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Abstract

The increasing use of finite elements (FE) and optical full-field measurement methods have con-

tributed to the growing need to compare mesh-based degrees of freedom with experimental fields of

sparse data points. Applying generic interpolation algorithms (e.g. using linear, cubic and B-spline

weight functions) creates a dependency of the interpolated field to non-physical parameters that may af-

fect high-frequency information through implicit filtering and introduces fundamental assumptions to the

shape of experimental data field. The alternative is to use the existing FE mesh and shape functions to

determine mesh degrees of freedom at each experimental data point. This comparison technique makes

no assumptions beyond those already made in the FE model. In this sense, interpolation using element

shape functions is exact. However, this approach requires calculating the local FE coordinates of the

experimental points (inverse mapping), which is non-trivial and not a standard part of FE software.

Basic implementations of FE interpolation can be time consuming and impractical for applications

requiring the comparison of large fields to be repeated several times. This article analyzes a two-step

process for FE interpolation. First the element containing a given data point is determined, then the

interpolation inside the element using reference coordinates. An efficient strategy is proposed, which

relies on cross-products, element bounding-boxes and a multi-dimensional storage array (virtual mesh).

The strategy yields a linear computation cost with respects to the number of elements in the FE mesh and

number of data points in the experimental field, contrary to a quadratic cost from standard approaches. A

sample application is given using a plate with a hole.
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Summary of notation

e(p) An element containing p
ǫ(p) A neighborhood around point p

nj
i The ith node of set j

nmesh The set of nodes in a finite elements mesh

nǫ(p) Set of nodes in a neighborhood of p
Ne Number of elements in a finite element’s mesh.

Np Number of points in in the data field.

N cl Average number bounding-boxes that claim an arbitrary data point.

Nk Average number of finite elements in a virtual element.

Nve Average number of virtual elements which share a reference to a finite element .

p A data point

p A set of data points

STi Search Technique i.

T , T̂ Time measured in CPU seconds and number of operations, respectively.

Tb Build time or pre-processing time.

Tc Time complexity.

Tf Failure time.

Ti Search time for a data point belonging to the ith element in a sequential list.

Ts Success time.

Tt Total search time.

TX |Y Time factor X for search technique Y.

~v A vector

vi The ith scalar component of vector ~v
~x(p) Coordinates of point p in the global coordinate system
~ξ(p) Coordinates of point p in an element’s reference coordinate system

1 Introduction

The increasing use of finite elements has given rise to a series of applications requiring the comparison

of discrete data fields with finite elements results. These applications include mesh-interaction [4, 22],

geological topography [10], visualization [16, 20], calibration of boundary conditions [17] and material

identification [5, 7, 9, 11, 12, 14, 15]. In general, a finite elements solver provides information only at

nodal or integration points. Available data points may not always coincide with mesh points, and before a

comparison can be performed, it is necessary to map one field of points onto the other.

Three types of mapping techniques can be employed for this purpose: node placement, where FE nodes

and experimental points are forced to coincide [7, 14], approximation and interpolation 1 [8, 13, 12]. Since

the accuracy of the FE models is a function of node position, node placement techniques introduce an un-

desired coupling between the position of data points and the accuracy of the finite elements model. Generic

interpolation and approximation algorithms (ex. using linear, cubic and B-spline weight functions) creates

a dependency of the interpolated field to non-physical parameters that may eliminate high-frequency in-

formation through implicit filtering, and introduces fundamental assumptions to the shape of experimental

data field. This article presents interpolation techniques using FE shape functions. This approach was se-

lected over other mapping techniques because it makes no assumptions other than those already introduced

in the finite elements model. The strategies discussed in this article consist of two parts: First, the element

containing each data point (the owner element) is identified. Next, the coordinates of the data point are

transformed into the finite element’s reference coordinate system (hereafter this procedure is referred to as

1Unlike interpolation, approximation points do not necessarily match experimental or FE data points.
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inverse mapping). The reference coordinates are used to compute the element’s shape-function coefficients

which perform the interpolation.

