G H C Silva

R Le Riche

J Molimard

A Vautrin

Exact and efficient interpolation using finite elements shape functions

The increasing use of finite elements (FE) and optical full-field measurement methods have contributed to the growing need to compare mesh-based degrees of freedom with experimental fields of discrete data points. Applying generic interpolation algorithms (e.g. using linear, cubic and B-spline weight functions) creates a dependency of the interpolated field to non-physical parameters that may affect high-frequency information through implicit filtering and introduces fundamental assumptions to the shape of experimental data field. The alternative is to use the existing FE mesh and shape functions to determine mesh degrees of freedom at each experimental data point. This comparison technique makes no assumptions beyond those already made in the FE model. In this sense, interpolation using element shape functions is exact. However, this approach requires calculating the local FE coordinates of the experimental points (inverse mapping), which is non-trivial and not a standard part of FE software.

Basic implementations of FE interpolation can be time consuming and impractical for applications requiring the comparison of large fields to be repeated several times. This article analyzes a two-step process for FE interpolation. First the element containing a given data point is determined, then the interpolation inside the element using reference coordinates. An efficient strategy is proposed, which relies on cross-products, element bounding-boxes and a multi-dimensional storage array (virtual mesh). The strategy yields a linear computation cost with respects to the number of elements in the FE mesh and number of data points in the experimental field, contrary to a quadratic cost from standard approaches. A sample application is given using a plate with a hole. B Inverse mapping theorems 19 C Selecting the virtual mesh grid size 22 D Pseudo code for search algorithms 23 Summary of notation e(p) An element containing p. (p) A neighborhood around point p. n j i The i th node of set j. n mesh The set of nodes in a finite elements mesh. n (p) Set of nodes in a neighborhood of p. N e Number of elements in a finite element's mesh. N p Number of points in in the data field. N cl Average number bounding-boxes that claim an arbitrary data point. N k Average number of finite elements in a virtual element. N ve Average number of virtual elements which share a reference to a finite element. p A data point. p A set of data points. ST i Search Technique i. T , T Time measured in CPU seconds and number of operations, respectively. T b Build time or pre-processing time. T c Time complexity. T f Failure time. T i Search time for a data point belonging to the i th element in a sequential list. T s Success time. T t Total search time. T X | Y Time factor X for search technique Y. v A vector. v i The i th scalar component of vector v. x(p) Coordinates of point p in the global coordinate system. ξ(p) Coordinates of point p in an element's reference coordinate system.

Introduction

The increasing use of finite elements has given rise to a series of applications requiring the comparison of discrete data fields with finite elements results. These applications include mesh-interaction [START_REF] Beckert | Coupling fluid (CFD) and structural (FE) models using finite interpolation elements[END_REF][START_REF] Van Loon | A fluid-structure interaction method with solidrigid contact for heart valve dynamics[END_REF], geological topography [START_REF] Fukushima | Finding realistic dike models from interferometric synthetic aperture radar data: The February 2000 eruption at Piton de la Fournaise[END_REF], visualization [START_REF] Nikishkov | Generating contours on fem/bem higher-order surfaces using java 3d textures[END_REF][START_REF] Rumpf | Recent numerical methods -a challenge for efficient visualization[END_REF], calibration of boundary conditions [START_REF] Padmanabhan | Load and boundary condition calibration using full-field strain measurement[END_REF] and material identification [START_REF] Bledzki | Determination of elastic constants of glass/epoxy unidirectional laminates by the vibration testing of plates[END_REF][START_REF] Bruno | A full-field approach for the elastic characterization of anisotropic materials[END_REF][START_REF] Cugnoni | Identification by modal analysis of composite structures modelled with FSDT and HSDT laminated shell finite elements[END_REF][START_REF] Genovese | Mechanical characterization of hyperelastic materials with fringe projection and optimization techniques[END_REF][START_REF] Kajberg | Characterisation of materials subjected to large strains by inverse modelling based on in-plane displacement fields[END_REF][START_REF] Meuwissen | Determination of the elasto-plastic properties of aluminium using a mixed numerical-experimental method[END_REF][START_REF] Molimard | Identification of the four orthotropic plate stiffnesses using a single open-hole tensile test[END_REF]. In general, a finite elements solver provides information only at nodal or integration points. Available data points may not always coincide with mesh points, and before a comparison can be performed, it is necessary to map one field of points onto the other.

Three types of mapping techniques can be employed for this purpose: node placement, where FE nodes and experimental points are forced to coincide [START_REF] Bruno | A full-field approach for the elastic characterization of anisotropic materials[END_REF][START_REF] Meuwissen | Determination of the elasto-plastic properties of aluminium using a mixed numerical-experimental method[END_REF], approximation and interpolation 1 [START_REF] Cressie | Statistics for spatial data[END_REF][START_REF] Mathworks | Matlab: The language of technical computing[END_REF][START_REF] Kajberg | Characterisation of materials subjected to large strains by inverse modelling based on in-plane displacement fields[END_REF]. Since the accuracy of the FE models is a function of node position, node placement techniques introduce an undesired coupling between the position of data points and the accuracy of the finite elements model. Generic interpolation and approximation algorithms (ex. using linear, cubic and B-spline weight functions) creates a dependency of the interpolated field to non-physical parameters that may eliminate high-frequency information through implicit filtering, and introduces fundamental assumptions to the shape of experimental data field. This article presents interpolation techniques using FE shape functions. This approach was selected over other mapping techniques because it makes no assumptions other than those already introduced in the finite elements model. The strategies discussed in this article consist of two parts: First, the element containing each data point (the owner element) is identified. Next, the coordinates of the data point are transformed into the finite element's reference coordinate system (hereafter this procedure is referred to as inverse mapping). The reference coordinates are used to compute the element's shape-function coefficients which perform the interpolation.

