v_.
Converse statement. Let (v_,x_) € Mg(S). Under conditions (2.17), if x(v_,
x_) <1 then (a(v_,z_),b(v_,x_)) = (v_,z_).

Assume that x(v_,xz_) = 2. Let

go=x_+7_(v_,T_)U_.

From (2.1) and (2.2) it follows that there is one and only one solution of the
equation
kov.s(E, qo,q) = v, ¢ €D, q¢# qo. (2.12)

We denote by q(v_, z_) the unique solution of (R.13). Hence we obtain
a(v_, "L‘—) = kV,B(Ea q0, Q(U_, l’_)),
b(’l}_, ZL‘_) = Q('U—a l‘_) - k:V,B(Ea qo, Q(U_, x—))(SV,B(Ea qo, Q('U—’ IL'_))
+7_(v_,x_)).

Proposition 2.1 is proved. 0

For a more complete discussion about connection between scattering
data and boundary value data, see [N2] considering the nonrelativistic New-
ton equation (without magnetic field).

3 Inverse boundary value problem
In this Section, Problem 1 of Introduction is studied.

3.1 Notations. For x € D, and for E > V() + ¢?, we define

roste) = (E 1Y

At E > E(||Vlc2,p, |Bllct,p, D) for qo,q € D x D, qo # q, we define the
vectors ky,g(E, qo, q) and kov,5(E, qo,q) by

Eva(Ea qo, Q) = kv.5(E,90,9)

Y
1 Ve (B a.0l?

< (3.1)

ko,v,5(¥,90,9)

ko, v, B (Eq0,9)|2
——LVB 0t

1

%O,V,B<Ea qo, Q) = \/



E_Hld ]%V,B(Ea qo, Q) T (E%/,B(Ea qo, Q)a ey ]%\TZB(Ea qo, Q))a ];;O,V,B(Ea qo, Q) = (
kivp(E.q,q), - kivs(E, q,q)). Note that from (R.4), it follows that

|IE:V,B(Ea qo, Q)| = 7”V,E(Q)7 (3 2)
\kov,B(E, q,q)| = mv,e(q0). '

For B € Foay(D), let Foor(D, B) be the set of C! magnetic potentials
for the magnetic field B, i.e.

Fpot(D, B) := {A € CY(D,R") | Bi(x) = %Ak(x) - %Ai(x), r €D,
i,k=1...n}.
(3.3)
(The set Fpot(D, B) is not empty: take, for example, A(z) = — fol sB(xzo +
s(x — xp))(x — xo)ds, for x € D and some fixed point zq of D.)

3.2 Hamiltonian mechanics. Let A € Fpou(D, B). The equation (1.1) in D
is the Euler-Lagrange equation for the Lagrangian L defined by L(&,x) =

—c2y /1 — i—; +c'A(z) oz —V(z), 2 € B, and x € D, where o denotes the
usual scalar product on R™. The Hamiltonian H associated to the Lagrangian
L by Legendre’s transform (with respect to @) is H(P,x) = ¢ (1 + ¢72|P—
¢ 'A(2)|2)"? 4V (z) where P € R" and x € D. Then equation (1.1) in D is
equivalent to the Hamilton’s equation

T = ‘g—g(P, x),

P=-9%(pyg), (3.4)

for PeR" z € D.
For a solution z(t) of equation (1.1) in D, we define the impulse vector

P(t) = A + T A(2(1)).
U

Further for qo,q € D, qo # ¢, and t € [0, s(E, qo, q)], we consider

z(t, F, qo, _
P(t, By g) = — 00 a0 B gr,q)), (35)

\/1 _ itBgo.)?
c2

where (., E, qo,q) is the solution given by (B.Z). From Maupertuis’s prin-
ciple (see [A]), it follows that if x(t), t € [t1,t2], is a solution of (1)) in
D with energy F, then x(t) is a critical point of the functional A(y) =

2 [y e(y()]g(t)] + ¢ A(y(t)) o y(t)] dt defined on the set of the functions

t1
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y € C([t1,ts], D), with boundary conditions y(t;) = z(¢;) and y(t2) = z(t2).
Note that for qy,q € D, qo # q, functional A taken along the trajectory
of the solution z(., E,qo,q) given by (B2) is equal to the reduced action
Sov.a.x (40, q) from qo to g at fixed energy E for (B.4), where

Sov.ax (2 q)z{O’E o =a.
VAE ’ 05( a09) P<87 E7 qo0, Q) o 'jj<87 E7 qo, Q)dS, if q0 % q,

_ (3.6)
for qo,q € D.

3.3 Properties of Soy, 5 at fived and sufficiently large energy E. The following
Propositions 3.1, 3.2 give properties of Sp,, , , at fixed and sufficiently large
energy F.

Proposition 3.1. Let E > E(||V||c2.p, | Bllc1.p, D). The following
statements are valid:

SOV’A’E - C( D R) .

x D)\G,R), (3.8)

Sovar € C*((D x D)
aSOVAE .

A (Gr) = kyp(E, G x) + ¢ As(a), (3.9)
0S8, N

ngﬂ (¢ 2) = —hoyp(E. ) =7 A(C), (3.10)
O Soynr Ok B Ok, 5
W(C,x)— o, —22 (B, ¢ x) = o BB, ¢ x), (3.11)

for (¢,z) € (D x D)\G, ¢ = ((1,,Cn), o = (21, ..,2,), and i,j = 1...n. In
addition,

8SOVAE 8SOVAE
max(| AL AL ) < M (312)
82SOVAE M,

— 3.13
aw, NS 1)

for (¢,x) € (D x D)\G, ¢ = (1, .,Cn), = (21, .,20), and i,j = 1...n, and
where My and My depend on 'V, B and D.

Proposition 3.1 is proved in Section 5.
Equalities (B.9) and (B.10) are known formulas of classical Hamiltonian
mechanics (see Section 46 and further Sections of [A]).
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Proposition 3.2. Let E > E(||V||c2.p, |Bllct.p, D). The map vy p g :
0D x D — S"L, defined by

kvs(E,(, )
kvs(E, ¢ )|

has the following properties:

vpe(( r)= for (¢,x) € 0D x D, (3.14)

VV,B.E € Cl(ﬁD X D,Snil),
the map vvpps.:0D — S (—wvypr(( ), is a (3.15)
C! orientation preserving diffeomorphism from 0D onto S"*

for x € D (where we choose the canonical orientation of S"~' and the orien-
tation of 0D given by the canonical orientation of R™ and the unit outward
normal vector).

Proposition 3.2 follows from ([L.1), (L.3) and properties (R.1), (.2).

Remark 3.1. Taking account of (B.9) and (B.1(), we obtain the following
formulas: at £ > E(||V|c2.p, | Bllcr.p, D), for any z, ¢ € D, z # ¢,

ok! Okl
B@j(x) = _C< a;/;B(E,C,J})— 837] (E C .TJ)), (316>
Bij(z) = —c <a/§g73 (B,z,¢) — 61;6:,6?3 (E,x,g)) . (3.17)

3.4 Results of uniqueness. We denote by wg v p the n — 1 differential form on
0D x D obtained in the following manner:

- for x € D, let wyp, be the pull-back of wy by vy p g, where wy
denotes the canonical orientation form on S™' (i.e. wo(¢)(vy, .., U0 1) =
det(¢,v1, .., vp1), for ¢ € S* 1 and vy, .., v, € T;S™ ),

- for (¢,z) € D x D and for any vy, .., vp—1 € T¢4)(0D x D),

wo,v.B(C, ) (V1, s Un1) = Wv.B2(O)(0(¢ 1) (V1) s T oy (Vn1)),

where o : 0D x D — 0D, ({',2') — (', and UEC,m) denotes the derivative
(linear part) of o at ((,x).

From smoothness of vy g g, 0 and wy, it follows that wg v 5 is a continuous
n — 1 form on 0D x D.

Now let A € RY and V4,V, € C?(D,R), By, By € Fonay(D), such that
max(||Villc2.p, |[Vallc2.p, [|Billcr.p, [|B2llcrp) < A For p = 1,2, let A, €
]:pot(Dv Bu)
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Let £ > E(A A, D) where E(A, A, D) is defined in ([L.7). Consider B, 32
the differential one forms defined on (0D x D)\G by

Zk (B, ¢ x)da, (3.18)

for (¢,x) € (0D x D)\G, z = (x1,...,2,) and pp = 1,2. -
Consider the differential forms ®q on (0D x D)\G and ®; on (0D x D)\G
defined by

(IDO(C’:E) = _( ) (52 ﬁ )(C,ZE) /\dC(SOVQ,AQ,E _Sovl,Al,E)(C’x)
A Z ddCS()Vl,Al,E (Cv x))p A (ddCSOVQ,AQ,E<C7 x))q’ (3'19)

ptHg=n—2

n(n+1)

for (¢,x) € (0D x D)\G, where d = d; + d,,

(¢, ) = —(=1) [8(¢, @) A (ddcSoy, a, 5(C )"
+52(<,5L’) (ddCSOVQ,AQ,E<C7x))n71 - ﬁ1<C7x) (320)
A(ddCSOVQ,AQ,E(ga x))n_l - ﬁQ(ga l‘) N (ddCSO\/l,AI,E (Ca x))n—l} )

for (¢,x) € (0D x D)\G, where d = d; + d,.

Consider the C2? map incl : (0D x dD)\0G — (0D x D)\G, ((,z) —
(¢ )

From (B.g), (B.12) and (B.13), it follows that ®q is continuous on (9D x
D)\G and incl*(®) is integrable on D x dD and ®, is continuous on (9D x
D)\G and integrable on 9D x D (where incl*(®g) is the pull-back of the
differential form ®, by the inclusion map incl).

Lemma 3.1. Let A € RT and £ > E(\ A, D). Let Vi,V € C?*(D,R),
By, By € Frnag(D) such that max(||Vi||c2.p, |[Valle2.p, | Billct .o, || Bzllcr.p) <
A For p=1,2, let A, € Foout(D, B,,). The following equalities are valid:

n(n— 1)

/ incl*(®g) = / Dy (3.21)

8DxdD 8DxD

ﬁ‘bl(@ z) = (rv,e(@)"won,5 (¢ %) + v 6(2)" w8, (C, )
_]%VI,BI <E7 C,az) © ];VQ,BQ(E7<7:U> (322)

X (rvi,e(2)" 2wov,5, (¢ 2) + rvep(x)" >
XWo,v5,8,(C, ) A dzy Ao A dwy,
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for (C,x) € 0D x D.

Equality (B:2]]) follows from regularization and Stokes’ formula. Proof
of Lemma 3.1 is given in Section 4.

Taking account of Lemma 3.1, Proposition 3.2 and Remark 3.1, we obtain
the following Theorem of uniqueness.

Theorem 3.1. Let A € R* and E > E(\ A, D). Let Vi, V3 € C*(D,R),
By, By € Finag(D) such that max(||Vi||c2,p, |Vallc2.p, || Billct.p, || Ballct.p) <
A For p=1,2, let A, € Four(D, B,). The following estimate is valid:

/D (ra(@) — a.(2) (res,p(@)"™ = Py (@)™ da <
r(z)

2

—_— mel” (Pg). 3.23
271'5(77,— 1)' /8‘D><8D,an ( 0) ( )

In addition, the following statements are valid:

if kvi B (B, C, %) = kv, g, (E,C,x) for (,x € 0D, ¢ # x, then Vi = V5 and
By = B, on D; Zf kO,V1,Bl<E7 C7x) = kO,VQ,BQ<E7<7x> fOT C,J? € aDu C # €,
then Vy, =V, and By = By on D.