Many of the cited applications require the interpolation of anywhere from 1×103 to 1×106 data points

to be repeated several thousand times [15]. Hence, it is very important that this mapping be carried out as

quickly, accurately and reliably as possible. To address this demand, the article analyzes a series of tech-

niques to reduce the number of operations required for interpolation of large data fields. These techniques

consist of different search methods for the owner element (including the cross-product and bounding-box

tests, and the virtual mesh), and inverse mapping methods (including analytical and iterative methods). We

begin with a description of the different search algorithms, followed by a theoretical estimation in com-

putational cost. Since the search time is dependent on the exact mesh configuration, the algorithms are

bench-marked using meshes of 2D 4-nodes quadrilateral elements (QUAD4). Using the theoretical esti-

mates, the algorithm with the lowest computational cost is determined. A C++ implementation of these

algorithms is used to support the theoretical estimates on a plate with a hole problem.

2 Overview of interpolation techniques

This section presents a brief overview of the possible techniques for comparing discrete data fields with FE

results.

2.1 General interpolation

The griddata function in the Matlab software package [13] provides four techniques to obtain data, u(p),
at arbitrary points, p, from a cloud of sparse data, u(nmesh): triangle-based linear, cubic, nearest neighbor

and biharmonic spline (B-spline) interpolation. All of these techniques except B-spline [21] generate in-

terpolation meshes via Delaunay triangulation [3]. A triangle defines a zone of influence for interpolation

coefficients Wi,

u(p) =

no. nodes in ǫ(p)
∑

i=1

Wi

(

~x(p), ~x(nǫ(p))
)

u(n
ǫ(p)
i ) . (1)

The nearest-node and linear interpolation algorithms are the fastest, but have discontinuous zeroth and

first derivatives, respectively. The other two are continuous up to the second derivatives, but are significantly

slower. In addition, griddata does not account for fields with an internal discontinuity, such as a plate with

a hole. The algorithm fills the hole with elements, thus introducing boundary effects on the interpolated

data. Kriging [8] is another popular interpolation approach popular in geo-statistics. It has the advantage of

providing an estimation of the interpolation variance. However, it is computationally expensive (requiring

the solution of a large linear system for each data point). Another drawback of general interpolation is that

they affect the data by introducing non-physical parameters to the comparison (i.e., kernel width, polynomial

degrees, variogram length and scales in kriging).

2.2 Methods based on finite elements shape functions

With FE shape functions, Nj , the value, u(p), is estimated from node values, u(ne(p)), of the element, e(p),
containing the data point, p (hereafter referred to as the owner element),

u(p) =

no. nodes in e(p)
∑

j=1

Nj

(

~ξ(p)
)

u(n
e(p)
j ) . (2)

Notice that in general shape functions are written in the reference system of the element containing point,

p. Calculating the local coordinates of a point is not a trivial operation, requiring two steps. First, finding

the owner element. Second, calculating the local coordinates of the point (an operation referred to as

inverse mapping), which in general involves solving a multi-dimension non-linear system of equations. The

comparison of the FE model and data fields is performed either at the coordinates of the FE nodes or data

points. Continuity is guaranteed for the zeroth derivative, but is generally discontinuous for higher-order

derivatives.
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Figure 1: Interpolation using the Matlab griddata function.

Projection of data points onto FE response space

E. Pagnacco and D. Lemosse [18] describe a technique where the data field is approximated at the nodal

coordinates of the finite elements mesh. The method searches for node values, u(nmesh), that best fit

available data, u′(p). The approximation is defined as the projection of the data onto the finite elements

model space. The values of u(nmesh) are determined by solving a least-squares problem,

min
u(nmesh)

no. points in p
∑

i=1



u′(pi)−

no. nodes in ǫ(pi)
∑

j=1

Nj

(

~ξ(pi)
)

u(n
e(p)
j )





2

. (3)

This technique requires a number of data points greater than the number of finite elements nodes, and

that the data field encompass a representative part of the finite elements mesh. The computational cost

involves determining the reference coordinates of each data point, and solving the least-squares problem.