Many of the cited applications require the interpolation of anywhere from 1 × 10 3 to 1 × 10 6 data points to be repeated several thousand times [START_REF] Molimard | Identification of the four orthotropic plate stiffnesses using a single open-hole tensile test[END_REF]. Hence, it is very important that this mapping be carried out as quickly, accurately and reliably as possible. To address this demand, the article analyzes a series of techniques to reduce the number of operations required for interpolation of large data fields. These techniques consist of different search methods for the owner element (including the cross-product and bounding-box tests, and the virtual mesh), and inverse mapping methods (including analytical and iterative methods). We begin with a description of the different search algorithms, followed by a theoretical estimation in computational cost. Since the search time is dependent on the exact mesh configuration, the algorithms are bench-marked using meshes of 2D 4-nodes quadrilateral elements (QUAD4). Using the theoretical estimates, the algorithm with the lowest computational cost is determined. A C++ implementation of these algorithms is used to support the theoretical estimates on a plate with a hole problem.

Overview of interpolation techniques

This section presents a brief overview of the possible techniques for comparing discrete data fields with FE results.

General interpolation

The griddata function in the Matlab software package [START_REF] Mathworks | Matlab: The language of technical computing[END_REF] provides four techniques to obtain data u(p) at arbitrary points p from a cloud of mesh data u(n mesh): triangle-based linear, cubic, nearest neighbor and biharmonic spline (B-spline) interpolation. All of these techniques except B-spline [START_REF] Sandwell | Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data[END_REF] generate interpolation meshes via Delaunay triangulation [START_REF] Barber | The quickhull algorithm for convex hulls[END_REF]. A triangle defines a zone of influence for interpolation coefficients W i , where

u(p) = no. nodes in (p) i=1 W i x(p), x(n (p)) u(n (p) i
).

(

) 1
The nearest-node and linear interpolation algorithms are the fastest, but have discontinuous zeroth and first derivatives, respectively. The other two are continuous up to the second derivatives, but are significantly slower. In addition, griddata does not account for fields with an internal discontinuity, such as a plate with a hole. The algorithm fills the hole with elements, thus introducing boundary effects on the interpolated data. Kriging [START_REF] Cressie | Statistics for spatial data[END_REF] is another popular interpolation approach popular in geo-statistics. It has the advantage of providing an estimation of the interpolation variance. However, it is computationally expensive (requiring the solution of a large linear system for each data point). Another drawback of general interpolation is that they affect the data by introducing non-physical parameters to the comparison (i.e., kernel width, polynomial degrees, variogram length and scales in kriging).

Methods based on finite elements shape functions

With FE shape functions, N j , the value u(p) is estimated from the node values u(n e(p)) of the element containing the data point p, e(p) (hereafter referred to as the owner element),

u(p) = no. nodes in e(p) j=1 N j ξ(p) u(n e(p) j
).

(

) 2
Notice that in general shape functions are written in the reference system of the element containing point p. Calculating the local coordinates of a point is not a trivial operation, requiring two steps. First, finding the owner element. Second, calculating the local coordinates of the point (an operation referred to as inverse mapping), which in general involves solving a multi-dimension non-linear system of equations. The comparison of the FE model and data fields is performed either at the coordinates of the FE nodes or data points. Continuity is guaranteed for the zeroth derivative, but is generally discontinuous for higher-order derivatives.

Projection of data points onto FE response space

E. Pagnacco and D. Lemosse [START_REF] Pagnacco | A coupled FE based inverse strategy from displacement field measurement subject to an unknown distribution of forces[END_REF] describe a technique where the data field is approximated at the nodal coordinates of the finite elements mesh. The method searches for node values u(n mesh) that best fit available data u (p). The approximation is defined as the projection of the data onto the finite elements model space. The values of u(n mesh) are determined by solving a least-squares problem,

min u(n mesh) no. points in p i=1   u (p i) - no. nodes in (pi) j=1 N j ξ(p i) u(n e(p) j)   2 .
(

) 3
This technique requires a number of data points greater than the number of finite elements nodes, and that the data field encompass a representative part of the finite elements mesh. The computational cost involves determining the reference coordinates of each data point, and solving the least-squares problem. For applications where the comparison is performed multiple times over a non-changing finite elements mesh, the interpolation of the data points has to be performed only once. This projection method may eliminate (filter) high-frequency information in the measurement (e.g. experimental noise).

FE interpolation at data points

Instead of interpolating measured data points at FE node coordinates, this article selects the interpolation of data from nodes at the coordinates of the experimental points, leaving the experimental data unaltered. The strategy consists of simply evaluating equation [START_REF]Debian GNU/Linux 3.1 Bible[END_REF] for each data point, p ∈ p. A special effort is made to improve the speed of determining the owner element. This approach allows for the computation of degrees of freedom at arbitrary points, and has no restriction in the distribution or the number of data points. The FE solution is completely independent of the position and size of the experimental data field, and since the same mesh is used for solving the model and interpolating the data, the resulting interpolated field is an exact representation of the FE solution. Also, similar to the previous technique, the interpolation coefficients can be computed only once for a non-changing mesh, thus saving time on applications that repeat the interpolation several times. Different from the previous technique, this approach does not perform implicit filtering, thus allowing for the consideration of high-frequency information.