Proof of Theorem 3.1 is given in Section 4.
If By =0, B, =0 and Vi, V,, and D are smoother than C?, then Lemma
3.1 and Theorem 3.1 follow from results of [B] and [GN].

4 Proof of Theorem 3.1 and Lemma 3.1

Using Lemma 2.1, (E:4), Propositions 3.1, 3.2 and Lemma 3.1, we first prove
Theorem 3.1.

Proof of Theorem 3.1. From (B.23) and Proposition 3.2 and definition of
Wo,v,,B,, = 1,2, it follows that

/D'f’Vl,E<SU>n /Snl (1 + 22 ARG x)) do(w)da

TVI,E(SU)

+ /D rvy.E(T)" /Sn_l (1 + Bvi, (B, Goa(w), @) © w) do(w)dzx,

TVQ,E(fC)

where do is the canonical measure on S* !, and where o denotes the usual
scalar product on R”, and where for z € D and w € S* ! and p = 1,2,
Cuz(w) denotes the unique point ¢ of 9D such that w = vy, B, £.(¢). Hence
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using Cauchy-Bunyakovski-Schwarz inequality and (B.3) and the equality

Jon1 do(w) = I%’(Tf), we obtain
2

i ez B fir o) — e o) e
(4.2)
Estimate (.2) and equality (B.21)) prove (B.23).

Now assume that kv, g, (E,(, ) = kv, 5,(E,(,z) for {,z € 0D, ¢ # «.
Then from (B.1) and (B-15), it follows that the one form incl*(5% — 34)(¢, )
is null for any ¢,z € 0D, ¢ # x. Hence from (B.19), it follows that the 2n — 2
form incl*(®y)(¢, ) is null for any ¢,z € 0D, ¢ # x. Thus using (B.23), we
obtain [, (rv e(x)—rve(2))(rv,e(@)" ' —ry e(z)" 1)de < 0,and asn > 2,
this latter inequality implies that

TVl,E = TVQ,E on D (43)

Thus V; = V. )
Using (£.3) and the equality |kv; 5,(E, (, z)| = rv;, g(z) fori =1,2, 2 € D
and ¢ € 0D, and using ({.])), we obtain that

2
1 1 -
i Lt = 5 s [ R
_EV27B2 (E7 Ci,l‘(w)y l‘) ’2 da(w)dx

As [op.p®1 = 0 (due to (B.21)), we obtain that for any = € D, and any
w € Snila EVhBl(E’ gl,x(w)ax) = EV2,B2(E’ glyx(w)’x)' At fixed z € D’ we
know that (;, is onto dD. Hence the following equality is valid

7€V1J31<E7 C,a:) = ];:V27BQ<E7 C,.T), C € 8D, xz € D. (44)

From (f4) and (B-10), it follows that By = By on D.

Now assume that ko v, g, (£, (, ) = kov,.B,(F,(,x) for (,z € 0D, ( # .
Then using (R.§) and replacing B; by —B;, i = 1,2, in the proof, we obtain
(Vi, By) = (Va, By). 0

Using Lemma 2.1, (R.4), Propositions 3.1, 3.2, we prove Lemma 3.1.

Proof of Lemma 3.1. We first prove (B:23). Let U be an open subset of R"~!
and ¢ : U — 0D such that ¢ is a C? parametrization of 9D. Let ¢ : U x D —
0D x D, (¢,z) — (¢(C), x). We work in coordinates given by (U x D, ¢y). Let
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, . -
p, " =1,2. On one hand from definition of woy, B,, definition of vy, B, £ .

and (B.4), we obtain
wo,v,,B, (G ) Nday AL AN dwy, = (=1)"ry, p(x) ™" (4.5)
8]{3\/“73”

— 8];’VH7BH
)
dCl/\/\anfl/\d'rl/\/\dxn

for(eU and z € D and p=1,2.
On the other hand straightforward calculations give (dd¢Soy, A, (¢, ®) =

8%So
Z my=l..n ﬁ(g,l‘)dl‘ml N dng)

mo=1..n—1

(n—1)(n—2)

B¢ ) A ddeSoy, p, w(Ca)" = (=1) 2 (0= 1) (4.6)
- E 82SOV#,A#,E 82SOV#,A#,E
xdet | kv, 5, ( ,C,x%a@T(C,x),---,W(C,x)

dCl/\/\dgn_l/\dl‘l/\/\de‘n,

for ¢ € U, » € D. Note that due to (B.3) and Proposition 3.2,_]5V#7B#(E, ¢, x)
is orthogonal to acimkV#,B#(E, ¢,x),m=1...n—1, and that (ky, g,(E,(, ),
%E‘VH,BH(E, ¢, x), ..., ﬁEVuvBH(E’ ¢, x)) is a basis of R™. Hence from ([L.5),

({.d) and (B.9), we obtain
n(n—1)

B¢ ) AN ddSoy, a, 5(C)" = =(=1)7 7 (n = Dlry, g(2)" (4.7)
% EV#/,B#/ (Ea ga l‘) o EVH,BH(Ea ga l‘)

TV;“E(.T)Q

for € U, x € D. Definition (B:2() and equality ([.7) proves (B.23).
We sketch the proof of (B.21)). Let € €]0, 1] and o € D. We consider

waWBH(Q,x) N dl‘l VANPIRIAN d[L‘n,

D. ={xy+e(x—x0) | x € D}. (4.8)

As D is a strictly convex (in the strong sense) open domain of R", with C?
boundary, it follows that D, is also a strictly convex (in the strong sense)
open domain of R", with C? boundary, and in addition, as 0 < ¢ < 1,

dist(0D,0D.) = (1 — £)dist(dD, xy). (4.10)

where dist(0D,0D.) = inf{|x —y| | v € D., y € 0D} and dist(0D, zy) =
inf{|ly — zo| | y € 0D} > 0.
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For M and N two finite-dimensional oriented C* manifold (with or
without boundary), we consider on M x A the differential product structure
induced by the already given differential structures of M and AN and we
consider the orientation of M x N given by the already fixed orientation of
M and of N. The orientation of D, is given by the unit outward normal
vector and dD x D, is a C? manifold with boundary D x 9D, (which
is a C? manifold without boundary). Let incl. € C*(0D x dD.,0D x D,)
be defined by incl.(¢,z) = ((,z), ({,x) € D x dD.. Here we omit the
details of the proof of the following statement: fanDE P, — fanD ®; and
fanaDE incly(®o) — [op,opincl*(®g) as e — 17. These statements follow

from (B12), (B-I3) and (B-9). We shall prove that

/ o, = / inclZ(Po). (4.11)
0D x D, ODx0D,

For = 1,2, let Sy, € C*((R" x R")\{(z,z) | € R"},R) such that
S0, (¢, ) = Soy, 2, (¢, 2), ((,2) € (D x D\G (from (BF), it follows that
such a function Sy, exists). Let 0. = dist(0D,0D,). Let Wy 5. be the open
subset 0D + B(0,%) ={z+y |z € 9D, y e R", |y| < %} and let Wy, be
the open subset D.+B(0,%) = {z+y |z € D., y € R", |y| < &}. Note that
Wi s, is an open neighborhood of dD which does not intersect W s, which
is an open neighborhood of D.. Hence S, € C*(Wi 5. x Was.,R) and there
exists a sequence of functions (Sy, ) such that

SO”’m € Cg(le‘Ss X WQ,ésaR)a (412)
6‘04 (SO - SO )

su wm I T, —>(), as m — 400. 413

(x,y)EngDE | 8xa1@ya2 ( y)| ( )

a=(ay,a)eN?
la|=a1+az<2

Fix m € N. Let p = 1,2. We define the differential one-form, 34, on
(0D x D.) by

BA(Cw) = ey (0) = = > ALw)da, (1.14)
j=1

for (¢,z) € D x D, and x = (z1,...,2,) and A, (z) = (A (z),..., An(x))
and where d = d¢ + d,, is the De Rham differential operator on D x D..
We define the continuous differential 2n — 2 form ®,, on 9D x D, by

Bom(Coa) = —(—1)"F (B2 — B 2) Ade(Soy,, — Sor,)(C, )
A (ddeSo, ,, (¢, ) A (ddeS,,, (C,x),  (4.15)
p+q=n—2
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for¢ € 0D, x € D., where d = d;+d, is the De Rham differential operator on
0D x D.. We define the continuous differential 2n — 1 form @, ,,, on 9D x D,
by

n(n—1)

O1m(Cx) = —(=1)" = [BL(¢ @) A(ddeSo,.,, (¢, 2)" " + Br(C, x)
/\<ddC802,m (Cv x>>n71 - ﬁiﬂ(@ I) A (ddCSOQ,m (Cv x>>n71
—B2(C,x) A (ddeS,,,, (C,2)" '] (4.16)

for (¢,x) € D x D..
From (f.14)-(f.16), (B.9), (E.13), it follows that

/ Oy, — ®, asm — +oo, (4.17)

ODx D, ODx D,

/ inclZ(Pom) — incl?(®g), asm — +oo. (4.18)
0D XD ODx0D¢

If we prove that [, 5 ®1m = [5pyap. inCli(Pom), then formula (fETT) will

follow from ([.17) and ({.13).
From ([.17), it follows that

dd;S,.,, is a C" form on 0D x D, (4.19)
d(dd¢S,,,.) =0, (4.20)

where d is the De Rham differential operator on 9D x D.. From (fE13), it
follows that

1
dﬁ;L:z(Cv SL’) = _ddCSOu,m (Cu SL’) - Z B;'Ll,jg (.T})dﬂfjl A d'rjm (421)

1<j1<j2<n

for (¢,x) € 9D x D, and x = (x1,...,z,) (B , () denotes the elements of

B,(z)). From (EI19)-(E21), it follows that @, is C* on D x D. and that

Ao (¢, 1) = (=1)" Py, (¢, ) + w(C, ), (4.22)

oG ) = (-1 X (Bsle) = B (e

/\dC(SO2,m - 801,m)(§7 l‘) A Z (ddCSOLm(ga x))p A (ddCSO2,m (Ca x))q’
p+qg=n—2

for (¢,x) € D x D, and x = (71,...,m,). Note that as B,, p = 1,2, is
continuously differentiable on D, then the 2-form defined on 0D x D. by
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Zl§j1<j2§n(§?1,j2(x) — B}IJQ(:E))d:EjI A dzj,, ((,x) € 0D x D. is also C1.
Note that (D, is a n-dimensional C* manifold and ([:27))

w(¢,z) = dw (¢, z), (4.23)

where

n(n+1 SQm_Slm 5
o( ) = (1) e T NOT ) )
1<j1<j2<n

drj, Ndzj, A (ddeSy,,, (C,x)) A (ddeSo,, (¢, )7, (4.24)

pHg=n—2

for ((,z) € 0D x D, and & = (z1,...,%,). Since dD, is a (n— 1)-dimensional
C? manifold, it follows that

inclZo(C,x) =0 (4.25)

for (¢,z) € 0D x 9D.. Using (E23), (E23), (F23), we obtain by Stokes’
formula the equality [, 5 ®1m inclz (Pom). =

= fanaDE

5 Proof of Lemma 2.1 and Proposition 3.1

5.1 Continuation of (V,B) and notations. Let V € C?(R",R) be such that
V =V on D and ||[V]egn < o0. Let B € C'(R", A, (R)) (where A,(R)
denotes the space of real antisymmetric matrices) such that B=BonD
and || B|c1 g < 00. Let ¢ be the flow for the differential system

p=—t (5.1)

Ji+ 2
. 1.
p=—VV(r)+ -Blz)—L

c /1""%;

for € R" and p € R” (it means that a solution of (Bp-1]), (z(¢),p(t)), t €
Jt_,t.[, which passes through (xg,py) € R" x R™ at time t = 0, is written as
(x(t),p(t)) = ¥(t, o, po) for t €]t_,t,[). For equation (b.1]), the energy

o &/% V() (5.2)

is an integral of motion.
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Under the conditions on V and B, ¢ is defined on R x R” x R™ and
P € CH{RxR" xR, R" x R"), and a solution x(t), t €]t_,t, [, of ([.T) which

v

starts at gy € D at time 0 with velocity v is written as z(t) = (¢, z, =),

Vi
t €)t_,ty| (we write ¥ = (¢1,19) where ¥; = (¢},...,¢¥7") € CH(R x R™ x
R™,R"), i = 1,2).
For v € R" and x € R", we define the vector F(z,v) of R" by

Fla,0) = —VV(z) + %é(az)v. (5.3)

For z € R" and E > 2+ V (z), we denote by 7y () the positive real number

TVE(SU) =c (LM) -1, (5.4)

c2

and we denote by Sz,jgl the following sphere of R™ of center 0

St ={p €R"[Ip| = ry p(2)} (5.5)

5.2 Growth estimates for a function g. Consider the function g : R® — B,

defined by
x

9(r) = ——= (5.6)
1+ 2

c2
where x € R™. This function was considered for example in [J1].
We remind that g has the following simple properties:

1
[Vgi(2)]? < T EE (5.7)
1
l9(z) —g(y)| < V/n sup —|z—y[,  (5.8)
c€[0,1] \/1Jr z+(1-2)y
3yv/n 1
Vo) = V)| < 22 sup -yl (59)

C e€l0,1] 1+ W

forx, ye R", i=1...n,and g = (g1,. .., gn). The function g is an infinitely
smooth diffeomorphism from R” onto B, and its inverse is given by ¢~ !(x) =
L for z € B..