For applications where the comparison is performed multiple times over a non-changing finite elements

mesh, the interpolation of the data points has to be performed only once. This projection method may

eliminate (filter) high-frequency information in the measurement (e.g. experimental noise).

FE interpolation at data points

Instead of interpolating measured data points at FE node coordinates, this article selects the interpolation

of data from nodes at the coordinates of the experimental points, leaving the experimental data unaltered.

The strategy consists of simply evaluating equation (2) for each data point, p ∈ p. A special effort is

made to improve the speed of determining the owner element. This approach allows for the computation

of degrees of freedom at arbitrary points, and has no restriction in the distribution or the number of data

points. The FE solution is completely independent of the position and size of the experimental data field,

and since the same mesh is used for solving the model and interpolating the data, the resulting interpolated

field is an exact representation of the FE solution. Also, similar to the previous technique, the interpolation

coefficients can be computed only once for a non-changing mesh, thus saving time on applications that

repeat the interpolation several times. Different from the previous technique, this approach does not perform

implicit filtering, thus allowing for the consideration of high-frequency information.
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3 Determination of the owner element

Interpolation using shape functions is accomplished in three steps: the determination of the element con-

taining the data point (owner element), the transformation of the data point’s coordinates into the reference

coordinate system (inverse mapping), and finally the application of the finite elements shape functions to

determine the degrees of freedom at that point (equation (2)). The determination of the owner element is not

required to be an elaborated step in the algorithm. The program could attempt sequentially inverse mapping

a point for every element in the mesh. Using the reference coordinates the program can check if the point

falls inside the domain of the element (section 4). However, since inverse mapping may be complex and

numerically expensive, such an approach would be inefficient. Moreover, inverse mapping algorithms are

not guaranteed to have a solution for points outside the element’s domain, which affects the reliability of

a two-step interpolation algorithm. Instead, a combination of simple tests is used to determine the owner

element before performing the inverse mapping.

3.1 Element tests

This section describes the cross-product and bounding-box tests. The term “element test” refers to any

technique to determine whether a point lies inside or outside of an element.

3.1.1 Cross-product test

The cross-product test (Figure 2(a)) consists in a series of cross and dot products, which determines if a

data point lies inside the intersection of the “vertex cones” of an element. The approach is equivalent to

techniques described by P. Burke [6]. If point p is inside the element, then for every node, n ∈ ne(p), the

vector, ~np, will lie inside the cone created by the two adjacent node vectors, ~ni and ~nj. This condition is

checked using the vectors ~s1 and ~s2,

~s1 = ~ni× ~np (4)

and ~s2 = ~np× ~nj . (5)

These vectors will point in the same direction for internal points and in opposite directions for external

points. Hence, an internal point must satisfy the condition,

~s1 · ~s2 ≥ 0 , (6)

for all nodes in the element. If a point lies outside the element, there is at least one vertex, n, such that

~s1 · ~s2 < 0 . (7)

The cross-product test requires that a spatially ordered list of nodes be available for each element (this is

standard in finite elements mesh formats). This test is exact for elements with linear edges, and approximate

otherwise.

3.1.2 Bounding-box test

The bounding-box test creates an encompassing box around the finite element [19], and compares the co-

ordinates of the data point with the bounding-box’s two opposite corner points pmin and pmax (see Figure

2(b)). The coordinates of any point inside the bounding-box must satisfy the inequality,

xi(pmin) ≤ xi(pinternal) ≤ xi(pmax) , (8)

for all dimensions, i. At least one of the inequalities will be false for an external point. The complexity of

the test includes two parts: computing the boundaries of the bounding-box (later stored in memory), and

testing if a data point lies inside the bounding-box. Since the bounding-box only approximates the geometry

of a finite element, it is possible for a point to be inside the bounding-box, but outside the finite element

(pinternal in Figure 2(b)). Thus, in order to identify the owner element, it is necessary for the bounding-box
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test to be used together with an exact test such as the cross-product test. Section 3.3, discusses the advan-

tages of scanning a list of finite elements using the bounding-box and cross-product tests together instead

of a search algorithm using only the cross-product test. The algorithm first eliminates impossible owner

elements with the computationally inexpensive bounding-box test before checking actual owner elements

with the more expensive cross-product test.