Determination of the owner element

Interpolation using shape functions is accomplished in three steps: the determination of the element containing the data point (owner element), the transformation of the data point's coordinates into the reference coordinate system (inverse mapping), and finally the application of the finite elements shape functions to determine the degrees of freedom at that point (equation (2)). The determination of the owner element is not required to be an elaborated step in the algorithm. The program could attempt sequentially inverse mapping a point for every element in the mesh. Using the reference coordinates the program can check if the point falls inside the domain of the element (section 4). However, since inverse mapping may be complex and numerically expensive, such an approach would be inefficient. Moreover, inverse mapping algorithms are not guaranteed to have a solution for points outside the element's domain, which affects the reliability of a two-step interpolation algorithm. Instead, a combination of simple tests is used to determine the owner element before performing the inverse mapping.

Element tests

This section describes the cross-product and bounding-box tests. The term "element test" refers to any technique to determine whether a point lies inside or outside of an element.

Cross-product test

The cross-product test (Figure 2(a)) consists in a series of cross and dot products, which determines if a data point lies inside the intersection of the "vertex cones" of an element. The approach is equivalent to techniques described by P. Burke [START_REF] Bourke | Determining if a point lies on the interior of a polygon[END_REF]. If point p is inside the element, then for every node, n ∈ n e(p) , the vector np will lie inside the cone created by the two adjacent node vectors, ni and nj. This condition is checked using the vectors s 1 and s 2 ,

s 1 = ni × np and s 2 = np × nj. (4)
These vectors will point in the same direction for internal points and in opposite directions for external points. Hence, an internal point must satisfy the condition

s 1 • s 2 ≥ 0 (5)
for all nodes in the element. If a point lies outside the element, there is at least one vertex such that

s 1 • s 2 < 0. (6)
The cross-product test requires that a spatially ordered list of nodes be available for each element (this is standard in finite elements mesh formats). This test is exact for elements with linear edges, and approximate otherwise.

Bounding-box test

The bounding-box test creates an encompassing box around the finite element [START_REF] Rassineux | Maillage automatique tridimentionnel par une méthode frontale pour la méthode des éléments finis[END_REF] and compares the coordinates of the data point with the bounding-box's two opposite corner points, p min and p max (see Figure 2(b)). The coordinates of any point inside the bounding-box must satisfy the inequality

x i (p min) ≤ x i (p internal) ≤ x i (p max) (7)
for all dimensions i. At least one of the inequalities will be false for an external point. The complexity of the test includes two parts: computing the boundaries of the bounding-box (later stored in memory), and testing if a data point lies inside the bounding-box. Since the bounding-box only approximates the geometry of a finite element, it is possible for a point to be inside the bounding-box, but outside the finite element (p internal in Figure 2(b)). Thus, in order to identify the owner element, it is necessary for the bounding-box test to be used together with an exact test such as the cross-product test. Section 3.3, discusses the advantages of scanning a list of finite elements using the bounding-box and cross-product tests together instead of a search algorithm using only the cross-product test. The algorithm first eliminates impossible owner elements with the computationally inexpensive bounding-box test before checking actual owner elements with the more expensive cross-product test.

Searching the element list

The default implementation for finding an owner element is to sequentially scan through a list of elements. Figure 3(a) shows two data points in a finite elements mesh and their corresponding places in a sequential storage container. If a point lies near the end of the list, then element ownership tests must be performed for a large number of elements in the list. Guessing a good initial point in the list requires knowledge of how the mesh was created, which is not always possible. This section introduces the virtual mesh [START_REF] Rassineux | Maillage automatique tridimentionnel par une méthode frontale pour la méthode des éléments finis[END_REF], which is intended to limit the number of elements scanned by element tests. A virtual mesh has two features: First it has a computationally efficient way of determining the sub-region of the mesh that a data point belongs to. The sub-regions are referred to as virtual elements. This is typically obtained through a regular paving of the space. Second, each virtual element v stores a list e v of finite elements e that possibly share a segment of area,

e v = e ∈ E | e ∩v = ∅ , (8
)
where ∩ is the operator "possibly intersects". This operator is implemented here by determining the virtual element index range for the two opposite diagonal points, γ i (p min) and γ i (p max) (see Figure 2(b) and equation (9)). The list e v is typically much smaller than the complete list of finite elements E. Figure 3(b) illustrates the simplest virtual mesh, made of regular rectangles in 2D. This virtual mesh is used for the experiments in this article. Retrieving the correct virtual element is very inexpensive. The i th dimension index γ i of the virtual element containing the data point p can is determined using only 3 operations,

γ i = f loor x i (p) -x i dx i , (9)
where x i is the origin of the virtual mesh grid and dx i is the virtual mesh's grid-step in the i th direction.

Once the virtual element has been retrieved, its small list of finite elements, e v , is scanned using element tests.

Comparison of owner element search algorithms

This section compares three algorithms to find the owner element of a data point. Each algorithm is defined by a combination of element tests and an element retrieval technique (either sequential or based on a virtual mesh).