=2
-

5.3 Proof of Lemma 2.1. For qy,q € D, qo # q, let ty 4, = sup{t >
0 | ¥1(t qo, kov.8(E, q,q))€ D}. From Properties (2.1) and (2.2), it fol-
lows that kovp(E,.,.) is continuous on (D x D)\G and for ¢y,q € D,
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q # q z}nd any 81,8 € [0,14 g04[, 51 # 52, @blgsl,QO,ko,v,B(E,%,Q)) #
V1(82, qo; ko,v,B(E, qo,q)) and N(qy) o %@bl(t,%, kov,B(E, G0y q))ji=ts 404 19
positive, where ¢, = 11 (ty 40.0: 90, ko.v.8(E, qo,q)) (and where o denotes the
usual scalar product on R"). Using also continuity of ¢;, one obtains that
sv.s(E, qo,q) is continuous on (D x D)\G. Then we obtain that sy z(F, g,
q) € CY((D x D)\G,R) by applying implicit function theorem on maps
m; : R x (R" x R"\A), (t,z,y) = y; — ¥i(t,z, kovs(E,z,y)),i=1...n,
where A = {(z,z) | * € R"} and kovp(E,.,.) is a C' continuation of
kovg(E,.,.) on (R* x R")\A (such a continuation exists thanks to (2.2),
and note that for any qo,q € D, ¢ # qo, kv.s(E,q,q) # 0). Note that

kvs(E, qo,q) = 9(¥a(sv.8(E, @, 9), 90, kov,5(E, 40,9))), 90,9 € D, qo # . It
remains to prove that sy, g(E, qo, q) is continuous on G = {(¢’,¢') | ¢ € D}.
Let o = ¢ € D. Let (go,m) and (g,) be two sequences of points of D such
that qom # qo for all m and qo,, goes to ¢y and ¢, goes to ¢ = qp as
m — +oo. Let R = limsup,, ., sv,5(E, qom,¢n) € [0,400]. We shall
prove that R = 0. Assume that R > 0. Note that by conservation of en-

_ 2
ergy |kov.s(E, qom,qm)| < c%(%) — 1. Using definition of R and

C

2
compactness of the closed ball of R™ whose radius is C\/ (%) — 1 and

whose centre is 0, we obtain that there exist subsequences of ¢y, and g,
(respectively still denoted by qo., and g,,) such that

hI}E SV,B<E7 qo,m7 qm) = R7 (510)
kov.(E, Go.m, qm) converges to some k € R"™. (5.11)

Using conservation of energy, we obtain that

k| = C\/<E‘07‘2/(q°))2 Y (5.12)

Using (B.11) and (5.10) and continuity of ¢, we obtain that

1/}1 <t7 qo, k) = m1—1>1:I|—100 ’l/}l <t7 qo,m; ZJO,V,B<E7 qo,m; Qm))a for all t € [07 R[ (513)

For all m and ¢ € [0, sv.58(E, qom; @m)l; ¥1(t; Gom: ko.v.5(E, qom, ¢m)) € D.
Hence using (b.13), we obtain that

"Lpl(t,Q(), k) € D, te [O,R[ (514)

In addition,
wl(oa qo, k) = qo € D. (515)
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Then R # +oo (otherwise this would contradict (2.])), in particular the fact
that the solution of ([[.T]) under condition ([[.3) with energy F, which starts
at time 0 at go = ¥4 (0, qo, k), reaches the boundary 9D at a time ¢, > 0 and
satisfies the estimate 8(;@1 (ty,qo, k) o N(¢1(ts,qo,k)) > 0) .

Using continuity of %; and lim,, i1 Gom = o, Myt @ = qo,
limy,— 100 Sv.B(E, Qoms @m) = R, lim,, 4 o I_COMB(E, qo,m> @m) = k and the def-
inition of sy 5(E, o m, ¢m), We obtain that

1/}1 (R7 qo, k) = mli};{loo ’l/}l <8V,B(E7 qo,ma qm)7 qo, 7€0,V,B<E7 qo,m7 Qm))
= lir£ Um = Qo (5.16)

Properties (B.16), (5.19), (5.14) and (R.1]) imply R = 0, which contradicts the
assumption R > 0. Finally we proved that sy g(F, .,.) € C((D x D)\0G,R).

Let o € D. From (R.J), it follows that for sufficiently small positive
e, E is greater than E(||\~/||02,Dx0’6, ||B||017Dx0,57D73075) where D, . = {zo +
(1 +¢e)(x—x9) | = € D}. Hence one obtains that solutions of energy FE for
equation (b)) in D,, . also have properties (R.]]) and (2.3); and replacing V/,
B, and D by V, B and Dy, - above in the proof, one obtains that sy 5(F, ., .)
is continuous on (D, X Dyy - )\{(¢,9) | ¢ € 0Dy, -} (sp.5(E,4,4), (¢, q) €
Dyye X Dy, ., are defined as syp(F, q,q), (q0,q) € D x D, are defined in
Subsection 2.1). Now, using also D C D,, . and the equality sy.z(E, qo,q) =
sy 5(E, qo,q) for qo, ¢ € D, one obtains sy p(E,.,.) € C(D x D,R) (the
equality sy.p(F, q,q) = sy 3(F,q,q) for g, q € D, follows from the fact
that if (x(¢),p(t)) is solution of (B.]) in D, then (x(t),p(t)) is also solution
of (B.1) in Dy, ).

Lemma 2.1 is proved. O

5.4 Proof of Proposition 3.1. From Lemma 2.1, ¢ € C'(RxR" xR", R" xR"),
A € C'(D,R"), it follows that Sy, , , € C(D x D,R) and Sy, , , € C*((D x
D)\G,R). Equalities (B.9) and (B-I()) are known equalities (see Section 46

and further Sections of [A]). Statements (B.§), (B.11), (B.12) follow from (B.9)
and (B-I0). We shall prove (B-I3). We omit indices y g for sy g, kov.p and ky g

where ko, k are defined by (B.1]). Using the equality y — z = fOS(E’I’y) %(t, x,
ko(E,z,y))dt and estimate |%(t, z, ko(E,x,7))| < ¢, we obtain
ly — z| < cs(E,z,y), forall z,y € D, y # x. (5.17)

Derivating equality v, (s(E,z,y), z, ko(E, z,y)) = y with respect to y;, we
obtain that
o . ok
o = (B k(o) o 3 B e, (19
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0s 81/}1

+ ——(s(E, z,y), 2, ko(E, 2,1)),

for any z,y € D, x # y and where (ej,...,e,) is the canonical basis of
R™ (and where o denotes the usual scalar product on R"). For t € R, = €
D, and k € R" and j = 1..n the following equality is valid: ¢/ (¢, z, k) =
z; +tg;(k +f0 l9j(k + [ F(¢1(0,2, k), g(¥2(0, 2, k)))do) — g;(k)] ds. Hence
we obtain that fort € R, x € D, k = (ky,...,k,) € R*, and j = 1..n,

o J Ha. t T Ha. s
aikll(t,l’,k> :ta—.ZZ(k>+A [8—2<k+/0 F<w1<07x7k)vg(d@((j?x’k)))

dO') - ﬁ<k):| ds + /t v9]<k + /OS F<w1<07x7 k),g(i/@(a’,ﬂ?, k)))dO’) ©
/0 S %F (1, 9(¥2))i(0,2. 1) dords, (5.19)

for any [ = 1..n. Define
R= sup s(E,2,y),

(«'y')eD

0
Ms = sup %F(i/fl, (1/12)) (t,z’ k) \

te[0,R],2’€D,l=1...n
2
SUP 1 e E-V(x!)
\k\s% <72 -

c

M4 = maX(Mg, \/EHVHCQ,D + n||B||C’1,D)~

Then using (p.19) and growth properties of g, we obtain that

O o8 ) Bl . ,) — 508 2.9) B, ,)
< Mys(E,z,y)*(1+ M) (5.20)

for z,y € D, x # y and j,1 = 1..n. where ko is defined by (B-1)).
Let z,y € D, x # y. Using the identity

B B s(E,x,y) _
k(E7x7y) = k(](E,SL’,y) _'_/0 (—VV(%(SJ?, k(](E,SL’,y)))

L B (s 2, Fol B, ) g (s, Rol(E. x,y>>>) ds,

we obtain the following estimate

\k(E,z,y) — ko(E,z,y)| < Mss(E,x,y), (5.21)
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where M5 = v/n||V|c2.p + n||Bl|c1 p. Using (B-3), we obtain that

- Ok _ 10]ko|? B
]{Z()(E,l’,y)o 8yz (E,.I‘,y)— 58—%<E7x7y) _07 (522)
for i = 1..n. From (B.9), (£-21]) and (5.29), it follows that
k(E,,y) 1 . .
_ E x,y) < —= k(E,x,y) — ko(E,
(e 2 © 3 B0 < g B~
Ok 1 ok
,y)) o %, (B, z,y)| + WE.x y)|\ko(E,x,y)o 8;(3%9)\
< ((f R 1) Mis(E )| A (E ), (5.23)
fori=1..n. B
k(Eaxy) 1

Let (v!,...,v" 1) be an orthonormal family of R" such that (IIE(E FYOTRAE

..,v" 1) is an orthonormal basis of R™. Note that using definition of g and

(6:23), we obtain

(Vay(ko(E. 2.9)) o g—’;@ £,9))jmtn = (5.24)

(2

| Rl )P\ T 0k
c? Y;

Hence using (5.24), (£.20) and (B.18) (and k(E, z,y) o v = 0), we obtain

(E,z,y), i =1l.n.

|ko(E, 2, y)|?