(a) Cross-Product Test (b) Bounding-Box Test

Figure 2: (a) The cross-product test uses cross and dot products to check if a point lies inside all vertex

cones of an element. (b) The bounding-box test uses a rectangular approximation of the element to quickly

eliminate impossible owner elements (case of external points).

3.2 Searching the element list

The default implementation for finding an owner element is to sequentially scan through a list of elements.

Figure 3(a) shows two data points in a finite elements mesh and their corresponding places in a sequential

storage container. If a point lies near the end of the list, then element ownership tests must be performed for

a large number of elements in the list. Guessing a good initial point in the list requires knowledge of how

the mesh was created, which is not always possible. This section introduces the virtual mesh [19], which is

intended to limit the number of elements scanned by element tests. A virtual mesh has two features: First

it has a computationally efficient way of determining the sub-region of the mesh that a data point belongs

to. The sub-regions are referred to as virtual elements. This is typically obtained through a regular paving

of the space. Second, each virtual element, v, stores a list, ev , of finite elements, e, that possibly share a

segment of area,

ev =
{

e ∈ E | e∩̂v 6= ∅
}

, (9)

where ∩̂ is the operator “possibly intersects”. This operator is implemented here by determining the virtual

element index range for the two opposite diagonal points, γi(pmin) and γi(pmax) (see Figure 2(b) and

equation (10)). The list, ev , is typically much smaller than the complete list of finite elements, E.

Figure 3(b) illustrates the simplest virtual mesh, made of regular rectangles in 2D. This virtual mesh

is used for the experiments in this article. Retrieving the correct virtual element is very inexpensive. The

ith dimension index, γi, of the virtual element containing the data point p can is determined using only 3

operations,

γi = floor

(

xi(p)− xi

dxi

)

, (10)

where xi is the origin of the virtual mesh grid and dxi is the virtual mesh’s grid-step in the ith direction.

Once the virtual element has been retrieved, its small list of finite elements, ev , is scanned using element

tests.
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(a) No Virtual Mesh (b) With Virtual Mesh

Figure 3: Examples of a finite elements mesh and element containers. (a) With a sequential element list it

is possible for interpolation points, which are very close in space to be far away in the container. (b) Virtual

elements contain small lists of finite elements in their neighborhoods.

3.3 Comparison of owner element search algorithms

This section compares three algorithms to find the owner element of a data point. Each algorithm is defined

by a combination of element tests and an element retrieval technique (either sequential or based on a virtual

mesh).

• Search technique 1 (ST1) sequentially scans the full list of finite elements using the cross-product

test. The process is restarted at the beginning of the list for each data point.

• Search technique 2 (ST2) is a sequential search of the full finite elements list using a combination

of the cross-product and bounding-box tests. This algorithm is essentially the same as the previous

technique, except that the cross-product test is performed only if the data point is inside the finite

element’s bounding box. If the element fails the bounding box test, the algorithm moves to the next

element in the list. The idea is to eliminate impossible owner elements with the computationally

inexpensive bounding-box test before using the more expensive cross-product test.

• Search technique 3 (ST3) uses the cross-product and bounding-box tests to search small lists of finite

elements obtained with the virtual mesh. For each data point, the algorithm retrieves the appropriate

virtual element, and scans the small list of finite elements using a test similar to ST2.

The efficiency of an element search algorithm is estimated by counting average number of operations.