• Search technique 1 (ST1) sequentially scans the full list of finite elements using the cross-product test. The process is restarted at the beginning of the list for each data point.

• Search technique 2 (ST2) is a sequential search of the full finite elements list using a combination of the cross-product and bounding-box tests. This algorithm is essentially the same as the previous technique, except that the cross-product test is performed only if the data point is inside the finite element's bounding box. If the element fails the bounding box test, the algorithm moves to the next element in the list. The idea is to eliminate impossible owner elements with the computationally inexpensive bounding-box test before using the more expensive cross-product test.

• Search technique 3 (ST3) uses the cross-product and bounding-box tests to search small lists of finite elements obtained with the virtual mesh. For each data point, the algorithm retrieves the appropriate virtual element, and scans the small list of finite elements using a test similar to ST2.

The efficiency of an element search algorithm is estimated by counting average number of operations. Operations are defined as basic math operations (+ -× ÷), comparison operations (= = < >

), assignment operations and standard mathematical functions in the C library. A finite element program containing a sequential list of N e elements as illustrated in Figure 3. The search time for a data point belonging to the i th element in this list is

Ti = (i -1) × Tf + Ts , (10)
where Ts (success time) and Tf (failure time) are the computation times (measured in number of operations) to determine that the data point does or does not belong to an element, respectively. Assuming for an average field, that a point can belong to any element in the list with equal probability, the time complexity Tc , namely the average number of operations to determine the owner element of one point, is

Tc (N e) = 1 N e Ne i=1
Ti .

The total search time Tt is an estimate of the average number of operations required to identify the owner element for N p arbitrary data points including a preprocessing time Tb (required to initialize bounding boxes and the virtual mesh),

Tt (N e , N p) = Tb (N e) + Tc (N e) × N p . (12
)
The objective of the analysis is to determine which combination of element tests results in the smallest total search time, Tt . An estimate of Tt was computed for ST1, ST2 and ST3 applied to meshes of QUAD4 elements. These search times are functions of the number of elements N e the number of interpolation points N p as well as mesh-specific geometric parameters: A measure of mesh distortion N cl , specifically the average number of finite element bounding-boxes that will claim an arbitrary data point, N ve , the average number of virtual elements possessing a reference to the same finite element and N k , the average number of finite elements in a virtual element. An approximate relationship between N k and N ve is developed in Appendix C. It uses a coefficient α, which is the ratio of the average bounding-box area of a finite element, A e , to the area of a virtual element, dx × dy,

α = A e dx × dy . (13
)
The approximation considers the limiting behavior of N k and N ve as α → 0 and α → ∞, while accounting for and mesh to virtual mesh offsets (see Figure 14 in Appendix C),

N k ≈ 1 α + 1 (14)
and

N ve ≈ α + 1. (15
)
If α is very large (i.e. very small virtual elements) the majority of the virtual elements will contain the reference to only one finite element, leading to a decrease in the time complexity Tc of the search algorithm. However, since there are more virtual elements, the preprocessing time Tb will offset the advantage gained by the smaller Tc . The ratio α * represents the the best compromise between Tc and Tb . It is obtained by differentiating Tt | st3 with respects to α and solving for a zero (see Appendix C), 4 illustrates some of the basic features of the different Tt curves. All functions are linear with respect to N p . The slope of ST1 is clearly the largest, followed by ST2 and ST3, which stays nearly flat. In contrast, the offset of ST3 is the largest, followed by ST2, while ST1 has no offset. These offsets are due to the preprocessing time Tb required by the virtual mesh and the bounding box calculations. Next, pairs of element tests are compared while varying all parameters. Figure 5 is a comparison of ST1 and ST2. The curves represent iso-lines where Tt | st2 = Tt | st1 . ST2 is more efficient than ST1 for N p > 12 as long as N cl , the average number of elements that claim a data point, is lower than 80% of the number of elements, N e . This condition is satisfied for all but very distorted meshes. The extra bounding-box build time Tb is compensated by the decreasing slope in the Tt vs. N p curve. Figure 6 is a comparison of ST2 and ST3. The figure shows that for any reasonable mesh, N e ≥ 30 and N p ≥ 50, it is advantageous to use a virtual mesh. In section 5 we validate these conclusions experimentally. It uses a C++ implementation of the different search techniques.

α * = 1.25N p N e . (16)

Inverse mapping

Finite elements shape coefficients N j are generally known functions of an element's local coordinates ξ (equation (2)). Hence in general, to evaluate these coefficients it is necessary to compute ξ(p) from x(p).) .

(

) 17
The coefficients S j are also known functions of ξ, and are the same as N j for iso-parametric elements. The opposite operation (i.e. calculating ξ(p) from x(p)) is called inverse mapping.