> s(E,x,y)

S(E,x,y)\g—];(ﬂx,y) o = \/1+
. Ok, .
x|(Vg;(ko(E,z,y)) o @(E,x, Y))j=1.n 0 V"|

i

ko(E 2 3. 0k
< A1 BB o4 220,

o] ( (E,z,y),z, ko(E,2,y)) 0 Ok

0 (E7 l’, y))]iln © vh|

5 0

ko(E, z,y)|? 21 4 3,9k h
— \/1+T nMys(E, x,y) (1—0—Z)|ayi (£, 2, y)| + |vy]
Supyep £ — V(2') k

= 02

3 Ok
(nMy(1+ 2)s( B, 2,9)°| 5 2

0, (E,z,y)|+ 1), (5.25)
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=

fori=1...n. Let Mg =c! ((0*2 inf,.p(E— V() — 1)_ M5 + 2 x
supep(E —V(2'))(nMy(1+2) +1). From (B:23) and (5-29), it follows that

(B, 9) 2B, 2 )| < rMo(1 + s<E,x,y><s<E,x,y>|§—’;j<E,x,y>|>>,
(5.26)

Ay
fori=1...n ) )
Using uniform continuity of s(E,.,.) on D x D, we obtain that there
exists some 7 > 0 such that if z,y € D, |z —y| <17, then /nMss(E, z,y) <
1 Ther}, using (p.26), we obtain that s(E,x,y)|g—';;(E,x,y)| < 2v/nMg, for
z,y € D, |z —y| <nandi=1.n. Now using the continuous differentiability
of ko(E, .,.) on (D x D)\G, we obtain that |ak°(E z,y)| < Emy

D, x # y and where M] = max(2Mgy/n, RSUD, yrep jar—y|5n (E z,y)]).
Putting M, = sup,_, ,, cM] and using (5-17) and (B-I7), we obtaln (B13). O

for z,y €

6 Proof of Properties (2.1) and (2.2)

In this Section we first consider solutions z(¢) of (B.1]) in an open bounded
subset 2 of R™ (see Subsection 6.1) and we give properties of these solutions
at fixed and sufficiently large energy (see Subsections 6.3 and 6.4) (£2 should
be thought as an open neighborhood of D). Using these properties we prove
Properties 2.1 and 2.2 (see Subsection 6.5). Subsections 6.6, 6.7, 6.8, 6.9 are
devoted to the proof of Propositions 6.1, 6.2, 6.3, 6.4 formulated in Subsection
6.4.
We keep notations of Subsections 5.1, 5.2.

6.1 Additional notations. Let €2 be a bounded open subset of R™ with frontier
0€). We define a positive number §(2) by

5(82) = sup |z|. (6.1)

z€Q

We consider the following equation in €2 :

p=F(r i), p=—F——, v, peR" (6.2)

()& is defined by (B.3). For the
equation (62), the energy E = ¢/ 2ZOE L V(5(4)) is an integral of motion.




Note that if z(t), t €]t_, ¢, [, is a solution of (p.3) which starts at z €
at time 0 with velocity v then z(t) = ¥ (t,zg, g7 (v)), t €]t_,t [, where
the function g¢ is defined by (B.6) and where ¢ = (11,1) is the flow of the
differential system (B-1]). We obtain, in particular, z(t) — ¥ (tx, zo, g 1 (v)),
as t — tu, and (1) — g(Wo(te, w0, g 1 (v))), as t — t..

We denote by A the open subset of R x € x R™ where the flow of the
differential system (b.9) is defined, i.e.

A={(t,z,p) eRx Qx R" | Vs € [0,t] ¥1(s,x,p) € Q},

where 1) = (1, 1) is the flow of the differential system (B.1)).
For E > ¢®+sup,cq V(z), we denote by Vg the following smooth 2n — 1-
dimensional submanifold of R?"

Vi ={(z,p) € A xR" | |p| = ry x(2)}, (6.3)

where 7y () is defined by (£.4).
For E > ¢ + sup,.q V(z), we also consider the map pp € CH(A N
(]0, +o0[xVEg) , 2 x Q), defined by

op(t,x,p) = (x,1(t,z,p)), for (t,z,p) € AN (]0,+o0[xVg). (6.4)

6.2 Estimates for the force F'. We define the nonnegative real number 3 (‘7, B,
Q) by

B(V,B,Q) =max | sup [95V(z)], sup |3 Bi(x)|. (6.5)
ae(§5?o})n a’E(KIEs{]O})"
la]<2 la/|<1

The following estimates are valid:

[P, 0)] < nB(V, B.Q) (o] + 1), (6.6)

|F(z,v) — F(«/,v)] < nB(V, B,Q) [|x — | (1 + M) + %W — v@ . (6.7)

C

for z, 2’ € Q and v,v’ € R™.
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6.3 Some constants. For x € Q and E > ¢* + sup,.cq V(2'), we define the
following real constants

Cy = 2¢% + sup (V(x') + 8|2/| <|vf/(a;')| + Y |Bi,j(x')|>> , (6.8)

!
a'€Q ij=1..n

22(17/ R 2 2
o, = 02\/1 n 800n ﬁ(V,B,Q) 5((2)

" + sup V ('), (6.9)
c e
Cy = Cy (1+55(Q )C P (6.10)
10+/2n3/2 L/ é 10\/_6(Q)n3/2B(V B,Q)
( )
3/25(0)23 3/2 Y4
L L0n*/25(Q) ~( ( 600n*25(Q)B(V, B, ) +24n1/2>
E—-V(x) V(x)
20\f 2n%5(Q)B(V, B, Q) S 6<ﬂ;3v/jﬁ)<vm> 40n*25(Q)B(V, B, Q)
E - f/(a:)

~ 2 ’
(=) -

1021325 (0 / B.Q) 10v2s50)n®/26(V,5.9)
Cs= |1+ 0V2n* P05V, B, ) S (6.12)
E—V(x)
L 200*B(V, B, )5(%) - 120n°/28(V
E—V(x) E - v

. B 2 2 20n25(v B,Q)6(Q)
Co = jnf (\/1 (E - V(az')) E— V() ) - (613)

=it o)1 - c? 2 _ 5e(n + 1)Y2n%5(Q)
Cr = b ( \/1 (E — f/(a;f)) E—V(z') (6:14)

5/o o 10n3/28(V,B,9)5(Q)
0280805 [ 1| 90p1/2, E-V@)

BV, B,e
C"T/E( )
xm[m\fﬂﬂofa( )})

Now assume that 2 is a bounded strictly convex (in the strong sense)
open domain of R"™ with C? boundary. Let yq be a C? defining function for
Q,ie. Q= x5 (]—00,0]) and 92 = x5'({0}) and for all x € I Vxqa(z) # 0
and the Hessian matrix Hessyq(z) of xq at x is a symmetric positive definite
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matrix. For E > ¢ 4 sup,.q V(z), we define the real constant Cs(E,V, B,
Q1) by

2 )2 _4n09(9)5(‘77{5’a9), (6.15)

Cs=Cro(2) [ 1— _
E —sup,cq V(y) E —sup,cq V(y)

where Cy(2) and Cy(€2) are the two positive real numbers defined by

Co(2) = sup [Vxa(z)], (6.16)
€N

Co(®) = inf [Hessxa(e)(w.v)] (617)
vesn—1

Note that from (6.10)-(6.19), it follows that

SUp,eq C3(E, 7, ‘773, Q) — 0, as £ — +o0,
Cs(E, ‘773;9) —1>0, as £ — +o0,
Cq(E, f/,B,Q) —c¢>0, as £ — 400,
Cs(E, ‘77379) — C19(2) >0, as F — +oc.

(6.18)

When € is strictly convex in the strong sense with C? boundary, then
one can relate an upper bound for the real constant E(Hf/HCzQ, HB”017Q, Q)
(mentioned in Subsection 2.1) with constants C, Cs, sup,cq Cs, Cs, C7 and
Cs (see Subsections 6.4 and 6.5).

Remark 6.1. We remind that 1% is a ot continuation of V' on R" and
that B € C'(R", A,(R)) is such that B = B on D. Note that from (B.§)-
E.13) it follows that Cy(V, B, D), Co(V, B, D), sup,cp C3(E,z,V, B, D),
E,

Cs(E,V,B,D), C+(E,V,B,D) and Cs(E,V,B, D) depend only on (V,B)
and D.

6.4 Properties of the first component of the flow of (B.2) at fized and suffi-
ciently large energy E. The following Proposition 6.1 gives an upper bound
for living time for solutions of (6.3) with energy E when F is sufficiently
large.

Proposition 6.1. Let
E > (71<£}7Z§7g2)7 (6'19)

where Cy is defined by (0.3). Let x :Jt_,t [— Q be a solution of (B.2) with
energy E, where tx € RU {do0}. Then the following statement holds: t_,t
are finite and they satisfy the following estimate

56(€2
ot < 22 (6.20)
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where §(S2) is defined by (B.1)).
A proof of Proposition 6.1 is given in Subsection 6.6.

For E > C,(V,B,Q) (Cy is defined by (.8)) and for (z,p) € Vg, we
define the real numbers ¢, , , and t_ , , by

trop = sup{t >0] (¢t,z,p) € A}, (6.21)
= inf{t <0 (¢,z,p) € A}. (6.22)

t_vva

The following Proposition 6.2 gives, in particular, a one-to-one property
of the map g defined by (£.4).

Proposition 6.2. Let
E > max(C,(V, B,Q),Cy(V, B,Q)), (6.23)

where constants Cy and Cy are defined by (p.§) and (p.9). Let x € Q and let
D1,D2 € SZE (defined by (B.3)). Then the following estimate is valid:

|1 (1, @, p1) — Vi(te, 7, p2)| — [trvr — tava|| < Csltivy — tovs, (6.24)

2 )
17
2

for (t1,t2) € [0,t4 2p,[X[0,t4 2 p], where v; = \/pi i = 1,2, and where

Cy = Cs(E,x,V,B,Q) is defined by (B.17).
A proof of Proposition 6.2 is given in Subsection 6.7. We remind that

sup Cs(E,z,V,B,Q) — 0, as E — 400 (see (B13)). (6.25)

€N

Taking account of (6.25) and the equality ¢, (0, x, p) = x for any (z,p) € Vg
and taking account of Proposition 6.2, we obtain that at fixed and sufficiently
large energy F the map ¢g defined by (6.4) is one-to-one and its range is

included in (2 x Q)\{(z,z) | z € Q}.
The following Proposition 6.3 is proved in Subsection 6.8.
Proposition 6.3. Assume that

E Z Cl(va Ba Q)a
E> \/1 | 400025V B,2)20(Q)2 ¢ SUp,cq Vi(z), (6.26)

c4

min(Cy(E,V, B,Q),C7(E,V,B,Q)) > 0,

where Cy, Cg and C7 are defined by (p.§), (6-13) and (6-14). Then the map
op defined by (B4) is a local C* diffeomorphism at any point (t,x,p) €
AN (]0, +00[x V).
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Now assume that €2 is a bounded strictly convex (in the strong sense)
open domain of R” with C? boundary. Let yq be a C? defining function for .
For E > ¢ + sup,.q V (), real constant Cg(E,V, B, Q) is defined by (5.17)
with respect to xq.

The following Proposition 6.4 gives a surjectivity property of the map
vp defined by (Bb.4) at fixed and sufficiently large energy E.

Proposition 6.4. Let

E Z Cl(V,B, Q)a
E> ¢ \/1 | 40028V, BR6Q)? | SUp,cq V() (6.27)

c4

min(Cs(E,V, B,Q),C7(E,V,B,Q),Cs(E,V,B,Q)) > 0.

where Cy, Cg, C7 and Cy are defined by (p.§), (0-13), (6-14) and (B.17).
Then (2 x Q\{(z,z) | x € Q} is included in the range of the map vg

defined by (6.9).

A proof of Proposition 6.4 is given in Subsection 6.9.

Taking account of Propositions 6.2, 6.3, 6.4, we obtain, in particular,
that at fixed and sufficiently large energy E the map ¢g defined by (p.4) is
a C! diffeomorphism from AN (]0, +oo[xVg) onto (2 x Q\{(z,z) | x € Q}.