Operations are defined as basic math operations (+ − × ÷), comparison operations (= 6= < > 6 >),

assignment operations and standard mathematical functions in the C library. A finite element program

containing a sequential list of Ne elements as illustrated in Figure 3. The search time for a data point

belonging to the ith element in this list is

T̂i = (i− 1)× T̂f + T̂s , (11)

where T̂s (success time) and T̂f (failure time) are the computation times (measured in number of operations)

to determine that the data point does or does not belong to an element, respectively. Assuming for an

average field, that a point can belong to any element in the list with equal probability, the time complexity,

T̂c, namely the average number of operations to determine the owner element of one point is

T̂c(Ne) =
1

Ne

Ne
∑

i=1

T̂i . (12)

The total search time, T̂t, is an estimate of the average number of operations required to identify the owner

element for Np arbitrary data points including a preprocessing time, T̂b (required to initialize bounding

boxes and the virtual mesh),

T̂t(Ne, Np) = T̂b(Ne) + T̂c(Ne)×Np . (13)
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The objective of the analysis is to determine which combination of element tests results in the smallest

total search time, T̂t. T̂t was estimated for the mentioned search techniques applied to meshes of QUAD4

elements. These search times are functions of the number of elements, Ne, the number of interpolation

points, Np, as well as mesh-specific geometric parameters, N cl, Nk and Nve. N cl is a measure of mesh

distortion, specifically the average number of finite element bounding-boxes that will claim an arbitrary data

point. Nve is the average number of virtual elements possessing a reference to the same finite element. Nk

is the average number of finite elements in a virtual element. An approximate relationship between Nk and

Nve is developed in Appendix C. It uses a coefficient α, which is the ratio of the average bounding-box

area of a finite element, Ae, to the area of a virtual element, dx× dy,

α =
Ae

dx× dy
. (14)

The approximation considers the limiting behavior of Nk and Nve as α→ 0 and α→∞, while accounting

for and mesh to virtual mesh offsets (see Figure 14 in Appendix C),

Nk ≈
1

α
+ 1 (15)

and Nve ≈ α + 1 . (16)

If α is very large (i.e. very small virtual elements) the majority of the virtual elements will contain

the reference to only one finite element, leading to a decrease in the time complexity, T̂c, of the search

algorithm. However, since there are more virtual elements, the preprocessing time, T̂b, will offset the

advantage gained by the smaller T̂c. α∗, which represents the the best compromise between T̂c and T̂b is

obtained by differentiating T̂t|st3 with respects to α and solving for a zero (see Appendix C),

α∗ =

√

1.25Np

Ne

. (17)

Table 1 summarizes the search times of interest, the proofs of which can be found in Appendix A.

Time Cross-Product Test Bounding-Box Test Virtual Mesh

T̂b 0 20Ne (5Ne + 7) +
[

20 + Nve + 12
]

Ne

T̂f 37.5 2.5 Does Not Apply

T̂s 60 4 Does Not Apply

Search Technique Computation Time

ST1 T̂t|st1 = 18.75NeNp + 41.25Np

ST2 T̂t|st2 = 1.25NeNp + 20.75N clNp + 110.5Np + 20Ne

ST3 T̂t|st3 = (Nve + 37)Ne +
[

1.25Nk + 20.75N cl + 116.5
]

Np + 7

Table 1: Computation times

Figure 4 illustrates some of the basic features of the different T̂t curves. All functions are linear with

respect to Np. The slope of ST1 is clearly the largest, followed by ST2 and ST3, which stays nearly flat. In

contrast, the offset of ST3 is the largest, followed by ST2, while ST1 has no offset. These offsets are due

to the preprocessing time, T̂b, required by the virtual mesh and the bounding box calculations. Next, pairs

of element tests are compared while varying all parameters. Figure 5 is a comparison of ST1 and ST2. The

curves represent iso-lines where T̂t|st2 = T̂t|st1. ST2 is more efficient than ST1 for Np > 12 as long as

N cl, the average number of elements that claim a data point, is lower than 80% of the number of elements,

Ne. This condition is satisfied for all but very distorted meshes. The extra bounding-box build time T̂b is

compensated by the decreasing slope in the T̂t vs. Np curve. Figure 6 is a comparison of ST2 and ST3. The

figure shows that for any reasonable mesh, Ne ≥ 30 and Np ≥ 50, it is advantageous to use a virtual mesh.