Inverse mapping is a non-trivial operation, which in general needs to be calculated numerically, although for special cases it is possible to invert the shape functions analytically. Whichever technique is applicable, the accuracy of the inversion can be tested as illustrated in Figure 7. If the inversion is successful the difference, δ ξ = ξ * -ξ T , should approach machine precision. Since ξ T is unknown, δ ξ cannot be computed directly. Instead, by mapping S : ξ * → x * , δ x = x * -x is used as a measure of the inverse mapping error. For shape functions where the analytical solution of the inverse is unknown, δ x is typically taken as the cost function to be minimized, by varying ξ. Section 5 implements both analytic and iterative inverse mapping strategies for a QUAD4 element. The iterative approach uses a Newton-Raphson optimizer

Analytic inverse mapping for QUAD4 elements

For a QUAD4 element equation (17) can be rewritten as

x = a 0 + a 1 ξ + a 2 η + a 3 ξη (18)
and

y = b 0 + b 1 ξ + b 2 η + b 3 ξη, (19
)
where the coefficients a i and b i are solved by evaluating the shape functions at node coordinates (see Appendix B) 2 . The reference coordinates are determined by solving for either ξ or η using one equation, x or y, then substituting the result into the remaining equation. For instance, solving for ξ using the x equation,

ξ = x 0 -a 2 η a 1 + a 3 η , (20
)
then substituting ξ into the y equation, we obtain

Aη 2 + Bη + C = 0, (21)
where the coefficients A, B, C are

A = a 3 b 2 -a 2 b 3 , B = (x 0 b 3 + a 1 b 2) -(y 0 a 3 + a 2 b 1), C = x 0 b 1 -y 0 a 1 (22)
and x 0 = a 0 -x, y 0 = b 0 -y. Thus, in general, inverse mapping requires the solution of a quadratic equation. However, if equation (20) results in division by zero (i.e. a 1 +a 3 η = 0), an alternative inverse mapping formulation must be used. For geometrically admissible elements (i.e. elements wit no crossing edges and a non-zero area) two cases cover all possible situations. Details including proofs of these formulations can be found in Appendix B. case 1, a 1 = 0, a 3 = 0 : The value of η is obtained from

a 1 + a 3 η = 0, η = -a 1 a 3 , (23)
and ξ by substituting η into the y equation,

ξ = y 0 a 3 + a 1 b 2 a 3 b 1 -a 1 b 3 . (24
)
case 2, a 1 = 0 , a 3 = 0 : The value of η is obtained by solving the x equation,

η = x 0 a 2 , (25)
and ξ by substituting η into the y equation,

ξ = y 0 a 2 -x 0 b 2 a 2 b 1 + x 0 b 3 . (26)

Iterative inverse mapping

In applications where the shape functions are more complex than QUAD4 elements, an analytical inversion of the shape functions may become too tedious to be carried out. Figure 8 illustrates one such case. The element in question is a 20 node 3D brick element, which contains a set of three 2 nd order 3D shape functions. The alternative is to use an iterative technique to compute the reference coordinates of data point p.

The iterative process begins with an initial guess of the reference coordinates, ξ 0 , which can be selected from node coordinates, integration points, element center, or any other point inside the element. Consider a formulation of the square of the forward error, f , where ξ T (p) and x T (p) are the target coordinates of p,

f (ξ) = δ 2 x (ξ) = (x T j (p) -S i (ξ)x j (n e(p) i)) 2 . (27)
Notice that both x T j (p) and x j (n e(p) i

) are known quantities and S i are known functions of ξ, the unknowns.

Since the shape functions are continuous in the reference coordinate system, the function f (ξ) must be continuous and zero (its minimum) at the solution point ξ T ,

f (ξ T) = f min = 0. (28)
Hence, it is possible to minimize f to solve for ξ(p). Since the shape functions are polynomials, a gradient method may be used for this purpose. Using this technique the condition

g i = ∂f ∂ξ i = 0 (29)
must be satisfied at the solution point. Hence, the iteration step is

∆ ξ = -1 2 H -1 g, where H is the Hessian of f, H ij = ∂ 2 f
∂ξi∂ξj . The individual partial derivatives are computed from equation (27),

∂f ∂ξ i = 2(x T k (p) -S l (ξ)x l (n e(p) k) ∂S l (ξ) ∂ξ i , (a) Reference Element
Corners:

S i (ξ, η, ζ) = 1 8 (1 + ξξ i)(1 + ηη i)(1 + ζζ i)(ξξ i + ηη i + ζζ i -2) Sides: S i (ξ, η, ζ) = 1 4 (1 + ξ 2)(1 + ηη i)(1 + ζζ i) x(p) = 20 i=1 S i x(n e(p) i) (b) Shape Functions Figure 8: A 20-node 3D brick element (BRK20) ∂ 2 f ∂ξ i ∂ξ j = 2 ∂S l (ξ) ∂ξ i ∂S l (ξ) ∂ξ j + 2(x T k (p) -S l (ξ)x l (n e(p) k)) ∂ 2 S l (ξ) ∂ξ i ∂ξ j .
The iteration should continue until reaching the stopping criteria, δ x ≤ δ allow . The stop criteria depends on the inversion accuracy required by an application.