Now we are ready to prove Properties 2.1 and 2.2.

6.5 Final part of the proof of Properties (2.1) and (2.2). Let xp be a C?
defining function for D, i.e. yp € C?(R",R) and D = xp'(] — 00, 0[), and
0D = xp'({0}), and for all € D Vxp(z) # 0 and the Hessian matrix
Hessxp(x) of xp at x is a symmetric definite positive matrix.

Let #9p € D. For ¢ > 0, we define the open neighborhood €. of D by
Q. ={zo+ (1 +¢)(@' — ) | 2 € D}. Then €. is also a bounded strictly
convex in the strong sense open domain of R" with C? boundary and the
map xq. € C*(R",R) defined by xo.(z) = xp(zo + 52), = € R, is a C?
defining function for €).. In addition, note that

$E§QE¢>$Q+%66D,

Vxa.(r) = (1+¢)7'Vxp(zo + 552), 2 € R",

Hessxo,(x) = (14 &) 2Hessxp(xo + 552), z € R", (6.28)
sup,cq, (inf{|z —y| | y € D}) = esup{|z — x| | = € D} — 0.

Note also that Q., C Q. if 0 < ey < £;.
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Let E > ¢ + sup,.p V(x). Assume that

E > max(Cy(V,B , D), Cy (V,
Sup,eq C3(E, z, V,B,D) <~1 ) o (6.29)
min(Cy(E, V, B, D), Co(E,V, B, D), Cs(E, V, B, D)) > 0,

where C, Cy, Cs, Cgs, C7 and Cy are defined by (B.§), (6.9), (£-10), (6-13),
(6.14) and (B.19) (taking account of (6.1§), we obtain that if F is sufficiently
large, then (5.29) is satisfied).

Let ¢ > 0. We denote by A, the open subset of R x €2, x R" defined
by A. = {(t,z,p) € Rx Q x R" | Vs € [0,t] ¥1(s,z,p) € Q.}, and we
denote by Vg . the following smooth 2n — 1-dimensional submanifold of R*"
Vee={(7,p) € Q. xR" [ |p| =1y p(z)}. From (£.28) and continuity of ooV
and 0% B for a,o/ € (NU{0})", |a| < 2, |/| < 1, and from (£.8)-(F-19), it
follows that

/\

Ci(V,B,Q.) — Ci(V,B,D), as e — 0%, fori=1,2,
sup C3(E, z, V,B,Q :) —>supC'3(E,x,1~/,B,D), ase — 07,

€N, xzeD

Ci(E, V,B, Q) — Ci(FE, v, B,D), ase — 0", fori=6,7,8.

Taking also account of (6.29) and Propositions 6.2, 6.3, 6.4, we obtain that
there exists g9 > 0 such that

05 Ac N (]0, +00[XVE) — Qe X Qo (8, 2,p) — (x,¢1(t, 2, p)), is a
C* diffeomorphism from A, N (]0, +oo[X V) onto (. X Q)\{(z,z) |
x € Q.} for any e €]0, g¢.
(6.30)
Let qo,q € D, qo # q. Let &, €]0, go[. From (B-30), it follows that there
exists an unique p;, € S Pg and an unique positive real number ¢., such
that ¢ = ¥1(tey, 90, Pey) and (te;, qo,De,) € Ag,. Consider the function m €
C?*(R,R), defined by m(t) = xp(¥1(t, qo, p,)), t € R. Derivating twice m, we
obtain

m(t) = Hessxp(1(t, qo, pe,))(9(¥2(t, g0, Pe,)), 9(W2(t, g0, pe,))) (6.31)

t,qo,pe)[*\ 7
+(1+ |w2( i()zp )| ) VXD(’I/}1<t7QO7p€1)>OF<wl(t7QO7p€1)7

’17/) (t qmpm) OF(,@Z)l(t qoﬂpfl) g wZ(taqmpm)))
2 ( \1/12 tQO \Deq |2>3/2

XVXD(wl(t q07p€1>> © 1/}2<t7 QO7p€1)7

g(¥a(t, qo,pz,))) —
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for t € R, where g is the function defined by (b.f) and o denotes the usual
scalar product on R™ (we used (B.])). In addition, note that using the fact
that yp is a C? defining function of D, we obtain that for ¢t € R

wl(tuqmpel) €D« m(t) < 07
U1(t, o, pe,) € 0D < m(t) = 0.

Assume that there exists some s €]0,t., [ such that ¥ (s, g0, p,) € D (i.e.
m(s) > 0). Let so = sup{s’ € [0, s] | ¥1(s',x,p:,) € D}. Hence

Y1(80, qo, Py ) € 0D, (i.e. m(sg) = 0), (6.32)
m(t) <0, for t € [0, so). (6.33)

From (5.39), (B-31)), (b.2), and the estimates (6.9), |g(¢a(t, qo, e, ))| < ¢, and

definition (B.13), it follows that m(sg) > *Cs(E,V, B,D) > 0 (we used
(6:29)). From (p-33) and from the estimate m(sy) > 0 and Taylor expansion
of m at sy (m(t) = m(so)(t — so) + 21(s0)(t — 50)> + o((t — s0)?), t € R) it
follows that 1 (sg) > 0. Using also the equality m(sg) = 0, we obtain that
there exists ¢’ > 0 such that so + ¢’ < t., and m(so + ¢’) > 0 which implies
that ¢1(so + €', g0, p=;) € D. Then, due to sup,q_inf{|z —2'| | 2 € D} =0
as e — 0, there exists g5 €]0, ;[ such that ¢ (so+¢, o, pe,) € -, and using
also ([-30), we obtain that there exists (p.,,t.,) € S}, px]0,+00[ such that
<p€27t€2> 7A (p€17t€1) and (t€27QO7p62) € Az—:z and ¢ = 1/}1@627(]07]762)7 which
contradicts unicity of (p.,, s, )-
We finally proved that

1(8,qo,pe,) € D for all s €]0,t.,]. (6.34)
Now consider

to = sup{t €]0,+oo[ | ¥1(s,q0,p:,) € D for all s €]0,t]}, (6.35)
ty, = inf{t e R|Y1(s,q,ps) € D for all s €[t t.,[} (6.36)

(using Proposition 6.1 and (f.29), we obtain that ¢ and ¢; are real numbers
that satisfy to — t; < @). Then for i = 1,2, from (£.31), (£.9), (6.19)
and (F-29), it follows that 7 (t;) > 2Cs(E,V,B,D) > 0 . For all t €]t;, t,],
Y1(t,qo,p) € D. Hence m(t) < 0, t €]t;,to[. This latter estimate and the
estimate m(t;) > 0 and Taylor expansion of m at t; (m(t) = m(t;)(t —t;) +
s(t;)(t —t;)* + o((t — t;)?), t € R) for i = 1,2, imply that 7n(ts) > 0 and
m(ty) <0, ie.

(t, 905 Pey ) jt=t, © N (1) <0,

(t, 40, Doy )=tz © N(t2) > 0, (6.37)

o
ot
oy
ot
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N — Yx@itgope))
where N(t;) = Fx(@1 (oo, )] i=1,2.

Statement (@) with (b.37) and (p.30) (with “c = &,”) proves (B.I) and
(2)3 O

6.6 Proof of Proposition 6.1. We denote 2O by p(t) for t €]t_,t,].

\/1 a2
C

Let I(t) = 2| z(t)|?, for t €]t_,t,[. Derivating twice I and using (F.2),
we obtain
. t)? 1 ¢
1(t) ol I,)(t)Q + F{ a(t), LQ oxz(t) (6.38)
1+5 1428 1+ 2
p(t) o x(t) p(t)

_02(1 n ZLQ)Q)3/2p(t) o F' | z(t),

for t €]t_,t,[, where o denotes the usual scalar product in R". From the

estimate \/”% < ¢ t €t ty], and from (p.3§8) and (b.9), it follows that
14202

i) > & (1 _ (Emlzm))g) _ g POV s BrsGO) gy et b,
E=V ()

E-V(x(t))
which with (B.I9) implies

c

I(t) > (6.39)

c
bX
for t €]t_,t,].

Let t s €lt_,ty[, s < t. From (6.39) and the equality I(t) = I(s) +
I(s)(t —s) + f f I(0)dodr, it follows that
2

1) = 1(s) = (s)(t = ) + (= )2 (6.40)

Using (B]) and the estimate |@(s)| < ¢, we obtain I(s) = x(s) o &(s) >
—|z(s)||2(s)| = —c6(Q). Using (B]), we obtain I(t) — I(s) = 2(|z(t)]* —
|z(5)]?) < 6(Q2)% From (6.47) and the two latter inequalities, it follows that
0> —0(Q)2—cd(Q)(t—s)+ j(t—s)Q, which implies that t — s < L?)(Qﬂ+
2) < 29 (the roots of —6()? — c5(N)X + <X are (5(2)/c)(2 £ 2v/2)).
Ast — t+ and s — t_, the latter inequality proves (f.20Q). Proposition 6.1 is
proved. 0

6.7 Proof of Proposition 6.2. Throughout this Subsection, we denote by
Yap: (t) the point of R™ defined by

Ve (1) = U1(t, 2, pi),
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for any t € R and ¢ = 1,2, where 1) = (91, 15) is the flow of the differential

system (B.1)).
From (B.])), it follows that

e (®) = o+t + / i (gm T / P o (7)s A (1))
—g(ps)) do (6.41)

for t € [0,¢4 4| and ¢ = 1,2, where ¢, , ,, is defined by (B.21]) for i = 1, 2.
From (p.4]]), it follows that

[t1v1 —tava| = A(t1, 2) < [Yap (1) =Vaps (t2)] < [t1o1 —tava| +A(t1, £2) (6.42)

where

Attt = | [ (oo [ PO (0 e rr) = 90 ) 7 (643

_ /0m (g(m + /OU F(Yaps(T), Aaps (7))dT) — g(pg)) do

)

for t; € [0,t4 4, and to € [0,14 4 p,[. We shall look for an upper bound of
A(tl, tg), tl € [O,t+7$7p1[ and tz € [O,t+7$7p2[, tg S tl.
First case: v1 o va < 0. Using (B.§), we obtain that

/Oti (9 (pi + /O " F (o), A (7)) — g(pi)) o

2) —-1/2

<[P (). A (o) sl
0

(6.44)

pite / F(op(5), A (8))ds
0

0 e€[0,1

t;
<+n sup (1 +c?
]

for i = 1,2. From (6.6) and (6.20) and from the estimate |g(12(s, z, p;))| < ¢,
it follows that

10n8(Q)B(V, B, Q)
- .

/O 1P (), o)) < (6.45)

for 0 € [0,t;], 7 =1,2. Using p; € SﬁfEl and (p-49) and (f-23), we obtain

ag . 1
Pt e [FOun(s) dan ()ds| = 5o (o) (6.46)
0
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for e € [0,1] and o € [0,¢;]. From (6.49), (6.46) and (p.44), it follows that

[ (st [ PO 61 30m(509) = 510 )

. 20m3/2c6(Q)B(V, B, Q)
- E—V(z)

, (6.47)

for i = 1,2. Using vy ovy < 0, we obtain that |v;|s; < |sqv1 — sqvg| for i = 1,2
and for s; > 0, s3 > 0. Using this latter inequality and (5.43)) and ([.47) and

N
equality |v;| = C\/l - (E‘C—Z(”) , we obtain

A(tl, tg) S 40071n3/25(9)ﬁ(f/, B, Q)T‘}v’E(l’)il‘tlUl — tQ’UQ‘.