Numerical experiments

The efficiency of owner element search algorithms were estimated in section 3.3 by counting operations. It assumed that other contributions to the algorithm's time complexity are negligible (e.g. memory allocation, different computation costs for integer and floating point arithmetic, etc). This section checks these assumptions by comparing the theoretical estimates with numerical experiments. The computation times are measured when interpolating data-point grids, with varying number of points N p over meshes of different element numbers N e . The experiments are conducted with a C++ implementation of the interpolation algorithms, with an ABAQUS 6.4 finite elements solver [START_REF]ABAQUS/CAE user's manual : version 6[END_REF]. The computer test-bed is a Toshiba satellite A60 with a Pentium 4 processor running on a GNU/Linux Debian 3.1 operating system [START_REF]Debian GNU/Linux 3.1 Bible[END_REF]. The FE model is an open-hole plate specimen illustrated in Figure 9. The model's left side is fully constrained, and the right side subjected to a 1550 KPa surface traction. The data points, p, are located on a grid of step s (Figure 9) 3 . The total processing time T t is measured by an embedded C++ timer, which measures the time in seconds from the beginning of the interpolation procedure until all data points in the grid have been interpolated. The procedure is repeated with different mesh sizes, N e , and grid steps s. 1). Figure 10(c) shows the results for the ST3 algorithm, which uses a combination of the crossproduct and bounding-box tests and a virtual mesh container. Clearly, the interpolation algorithm using the virtual mesh is more efficient than the previous algorithm. For large number of points (N e ≥ 5000), the virtual mesh reduces computation times by a factor of 10 to 60 times. Notice that T t varies linearly with N p and N e , but unlike the previous case, the slopes of these curves are independent of N e and N p . These results match the O(AN e + BN p) in the time complexity Tt | st3 (A and B are functions of mesh distortion, but independent of N e and N p , see Table 1). show the recorded inverse mapping times for analytic and iterative inverse mapping algorithms. The iterative technique is a 2D Newton-Raphson minimization of δ x . The optimizer has a stopping criterion of |δ x | < 1e -5 mm. Inverse mapping times for both techniques show a linear variation with N p and no tendency with respects to N e . The scatter on the graphs is due to a dependency of the inverse mapping cost on the position of the data points inside an element (see Appendix A). The figures show that inverse mapping is performed very quickly in comparison to the owner element search. For the analytic solution, nearly 250000 data points are interpolated in less than 1 CPU second. The iterative approach is significantly slower, but still is capable of interpolating 40000 points in about 5 seconds. If the field comparison is performed several times over a constant mesh, the index of the owner element and reference coordinates of each data point can be saved after the first interpolation and reused in each subsequent comparison. This practice can permit further reduction in interpolation time.

This interpolation technique is now applied to the construction and visualization of error maps. The plate with a hole (Figure 9) is composed of an orthotropic material of properties E 11 = 100 GPa, E 22 = 36 GPa, G 12 = 25 GPa, ν 12 = 0.54 GPa. A "reference model" is solved with a fine mesh of approximately 33000 elements, and its nodal displacements are taken as the experimental data field. The error maps are produced by solving several models with the same material properties, but varying mesh densities N e , and interpolating displacements at each data point. Figure 12 shows two error maps of the normalized distance,

J(p) = u(p) ref -u(p) test u ref max -u ref min 2 + v(p) ref -v(p) test v ref max -v ref min 2 , (30)
where p ∈ n ref. mesh . Notice that as the number of elements increases the mesh approximates better the curvature around the hole, which decreases the error J.

Conclusions

This article proposes and analyzes algorithms for mapping mesh information to arbitrary points using finite element's shape functions. The algorithms consist of two parts: the identification of the owner element, and the mapping of interpolation points into the element's reference coordinate system. The interpolation is then a direct evaluation of the element's shape functions. The strategy for determining the owner element for each data point is critical to the numerical efficiency of the procedure. The use of a virtual mesh has been proposed as an alternative to sequentially searching the entire list of finite elements. It was shown that this indexing technique permits the time complexity to increase linearly with increasing mesh size, N e , and number of data points, N p , contrary to sequential techniques, which increase quadratically with N e × N p . In addition to the virtual mesh, an efficient test for determining if a point belongs to an element has been developed. It is a combination of a fast approximate test based on bounding-boxes and an exact test based on cross-products, which works for all linear elements. Inverse mapping has been discussed through the analytical example of bilinear quadrilateral elements, and numerically in the general cases.

Finally, the different interpolation strategies have been implemented in C++, and applied to a finite elements model of open-hole tensile test. As a typical example, the best strategy (virtual mesh, mixed test) interpolates over 40,000 data points in less than 1 second for a finite elements mesh of 10,000 elements on a Pentium 4, 2.8 GHz computer. The numerical tests have confirmed the theoretical analysis based on operations counting. Simplifying the expression yields, (x n2 -x n1)(y n4 -y n3) = (x n4 -x n3)(y n2 -y n1),

⇒

(y n4 -y n3) (x n4 -x n3) = (y n2 -y n1) (x n2 -x n1) .

Thus, the vectors 12 and 34 point to the same direction, which results in a kinematically inadmissible configuration (see 13(a)).

Proposition 3. For all kinematically admissible elements, such that a 1 + a 3 η = 0 and a 3 = 0, the inverse function F For all kinematically admissible elements, such that a 1 + a 3 η = 0, and a 3 = 0, it is necessary that a 2 = 0.

If a 1 + a 3 η = 0, and a 3 = 0 then a 1 = 0, thus (x n2 -x n1) = (x n4 -x n3) and (x n1 -x n2) = (x n4 -x n2), ⇒ x n3 = x n4 and x n1 = x n2 .

If a 2 = 0 then

x n3 + x n4 = x n1 + x n2 , ⇒ x n1 = x n2 = x n3 = x n4 .
Hence, the resulting node coordinates are collinear, which represents a kinematically inadmissible element.

Figure 1 :

 1 Figure 1: Interpolation using the Matlab griddata function.

Figure 2 :Figure 3 :

 23 Figure 2: (a) The cross-product test uses cross and dot products to check if a point lies inside all vertex cones of an element. (b) The bounding-box test uses a rectangular approximation of the element to quickly eliminate impossible owner elements (case of external points).