Second case: v, 0 vy > 0.
From (p.43), it follows that

Aty to) < Aq(ty,te) + As(ty, ta), (6.48)

where
Aty ty) = / l(g<p1 4 / F o (7). Ao (7)) — g(po) do|  (6.49)
Aot ty) = / 2 [gm T / " F o (7). A (1)) — g(pr)dor (6.50)

_ (g(pz + /00 F(Yapy (T)s Az (7)) dT) — g(p2)):| do

An upper bound for Ay(t1,ts). Using (B.49) and (B.§), we obtain that

Bt t) < Vilts =) [ 1P G () Fam(s)lds (65)

to
2) -1/2

In the same manner than in the first case (v, o v3 < 0), we obtain

X sup <1+02

e€(0,1]
oel0,tq]

— / F (o (5): A (5))ds
0

20n3/2c5(Q)B(V, B, Q)

Aultto) < (h — ) =25 5

(6.52)
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Note that from |v;| = |vs] and ¢; > 0,7 = 1,2, it follows that |v|(t; — t2) <
|tjv1 — tavy|. Using this latter inequality with (6.53), we obtain

20m3/25(Q)B(V, B, Q)

Ailty, t2) < [trvr — taun| (6.53)
CT\ZE(‘”)
N
(we use the equality |vi| = c\/l — <E—67‘g(l‘)> ).

An upper bound for Ay(tq, t2). Note that g, (pl-+foa F(Yap; (T)s A i (7)) dT)

—9;(pi) fo Vg;(pi + 5]0 (Vapi (T)s Vs (T))dT)Ofoa F (Y pi(8)s Vapi (8))ds
de for i = 1,2 and j = 1..n, where g = (¢1, ..., g,). Hence

to to
A%(tl,tg) S / AQJJ(O’)dO’ —|—/ A2,27j<0'>d0', (654)
0 0

Where Ag(tl, tg) = (A%(tl, tg), ey Ag(tl, tg)) and

Basslo) = | [ [ng(me | PG A7) - Vg, 059

e | UF<%,p2<f>,%,p2<f>>df>} o [ PG (s) (o),

Agaj(0) = / Vgi(p2 + / " F o), A7) )0 (6.56)

/O (o (8)- 3o (8)) — F(apa(5)s i (5))] dsde

foro € [0,t5) and j=1...n

We first look for an upper bound for Ay, ;(o). Since vy o vg > 0, we
obtain p; o py > 0. Using this latter inequality and the equality p? = p3, we
obtain that

|upr + (1 = p)pa| = W%ﬂ% + (1= p)?p3 + 2p(1 — p)p1 o pa

TV,E@)

> \//ﬂp% +(1-— \/—|p1| NG (6.57)

for any p € [0, 1].
From (p-45) and (.57) and (p-23), it follows that

'upl (= wpr i [ F oy (7). A (7)) + (1= po)e

0
0 5(Q)B(V, B,Q
></ F (), Fa ()| 2 s + (1 = ] — 22200 5.
0
1
= 5a vl (6.58)
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for u, e € 0, 1]. From (B.1)), it follows that

Sep(0) = glpi + / P (o (7)s (7)) )

for o € [0,¢;], i = 1,2. Using this latter equality and (5.§), we obtain

e (0) = ()] < (6.59)
Vit s (14 + (=it [ PO (7) Ao ()
ne|0, 0
~1/2

+ 0= ) [ FGupl) Al

X |p1 —p2+ /00 (F(%CJH (7_)7 ;yx,pl (T)) - F(V%W (T)’ %6472 (T))) d7_|

for o € [0, 9.
Note that from (£.7) and the inequality |y, ,,(7)] < ¢, it follows that

Vo (T)s Yo (7)) = F (Yo (T), Yoo (7)) < (6.60)
BV, B, Q) (200 (T) = Yoo (7)] + %I%,pl(T) — Fapa (T)]),

for 7 € [0, t5].
Using (6.58)-(6.60), we obtain

23/2\/562 ~ o~
m [|p1 —p2| +nB(V, B, Q) (6.61)

(2 PamnD) = remltr + [ 0) = han(olir ) |

for o € [0, t5].
We shall use the following Gronwall’s lemma.

|E'(y

|"7xp1 ) %cm( )|§

Gronwall’s lemma. Let a > 0 and let ¢ € C([0,q], [0, +ooL) be a con-
tinuous map and let A, B € [0, 400[ be such that ¢(t) < A+ B [, ¢(s)ds for
all t € [0,a). Then ¢(t) < AePt for allt € [0, al.

Taking account of (B.61]), Gronwall’s lemma and (5.20), we obtain that

23/ 2\/nc?

|;Y337p1 (U) - ;Vm,m <0>| < _ ‘7( ) |:‘p1 - p2‘ + 277'5(‘77 éa Q) (662)

10v/25(2)n3/28(V,B,9Q)

/mm (7 >|df]e =
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for o € [0, t5].
From (5.9) and (p.57), it follows that

Az (o) < (6.63)

3/n ! 1 7 .
ALY (. (1+ ups + (L= w)ps + e / F(tapy (7): Ao (7)) 7
0

C Jo pego,1]
2) -1

X Ipl —p2te€ /00 (F(Vx,pl (T)’ %6471 (T)) - F(7x7p2(7)7 /yx,pz (T))) d7_|

<[P Ol (5) A ()i
0

(1 p)e / " F (o), A1)

for o € [0, 9]
From (B.6) and the estimate |4, ,, (s)| < ¢, it follows that

/ F (o (8), Aon ()5 < 208(V, B, Q)0 (6.64)

for o € [0, 4].

From (B.63), (B.59), (B.64) and (.60) and (6.69), it follows that

48n32A3B(V, B, Q) .
Ngq (o) < n(Ec_ﬁé(x’))Q ) <|p1 —pelo+nB(V,B,Q)o (6.65)
o 23/2\/50 -~
(2 ; Ve (T) = Vapa (T )|d7+m <|p1—p2|0+2nﬁ(V>B,Q)

0 0

o ps 10v25()n®/2(V,B,0)
/ Va0 (T) = Va,po (T)‘deS) X e E—V () ))

for o € [0, 9.

From |v1| = |ve| and ¢y < 14, it follows that |v; — va|o < v — va|ty <
|tiv1 — taws], for o € [0, ts]. Note that using these latter estimates and p; €
SZE, 1 = 1,2, we obtain

E—-V(x
[p1 — pofo < T“Hﬂh — tausl, (6.66)

for o € [0, 9.
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Using (p.66]), the estimate foa fos Vo1 (T) = Yapo (T)|dTds < & foo 1Yy (T)
—Yapo (T)|dT and o < m (due to (p-2()) and (6.69), we obtain

3/2 /. B.Q) 10v2s@n3/25(V.5.9)

Agqj(o) < [ 1+ 10V2rP o)AV, 5, )e B-V ()

" E—V(z)

4 3/2
x( 8n 05( ) (V,B )\t1v1—t2v2‘ (6.67)

V()

480n5°/? 25( )B(V, B,Q)> /

—'— =~ ’ T,p1 T,p2 d
(F— V() Va1 (T) = Voo (T)|dT

for o € [0, t5].
We look for an upper bound for Ay, (o), o € [0, 5], defined by (B.50).
Using (B.50), (B7), and (6.4d), and using (-), (B-62) and (B.6d), we obtain

1 3/2 ¥ Q 10v38()n3/23(V. B.92)
Ngpj(0) < [1+ OVEnI()B(V, B, ) stz
w FE— V (x)

4n025 V B, Q)
/wm (Dl (008)
25/2 3/205( 10V35(2)n3/2 (V. 5.0)
6 E—V (x) |t1’U1 — t21)2|,

Vi(z )
for o € [0, t5].
Note also that from (B43), it follows that [ |7z, ) % p2( )dr <[ A

(7,7)dT+ % |vy — s, for o € [0, t,]. Hence using also o < 22 (due to (£:20))
and o|v; — ve| < [tjv; — tavy|, we obtain

7 54 (€2
JAEG %Mnms/AmﬂM+§jmwﬁmu<%%
0

for o € [0,t5]. Note that ty < ‘s(TQ and note that from positiveness of A

it follows that [,* [7 A(r,7)drdo < t; [,* A(t,7)dr. Hence using (B-69), we
obtain

to

/ / Va1 (T) =Y (T)|dTdo < 55£Q)/ A(T,T)dT+25(;(: ) |t1v1 —tavs],
0

(6.70)

for o € [0, 9.

Combining (6.45), (b-53), (6-61), (6-68) and (p.7(), we obtain

A(tl, tg) S C4(E, Z, V, B, Q)|t11)1 — t2'U2| —+ CC5(E, Z, V, B, Q) / A(T, T)dT,
0
(6.71)
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for ¢, € [0,t12p,[ and to € [0,%4 2 p,[, t1 > to and where Cy and Cj are

defined by (b.11]) and (p.139).
Let t; € [0,t14p, [ and to € [0,t4 5[, t1 > 2. Estimates (B.71]) and
|v1 — valo < [tjvg — tavg|, 0 < tg, give in particular

Ao,0) < Cyltivy — tovs| +CC’5/ A(r,7)dT (6.72)
0

for o € [0,t5]. Using (B.72) and using Gronwall’s lemma (formulated above)
and o < &69)7 we obtain

A(O’, O') S C4656(Q)C5 |t1’U1 - t21)2|, (673)

for o € [0, t5].

Using (B.79) and (6.71)) and t5 < 6(9 , we obtain A(ty,ty) < Cs(E,z,V,
B, Q)|tyv1 — tavs), for ty € [0, 4 4 and t2 € [0,ty wpol, t1 > to.

Proposition 6.2 is proved. 0

6.8 Proof of Proposition 6.3. We shall work in coordinates. We consider the
following infinitely smooth parametrizations of "', ¢; 1 : B,_1(0,1) —
St~ i =1...n, defined by

Gix(w) = (6.74)

wt, .. Zli\/l—X:llw i...,wnl), ifl1<i<n-1,
wt, ..., "1:i:\/1—zllw>, ifi=n

for w = (w',...,w" ') € B,_1(0,1) and where B, _1(0,1) denotes the unit
Euclidean open ball of R"~! of center 0.

Let (to, o, po) € AN(]0, +00[XVE), po = (pgs - - -, D). Then (¢, 2o, po) € A
for all t € [0,t0]. As A is an open subset of R xR" xR, there exists € > 0 such
that {(t,z,p) € RxR"xR" | —¢ <t < to+e, max(|x—xo|, |[p—po|) < e} C A.
We denote by B(xg, €) the Euclidean open ball of R™ of center z and radius €.
Let (U, ¢) be an inﬁnitely smooth parametrization of an open neighborhood
of 2% in S"7! and k =1...n such that

ol
U is an open subset of B, 1(0,1), (6.75)
5] = n~"2|pol, (6.76)
if +pf >0 then ¢(w) = ¢+ (w) for all w € U, (6.77)
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(t, 2,7y p(z)p(w)) € A, for (w,t,x) € U] —¢e,to + [xB(wo,€). (6.78)
Consider Q € C'(] —¢,ty + e[x B(wg, ) x U, Q) defined by

Qt, z,w) = Y1(t, v, 1y p(x)p(w)), (t,z,w) €] — &, + e[xB(wo,€) X U,
(6.79)
where 1) = (11, 15) is the flow of the dlfferentlal system (@) Let wy € U be
such that ¢(wy) = p° . We shall prove that ( 9 (ty, 20, wp), 2 Fos < (to, o, wp), -

%(to,xo, wp)) is a ba51s of R”™.

Note that from (.3), it follows that

QUt, 2, w) = 2+ tg(ry () d(w)) + / g (ry w(@)(w)  (6.80)
+ [P 0. G s w)is) = oty (o) do

forw € U and (¢, ) €] —¢,to+¢e[x B(xo, €) (where g, 7 ; and F' are defined

by (B.9), (B4) and (B3)).
We shall prove (6.82).