Figure 4 :

 4 Figure 4: Number of operations vs. number of data points for methods ST1, ST2 and ST3 (N e = 10000, N cl = 10 and α = 0.05).

Figure 5 :

 5 Figure 5: Comparison of ST1 and ST2. The curves represent iso-lines where Tt | st2 = Tt | st1 . The regions above the curve are such that Tt | st2 < Tt | st1 . Notice that N e does not affect the curves to a significant degree.

Figure 6 :Figure 7 :

 67 Figure 6: Comparison of ST3 and ST2. The curves represent iso-lines where Tt | st3 = Tt | st2 . The curves use the optimum α and N cl = 1, 5, 10, 15, 20.

Figures 10 (

 10 a) and 10(b) show the test results for the ST2 algorithm, which uses the bounding-box and cross-product tests to sequentially scan the entire list of finite elements. The execution time, T t , increases linearly with N e and N p when N p and N e are held constant. Notice that the slopes of T t increases with N e and N p . The experimental behavior is in agreement with the O(N e × N p) time complexity Tt | st2 in section 3.3 (Table

Figure 9 :

 9 Figure 9: (a)Test-Specimen Geometry: The model is an open-hole tensile test with the left side fully constrained and the right side subjected to a 1550 KPa surface traction. (b) Details of the finite elements mesh.

Figure 10 :

 10 Figure 10: Element search times (measured numerically)Next, Figures11(a) and11(b) show the recorded inverse mapping times for analytic and iterative inverse mapping algorithms. The iterative technique is a 2D Newton-Raphson minimization of δ x . The optimizer has a stopping criterion of |δ x | < 1e -5 mm. Inverse mapping times for both techniques show a linear variation with N p and no tendency with respects to N e . The scatter on the graphs is due to a dependency of the inverse mapping cost on the position of the data points inside an element (see Appendix A). The figures show that inverse mapping is performed very quickly in comparison to the owner element search. For the analytic solution, nearly 250000 data points are interpolated in less than 1 CPU second. The iterative approach is significantly slower, but still is capable of interpolating 40000 points in about 5 seconds. If the field comparison is performed several times over a constant mesh, the index of the owner element and reference coordinates of each data point can be saved after the first interpolation and reused in each subsequent comparison. This practice can permit further reduction in interpolation time.This interpolation technique is now applied to the construction and visualization of error maps. The

Np (1 ×Np (1 ×Figure 11 :

 1111 Figure 11: Inverse mapping and interpolation times using (a) analytic and (b) iterative inversion algorithms.

 Test mesh: Ne = 1500

Figure 12 :

 12 Figure 12: Error maps J(p) between a reference mesh of N e = 30000 and test meshes of (a) N e = 700 and (b) N e = 1500.

Figure 13 :

 13 Figure 13: If any two node vectors 12, 23, 34, or 41 are parallel and point in the same direction, the nodal configuration is kinematically inadmissible.

- 1 :

 1 x(p) → ξ(p) is ξ = y0a2-b2x0 b3x0+a2b1 and η = x0 a2 .(57)Proof. The proof follows directly from substitution into equation 54. It shows that if there is a division by zero in equation 57 the element is kinematically inadmissible.part 1:

Table 1

 1

	Time Cross-Product Test Bounding-Box Test	Virtual Mesh
	Tb	0	20N e	(5N e + 7) + 20 + N ve + 12 N e
	Tf	37.5	2.5	Does Not Apply
	Ts	60	4	Does Not Apply
	Search Technique Computation Time	
	ST1		Tt | st1 = 18.75N	

summarizes the search times of interest, the proofs of which can be found in Appendix A. e N p + 41.25N p ST2 Tt | st2 = 1.25N e N p + 20.75N cl N p + 110.5N p + 20N e ST3 Tt | st3 = (N ve + 37)N e + 1.25N k + 20.75N cl + 116.5 N p + 7

Table 1 :

 1 Computation timesFigure

Unlike interpolation, approximation points do not necessarily match experimental or FE data points.

The (p) is omitted from x(p), y(p), ξ(p) and η(p) for convenience.

The data point grids encompass only a square window on the center of the model. Since the numbering of the elements follows a rectangular pattern, the square data field can be considered average.

A Search time details for QUAD4 elements

Search technique 1 (cross-product test + sequential scan):

Algorithm D.1 contains the pseudocode for ST1, which sequentially scans a list of finite elements using the cross-product test. The time complexities for this test are estimated by counting operations in this code. To compute the average failure time Tf | cp (failure time for a cross-product test), notice that an external point may fall outside any of the vertex cones with equal probability (see table 2). Hence,

The total processing time for ST1 is

Search technique 2 (bounding-box and cross-product tests + sequential scan):

Algorithms D.2 and D.3 contains the pseudocode for ST2, which sequentially scans a list of finite elements using the bounding-box and cross-product tests. The algorithm begins by computing the bounding boxes for each element in the preprocessor, then storing them in memory. the average time required to build a bounding box Tb | bb is

Each data point's coordinates are tested against the bounding-box's reference points, p min and p max (2 comparisons per dimension). Notice, that external points may fail a comparison at any dimension with equal probability (see Algorithm D.3), thus the average failure time Tf | bb is

For an internal point all comparisons must be performed, hence Ts | bb is

Next, we assume the first i finite elements in the list will be discarted by the bounding-box test. After i elements, a list of N cl (the average number of bounding-boxes claiming a data point) elements will be searched using the cross-product test, hence,

Where T s | cl is the average time to search N cl finite elements using the cross-product test,

Evaluating the expressions yields,

Substituting values for

Algorithm D.7 determines the boundaries of the virtual mesh, thus

Algorithm D.6 contains the pseudo code to add finite elements to the virtual mesh,

Where N ve is the average number of virtual elements containing a reference to the same finite element. This number is dependent on the mesh geometry and virtual mesh step (see section 3.2). Substituting values for equation (44),

Algorithm D.4 is the pseudo-code for retrieving a virtual element. Notice that a virtual element is retrieved using only 2 operations per dimension,

The bounding-box and cross-product tests are used to search the lists e v . Thus the time to search a virtual element Tse | ve has the same computational complexity as ST2. Substituting the average number of elements in e v , N k , into equation (42) yields,

In general, the time complexity and total search time for ST3 are

and

respectively. Substituting yields,

and

B Inverse mapping theorems

This section establishes a mathematical basis for the inversion technique presented in section 4.1. The presented proofs are limited to elements posessing a unique analytical inverse (i.e. elements with nonzero Jacobians). For a robust interpolation algorithm, it is recommended that the mesh generator possess an algorithm to minimize mesh distortion (usually available in mesh generating software). For all other elements, the analytical inverse mapping algorithm will propose a solution, which must be verified using forward mapping (presented in section 4). In the case where the analytical solution cannot be obtained analytically, an alternate technique should be used instead.

Definition 1. Kinematically admissible element: Let the shape functions F of a 2D bi-linear quadrilateral element be defined by equations 54, such that (ξ, η) [-1, 1] 2 . A kinematically admissible element is such that the nodal arrangement in the real coordinate system does not contain any crossing segments, and has a non-zero area.

Let the shape functions F : ξ(p) → x(p) of a QUAD4 element be written as

where the coefficients a i and b 1 are

Proposition 1. If a 1 + a 3 η = 0, then for all kinematically admissible elements, the inverse function

where the coefficients A, B and C are

Proposition 2. If a 1 + a 3 η = 0, a 1 = 0, and a 3 = 0, then for all kinematically admissible elements, the function

Proof. For all kinematically admissible elements such that a 1 + a 3 η = 0, a 1 = 0 and a 3 = 0, we prove that a 3 b 1 -b 3 a 1 = 0, which guarantees 56 can be used without division by zero. Assuming without loss of generality that the nodes are numbered counter-clockwise. If

Assume that a 2 = 0 and that b 1 a 2 + b 3 x 0 = 0. Using x 0 = x -a 0 , it follows that

case 1: b 3 = 0 Substituting x n1 = x n2 and x n3 = n n4 and simplifying yields,

Solving for x, x = (y n3 -y n4)x n1 + (y n1 -y n2)x n3 (y n3 -y n4) + (y n1 -y n2) .

Defining α and β, where α + β = 1 yields,

For any internal point it is necessary that both α > 0 and β > 0. However, if y n3 -y n4 > 0 it follows that y n1 -y n2 < 0 for an element with no intersecting edges. Hence, α and β always have opposite signs for a valid element, thus the point x is not an internal point.

The result is a collinear nodal arrangement, which is kinematically inadmissible.

C Selecting the virtual mesh grid size

The build time Tb | vm and time complexity Tc | vm are both directly proportional to the average number of finite elements in e v , N k and the average number of virtual elements that share a reference to the same finite element N ve , respectively (equations (47) and (52)). To determine the best compromise between search time and build time, we define the ratio α,

. where A e is the average area of the finite element's bounding-boxes and dx × dy the virtual mesh's grid step. Notice that as the grid step decreases towards zero (i.e. α → ∞), the numbers N k → 1 and N ve → ∞ (Figure 14(c)). Similarly, for an infinite mesh, as the grid step increases to infinity (i.e. α → 0), the numbers N k → ∞ and N ve → 1. The exact relationship between these numbers is highly dependent on the geometry of the finite elements mesh. An approximation of this relationship is obtained by neglecting mesh distortion (see Figure 14) and considering only their limiting behaviors,

and

The proposed approximations satisfy the limiting behavior of α. In addition, for α = 1, if we consider the possible offset of the virtual and real mesh, it is required that N k and N ve are bounded by [START_REF]ABAQUS/CAE user's manual : version 6[END_REF][START_REF] Beckert | Coupling fluid (CFD) and structural (FE) models using finite interpolation elements[END_REF], which is also satisfied by the choices of coefficients A i = 1, B i = 1 (see Figure C). Substituting equations (59) and (60) values into T t | ST 3 yields an expression in the form of

Differentiating the expression and solving for a zero, α * , we obtain

Substituting this value into equation (53), results in the optimum processing time for the virtual mesh,

comment: Determining the boundary of the VM:

x 0 = x f = x of f irst node of f irst element in V e y 0 = y f = y of f irst node of f irst element in V e for each Element E ∈ V e and for each N ode P ∈ E do

x < x 0 then x 0 = P.x if P.x > x f then x f = P.x if P.y < y 0 then y 0 = P.y if P.y > y f then y f = P.y comment: Determining the mesh steps dx = (x f -x 0)/(number of x divisions) dy = (y f -y 0)/(number of y divisions)