Using (b.80) we obtain

Wtrw) = gy, p@)ow)) + [o (ry,p(@)o(w) (6.81)

+ [ P a0, Gl w))ds) — glrp p@)o(w))] |

for w € U and (¢, z) €] —¢,to + &[x B(xg,¢). Combining (.87)), (6.20), (-§),
(6.4) and estimates |%—?(t, r,w)| <e t< icﬂ), it follows that

2 t,.) — g o) <

4n3?23(V, B Q) (6.82)
S :

E-V(z
for w € U and (t,x) € [0,ty + e[x B(xg, €).

We shall prove (93). Let ¢ = 1...n — 1. Let X; € C(] — ¢,ty +
e[xB(xg,€) x U,R™) be defined by

, "\ (OF;, , 0Q oQ,
j _ i 9%
X/ (s,z,w) = lgl (8$2 («', B (5,2, w)) R -(s,r,w)  (6.83)

OF; aQ
+ 5y Q.m0 )y 2wy (s, w))
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for j = 1...n, (s,z,w) €] — &,ty + €[xB(xg,e) x U, and where X; =
(X} ..., XM and Q € CY(] —&,tg + e[x B(wo,¢) x U, R) is defined by

Qs,,w) = gliols, 2,7y 5 (@D)6(w) = A5,z (684)

for (s,z,w) €] —¢,ty + e[xB(xg,€) x U.
From (B.3), and (B.3), it follows that

| X (0, z,w)| < B(V, é,Q)n (

0Q 1
n %(O’,Q?,w)‘ +c

).

(6.85)
for (o, z,w) €] —e,tg + e[xB(xg,€) x U. B
We shall estlmate Q Note that from (6.3), it follows that Q;(s,z,w) =
gl(TVE +fo (0, Tv,E( z)p(w)), (U $aT\7,E($)¢(w)))dU)a for (s,
T, W) E] — g, to + e[xB(xo, e) x U and | = 1...n. From this latter equality
and (6.83), it follows that
0Q
S s.0) = Vot (15 )0t +

S

F(Q(o,x Ty, p(T)p(w)),

\

Q(U,x,r‘77E(:p)¢(w)))d0) o (TVE 8w2 / Xi(o, z,w dcr)
for (s,x,w) €] —e,ty + e[xB(xg,€) x U. Hence

S 5.0 = 1 Voo o) 0 2w < (656)

7“\7715(‘”)

Qo1 4D)0(w))do) — Ty 17, 5(2)o(w)) 0 5 w)

+ 'ng (Tm(w)sb(w) + /SF(Q(O,$,T97E($)¢(M)) Qlo,z, 1y p()

0

S(w)))do) o /O Xi(0, 2, w)do|

for j = 1...n and (s,z,w) €] — e,ty + [xB(xg,£) x U. We estimate the
second term of the sum on the right-hand side of (6.86) by using (B.7),
(6.9), (b.26) and s < &cﬂ), and (B.85). We estimate the first term of the

sum on the right-hand side of (6.8) by using (5-9) and (6-9), (6-20) and s <
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&cﬂ), and the estimate fos F(Q(o, 2,1y p(x)d(w)), Q(o, x, ry p(T)o(w)))do <

2nB(V, B,Q)s, for (s,z,w) €] — €, to + €[x B(xo, ) x U. We obtain

w7 (E V(x)) duwi

< 2nnc*B(V, B,Q) (12y/n + 1)

c2

rople) 0 237 5.0 { 180
X (Eiv(x))2aqfi(w)8+ 2 <E_B;~/(x)) (/0 %(U,x,w) do
e [ gﬁw,w>_<’””“))§$( ) da),

for (s,z,w) € [0,t9 + e[xXB(xg,e) x U (note that (E—%/(z)) laaj;( ) =
(Vo;(rg p(@)p(w)) o g&(w))._, ).

From Gronwall’s lemma (formulated in Subsection 6.7) and ty+e < &Cﬂ)
it follows that

j=1l..n

9

a_Q(s T,w) — 77“‘77]5(1‘) 0 (w)
owt " (E—V(x)> ow’ -

22n32B(V, B, Q) 10501507 5.0/
€

- Wx) TEve (6.87)

da} ,
for (s,z,w) € [0,ty + e[x B(xg, &) x U. )
From (B89), it follows that Q(s,z,w) = 2+ [, Q(o, z, w)do, for (s, z,w)
€ [0,to+e[xB(xg, ) x U. Hence 22 (s, z,w) = [ b9 (0, z,w)do, for (s, z,w)

ow’ 0 ow?
€ [0, to + e[x B(xg,e) x U. This latter equality and ([.87) imply

c2

O'I‘U}

T

8@ TV E( ) 8¢> 2c 713/25( B )

8w’ o (E V(z) ) 8wl( w)s| < E—V(z) (659

105(9)};;(_\/‘73309)713/2 ( ) a(b 52

e BVe { 12f+1) f/ )8wi<>§
88 dOdT:|

for (s, z,w) € [0,ty + e[x B(xg,€) x U.
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Note that

(0, x,w) (o,z,w)|do  (6.89)

dad7<s/ 0

S

118 e

L 5r7p(@)(0 >'a¢ ¢

() o™

Let

108(Q)8(V,B,Q)n3/2

Cy(E,z,V,B,Q) =20cn?8(V,B,Q)§(Q)e” -7V (6.90)

. 106(Q)B(V,B,0)n3/2

C'(E,z,V,B,Q) = 2¢*?3(V,B,Q)e E-V () (6.91)

TV,E(x) +10T\77E(5E)\/ﬁ5(9)
RN C=EVa

c2

x |c(12v/n+ 1)

Ch(E,x,V,B,Q)

C{E,z,V,B,Q) = CyE,z,V,B,Qe B-V@ | (6.92)

for x € €.
From ([.8§)-(6.99) and Gronwall’s lemma (formulated in Subsection 6.7),
it follows that

oQ Ty p(T) 0 CUE,z,V,B,Q)| 0¢
i x’w)_ﬁ&w(w)s == ) '

c?

(6.93)

for (s,z,w) € [0,ty + e[x B(xg, &) x U.
Now we assume without loss of generality that the integer k in (6.76) is
n, and pj > 0. We remind that wy € U is defined by ¢(wg) = |§—2|. We shall

prove (5.99).
From (p.77), it follows that

0¢ wl

o l( ) = € — m@n, (694)
0
a—;’;(wo)\ < Vitn, (6.95)



for l = 1...n — 1 and where (ey,...,e,) is the canonical basis of R" and
wy = (w},...,wy™ ") (for (6.95), we used the estimate > n~Y/2 which
implies that 1 — |we|* > + and we used |wh| < Jwo| <1,1=1...n—1 and

we used (6.94)). In addition, using (p.94), we obtain
n—1
9¢
‘Zﬂl%(w(])‘ Z |<,U1,...,,Mn,1)|, (696)
=1

for all (g1, ..., pn_1) € R"7L.
Using the fact that ¢(wg) € S*~! is orthogonal to %(wo), l=1...n—1,
and using (p.9§), we obtain

n—1
9 d
|pa (o) + Z“l+1a—$<w0)| =\ |+ ZM!+1a¢l (wp)|? > n~1/? Z |\,

=1 =1
(6.97)
for all (p1,...,u,) € R™
Note that
) —, 0
A ;f (to, xo, wo) + Z )\l+1%(t07 To, Wo)| = (6.98)
Aro p(zo)to
Mg(ry p(zo)d(wo)) + Z I+1 ‘:E 7o) a(bl (to, Zo, wo)
oQ
ol |22 1,0, )~ g(rV,E@o)as(wo))'
n—1 2
oQ cry p(zo)to 0
—; | A1l %(toaﬂfmwo) T B V(ag) 0 (to, o, wo)| ,

for (A1,..., ) € R™
We estimate the first term on the right-hand side of ((.98) by using (6.97)

027" x
(note that g(ry p(wo)@(wo)) = Ef"ﬁio(;)gb(wo)). We estimate the second term

and third term on the right-hand side of (F.9§) by using (£.83) and (£.93)
and (6.95). Using also the estimate t, < 56(9) , we finally obtain

9 —, 0 Cs |, == C
A1 Q(to,%,wo +Z>\l+1an(to,$o,wo) > |>\1|—£+t02|)\1+1|—;,

ot V. vn
(6.99)
for (A1,...,\n) € R™ This latter inequality and (6.26) and ¢y > 0 imply that
the family (%—t(to,:co,wo), 5 (to, w0, wo) ..,%(to,xo,wo)) is free. Then

45



using inverse function theorem, it follows that ¢ is a local C! diffeomorphism

at (th :L‘07p0)'
Proposition 6.3 is proved. O

6.9 Proof of Proposition 6.4. Before proving Proposition 6.4, we shall first
prove the following Lemma 6.1.
Lemma 6.1. Assume that

E>Cy(V,B,Q),

C8<E7 ‘N/u é7Q) > 07 (6100)

where Cy and Cy are defined by (6.8) and (B.17).
Let v € Q and p € SZ_El. Then

w2<t+,x,p7x7p> © N(’l/}1<t+,:v,p7x7p>) > 07 (6101)

where t 4, is defined by (B.21)) and ¢ = (11,v2) is the flow of the differential
system (b)), and where N(y) denotes the unit outward normal vector of 0D
at y € 0D (o denotes the usual scalar product on R™).

Proof of Lemma 6.1. Consider the function m € C?*(R,R) defined by

m(t) = xa(1(t,z,p)), t €R, (6.102)

where Yq is a C? defining function for € (see definition of Cs, (F.15)). Derivat-
ing twice (6.103) and using (B.1), we obtain

n(t) = Hessxa(1(t, x,p))(g(42(t, 2, p)), g(4a(t, x,p)))  (6.103)
o (10 DY g o i)
Ua(t, z,p) o F (¥ (t, 2, p), g(¥(t, 2, p)))
e (1 + W#)g/z
xVxa(¥1(t, ,p)) o a(t, x, p),

for t € R and where g is the function defined by (b.6). From (p.103),
conservation of energy and (B.6) and |g(v2(t, x,p))| < ¢, it follows that
1ty ap) > Cs(E,V,B,Q) >0 (we used (.100)).

For all t € [0,t4 [, ¥1(t,z,p) € Q. Hence m(t) <0, t € [0,t4 ;[ This
estimate and the estimate m(t; ,,) > 0 and Taylor expansion of m at ¢, ,,
(m(t) = m(tyop)(t —trap) + %m(t-hx,p)(t —tyap)’ T o((t—trap)%), t ER)
imply that m(ty . ,) > 0.

Lemma 6.1 is proved. O

g(wZ(ta {L‘,p))) -
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Now we are ready to prove Proposition 6.4.
Let x € Q. Asn > 2, the set Q\{z} is connected and we shall prove that
the set

A, = {y € Q\{z} | there exists p € SZ_El and t > 0 such that (t,z,p) € A
and Y1 (t, z,p) =y}

is a closed and open nonempty subset of Q\{z} (where b = (¢1,15) is the
differential flow of (B.1])). Then we will have A, = Q\{z}, which will prove
Proposition 6.4.

Note that A, is nonempty since for p € SZfEl, (0,z,p) € A and %(t, x,
P)i=o = g(p) # 0. Hence there exists ¢ > 0 such that (¢,z,p) € A and
¢1(€7x7p) 7& ’g[)l(O,ZL‘,p) =T

Note also that A, is an open subset of Q\{z}. Let y € A,. Then there
exists p € S7 and ¢ > 0 such that (¢,z,p) € A and (¢, x,p) = y. From
(6.27) and Prop031t10n 6.3, it follows, in particular, that there exists an open
neighborhood U C Q\{z} of y such that U C A,.

It remains to prove that A, is a closed subset of Q\{z}. Consider a
sequence (yx) of points of Q\{z} which converges to some y € Q\{z} as k —
+00. For each k, there exists py € Si and tx > 0 such that (¢, z,p) € A
and

From Proposition 6.1, it follows that ¢, € [0, 55(9 ]

0, 26]

for all k. Using compact-
ness of and compactness of S”El, we can assume that (¢j) converges

to some t € [0, 55(9 ] and that (px) converges to some p € S7 . Using (£.104)
and continuity of 11, we obtain

Note that ¢ > 0 since y # z. Let s € [0,¢[. Then using that ¢, — ¢ as
k — 400, we obtain that there exists a rank N, such that s < ¢, for & > Nj.
Hence (s, z,pr) € A for k > N, and, in particular, (s, z, py) € Q for k > Nj.
Hence we obtain that

(s, x,p) = klir}rl ¥i(s,z,p) € Q, for s € [0, 1. (6.106)

Using Lemma 6.1 with (6.109) (y € Q) and (f.106), we obtain that
(t,z,p) € AN (]0, +oo[x{z} X SZfEl) and ¥ (t,x,p) = y. Hence y € A,.
Proposition 6.4 is proved. U
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7 The nonrelativistic case

7.1 Nonrelativistic Newton equation in electromagnetic field. Consider the
classical nonrelativistic Newton equation in a static electromagnetic field in
an open subset 2 of R™", n > 2,

¥ =-VV(x)+ B(x)z, (7.1)

where z = z(t) is a C' function with values in Q, & = % and V € C?(, R),

B € Frag(Q2).

The equation (7.1) is an equation for x = z(¢) and is the equation of
motion in R™ of a nonrelativistic particle of mass m = 1 and charge e = 1 in
an external electromagnetic field described by V and B. In this equation x
is the position of the particle, z is its velocity, ¢ is the time.

For the equation (7.1) the energy

L.
E= 5|g[;(zt)|2 + V(z(t)) (7.2)
is an integral of motion.

7.2 Inverse boundary problem. Consider equation (7.1) under condition ([.3).

One can prove that at sufficiently large energy E (i.e. E > E™(||V||c2.p,
|Bllct.p, D) > sup,ep V(z) where real constant E™ (||V|c2,p, | Bllct.p, D)
also has properties (R.3) and ([[.7)), the solutions z of energy F have proper-
ties (B-])) and (B-2) (the proof is obtained by slight modifications of proofs of
Section 6). Then at fixed energy £ > E™ (||V||c2.p, || Bllc1.p, D), one can de-
fine sy/5(E, @, 9), ko'v.5(E Q0 q), ky5(E, Q, q), as were defined sy, 5(E, qo, ¢),
kovi(E, q,q), kv.s(E,q,q), in Section 2 for any qo,q € D, qo # g. Further
one can consider the following nonrelativistic version of Problem 1 formulated
in Introduction

Problem 1": given ky/5(E, qo,q), k' p(E, qo, q) for all qo,q € OD,
Qo # q, at fixed sufficiently large energy F, find V' and B.

The following uniqueness theorem holds

Theorem 7.1. At firzed E > E™(||V|c2.p,||Bllct.p, D), the boundary
data k{75 (E, g0, q), (qo0,q) € OD x 9D, qo # q, uniquely determine V, B.

At fized E > E™(||V||lc2.p, || Bllct.p, D), the boundary data
ko' 5(E, qo, ), (qo0,q) € OD x dD, qo # q, uniquely determine V, B.

Theorem 7.1 is proved in Subsection 7.6.

7.3 Inverse scattering problem. We consider equation (7.1) under condition

([L.4).
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The following is valid (see, for example, [LT] where classical scatter-
ing of particles in a long-range magnetic field is studied, and see [S] where
classical scattering of particles in a short-range electric field is studied): for
any (v_,z_) € R" x R", v_ # 0, the equation (7.1) has a unique solution
r € C*(R,R") such that

z(t) =v_t+x_ +y_(t), (7.3)

where y_(t) — 0, y_(t) — 0, as t — —oo; in addition for almost any
(v_,z_) e R* X R™, v_ #0,

o(t) = vt + x4 + Y4 (D), (7.4)

where vy # 0, vy = a™(v_,z_), vy = b"(v_,z_), y+(t) — 0, yi (t) —
0, as t — +o0.

For an energy E > 0, the map S : S x R" — S¥ x R" (where
S = {v € R" | |v| = V2E}) given by the formulas

vy =a"(v_,z), xp =b""(v_,x_), (7.5)

is called the scattering map at fixed energy E for the equation (7.1) under
condition ([.4). By D(SE") we denote the domain of definition of S%". The
data a™ (v_,z_), 0" (v_,z_) for (v_,z_) € D(SE') are called the scattering
data at fixed energy F for the equation (7.1) under condition ([[.4)). We con-
sider the following inverse scattering problem at fixed energy for the equation
(7.1) under condition ([[-4):

Problem 2’ : given S} at fixed energy F, find V and B.

From Theorem 7.1 and property ([.7]), we obtain

Theorem 7.2. Let A € R and let D be a bounded strictly convex (in the
strong sense) open domain of R"™ with C? boundary. Let Vy,V, € C2(R™, R),
Bi, By € CH(R”, Au(R)) N Fiag(R") max([Vilc2.p, [Vallez, s | Bullcn o, | B
llcr.p) < A, and supp (Vi) U supp(Va) Usupp(By) Usupp(By) C D. Let Sh be
the (nonrelativistic) scattering map at fived energy E subordinate to (V,,, B,,)
for p = 1,2. Then there exists a nonnegative real constant E™ (X, D) such

that for any E > E™ (X, D), (Vi, By) = (Va, By) if and only if S}, = S%.
7.4 Classical Hamiltonian mechanics. For x € D and for E > V (x), we define

(@) = V2(E = V(z)).

Let A € Fpot(D, B). The equation (7.1) in D is the Euler-Lagrange equation
for the Lagrangian L™ defined by L™ (i, z) = 3|i[*+ A(z)oi—V (z), & € R"
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and z € D, where o denotes the usual scalar product on R™. The Hamiltonian
H"™ associated to the Lagrangian L™ by Legendre’s transform (with respect
to &) is H"(P,z) = |P — A(2)|* + V(x) where P € R" and x € D. Then
equation (1.1) in D is equivalent to the Hamilton’s equation

i =202(P ),

P = _82[:T<P’ SU),

(7.6)

for PeR" z € D.
For a solution z(t) of equation (7.1) in D, we define the impulse vector

P™(t) = &(t) + A(z(t)).
Further for qy,q € D, qo # ¢, and t € [0, 5™ (E, qo, q)], we consider
Pnr(ta Ea qo0, Q) = :tnr(ta Ea qo, Q) + A("L‘nr(ta E7 qo, Q))a (77)

where (., E, qo, q) is the solution given by (2.2) in the nonrelativistic case.
From Maupertuis’s principle (see [A]), it follows that if z(t), t € [t1,t2], is
a solution of ([[J]) in D with energy E, then x(t) is a critical point of the

to

functional A(y) = [, [ (@) 96+ A(y(t)) o y(t)] dt defined on the set
of the functions y € C'([t1,ts], D), with boundary conditions y(t;) = x(t;)
and y(ty) = z(t2). Note that for qo,q € D, qo # ¢, functional A taken along
the trajectory of the solution z™ (., F, qo, q) given by (B.2) is equal to the

reduced action S . (qo,q) from go to g at fixed energy E for ([(.§), where

Ov,A.E
qo,4) = s"(E,qo, nr o .
Ov.a,m ¢ fo (Erao q)P (S7E7 QO7Q) or (87E7QO7Q>d87 if qo0 # q,
) (7.8)
for qo,q € D.

7.5 Properties of the reduced action at a fived and sufficiently large energy.
The reduced action at fixed and sufficiently large energy for ([7.q) has the same
properties that those given in Proposition 3.1, 3.2 for the reduced action at
fixed and sufficiently large energy for the relativistic case.

Let E > E"(||[Vlc2,p, [[Bllc1,p, D). The reduced action Sg7, , at fixed
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energy F has the following properties:

Sy, €C(D x D,R), (7.9)
Sit a » € C*((D x D)\G,R), (7.10)
8SOVAE nri
AL (¢, ) = ZA(E. o) + Aulo). (.10)
8‘SOVAE nr,i
T<C7 .T}) = _kO,\},B(E7 Cv SL’) - A2<C>7 (712)
2 Qnr nr,i nr,j
Dobnn ¢y = 200 0y - OB () (ray)

0¢; 0z Oz, 8(’@
for ((,z) € (D x D)\G, ¢ = (¢1,..,¢n), # = (1,..,2n), and 4,7 = 1...n. In

addition,

8861$AE OVAE
mas(| A (€ )| | A ) < (1
D*Syr M,

VAP 7.15
Son, ©N < oy T

for (¢,x) € (D x D)\G, ¢ = (1, -,Cn), © = (21, .., 2,), and i, j = 1...n, and
where M; and M, depend on V, B and D.

In addition, the map vy g g : 0D x D — S*~! defined by
k@TB(Ea gax)
‘ke’TB<E7 CVI)"

has the following properties:

vy, T)=— for (¢,z) € 9D x D, (7.16)

vy € CY(OD x D,S™Y),
the map v{/z 5, : 0D — S*', (= 15 5(C, x), is a (7.17)
C! orientation preserving diffeomorphism from 9D onto S"~!

for z € D (where we choose the canonical orientation of S*~! and the orien-
tation of dD given by the canonical orientation of R™ and the unit outward
normal vector).

Remark 7.1. Equalities ([.11)) and ([7.13) are known formulas of classi-
cal Hamiltonian mechanics (see Section 46 and further Sections of [A]).

Remark 7.2. Taking account of (F.11) and (7.13), we obtain the fol-

51



lowing formulas: at E > E" (||V||c2.p, || Bllc1.p, D), for any z, ¢ € D, x # ¢,

8knr,j 8knr,i

Bija) = ——2(E.¢x) + —22(E Ca),
? J
8k:m",j aknr,i

Bij(x) = ——22 (B 2,) + — 2 (E,x,0).
i J

7.6 Proof of Theorem 7.1. We define the n — 1 differential form wg? 5 on
0D x D as was defined the n — 1 differential form wyy,z on 0D x D in
Subsection 3.3.

Now let A € R* and Vi, V, € C*(D,R), By, By € Fpay(D) such that
max(||Villc2.p, |[Vallc2.p, [|Billcr.p, [|B2llcr.p) < A For p = 1,2, let A, €
]:pot(Dv Bu)-

Let £ > E™ (A A, D) where E™ (A, A\, D) is defined by the nonrelativistic
formulation of (7). Consider 3™, 32 the differential one forms defined
on (0D x D)\G by

n

B, ) =Y kY (B¢ x)da;, (7.18)

j=1

for (¢,z) € (0D x D)\G, x = (21, ...,2,) and p = 1, 2.

Define the differential forms ®3" and ®"" as were defined ®, and ¢ in
Subsection 3.3 (replace B*, SOV,L,AH,E by g™ H, SQ‘ZL’AH’E, p=1,2).

Then Lemma 3.1 and Theorem 3.1 remain valid by replacing @, @, ry, g,
wo,v,,B, and ky, g, by ®¢", @™, r{ 5, wih, g, and kY, and the proof of
these results are obtained by slight modifications of proof of Lemma 3.1 and
Theorem 3.1.

Hence Theorem 7.1 follows from the nonrelativistic formulation of The-

orem 3.1. m
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