In section 5 we validate these conclusions experimentally. It uses a C++ implementation of the different

search techniques.
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4 Inverse mapping

Finite elements shape coefficients Nj are generally known functions of an element’s local coordinates ~ξ

(equation (2)). Hence in general, to evaluate these coefficients it is necessary to compute ~ξ(p) from ~x(p).

Equation (18) defines a non-linear mapping function from the reference coordinates, ~ξ, to the global coor-

dinates, ~x,

x(p) =

no. nodes in e(p)
∑

j=1

Sj

(

~ξ(p)
)

x(n
e(p)
j ) . (18)

The coefficients Sj are also known functions of ~ξ, and are the same as Nj for iso-parametric elements. The

opposite operation (i.e. calculating ~ξ(p) from ~x(p)) is called inverse mapping.

Inverse mapping is a non-trivial operation, which in general needs to be calculated numerically, although

for special cases it is possible to invert the shape functions analytically. Whichever technique is applicable,

the accuracy of the inversion can be tested as illustrated in Figure 7. If the inversion is successful the

difference, δξ = ‖~ξ∗ − ~ξT ‖, should approach machine precision. Since ~ξT is unknown, δξ cannot be
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computed directly. Instead, by mapping S : ~ξ∗ → ~x∗, δx = ‖~x∗ − ~x‖ is used as a measure of the inverse

mapping error. For shape functions where the analytical solution of the inverse is unknown, δx is typically

taken as the cost function to be minimized, by varying ~ξ. Section 5 implements both analytic and iterative

inverse mapping strategies for a QUAD4 element. The iterative approach uses a Newton-Raphson optimizer

to minimize δx. Sections 4.1 and 4.2 discusses analytic and iterative inversions, respectively.

(a) (b)

Figure 7: Illustration of how to check the inverse mapping accuracy. (a) The inverse mapping function

S−1 : ~x → ~ξ∗ may contain errors δξ = ‖~ξ∗ − ~ξT ‖ caused by convergence accuracy, where ~ξT are the

target coordinates. (b) The inversion error δξ cannot be computed directly, since ~ξT is unknown. Instead,

the accuracy of the inversion can be determined by mapping ~ξ∗ to the real coordinate system S : ~ξ∗ → ~x∗

and computing the error δx = ‖~x∗ − ~x‖. If the inversion is successful, δx should approach zero.

4.1 Analytic inverse mapping for QUAD4 elements

For a QUAD4 element equation (18) can be rewritten as

x = a0 + a1ξ + a2η + a3ξη (19)

and y = b0 + b1ξ + b2η + b3ξη , (20)

where the coefficients ai and bi are solved by evaluating the shape functions at node coordinates (see

Appendix B)2. The reference coordinates are determined by solving for either ξ or η using one equation,

x or y, then substituting the result into the remaining equation. For instance, solving for ξ using the x

equation,

ξ =
x0 − a2η

a1 + a3η
, (21)

2The (p) is omitted from x(p), y(p), ξ(p) and η(p) for convenience.
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then substituting ξ into the y equation, we obtain

Aη2 + Bη + C = 0 , (22)

where the coefficients A,B, C are

A = a3b2 − a2b3 ,
B = (x0b3 + a1b2)− (y0a3 + a2b1) ,
C = x0b1 − y0a1

(23)

and x0 = a0 − x, y0 = b0 − y. Thus, in general, inverse mapping requires the solution of a quadratic equa-

tion. However, if equation (21) results in division by zero (i.e. a1+a3η = 0), an alternative inverse mapping

formulation must be used. For geometrically admissible elements (i.e. elements wit no crossing edges and

a non-zero area) two cases cover all possible situations. Details including proofs of these formulations can

be found in Appendix B.

case 1, a1 6= 0, a3 6= 0 : The value of η is obtained from a1 + a3η = 0,

η =
−a1

a3
(24)

and ξ by substituting η into the y equation,

ξ =
y0a3 + a1b2

a3b1 − a1b3
. (25)

case 2, a1 = 0 , a3 = 0 : The value of η is obtained by solving the x equation,

η =
x0

a2
(26)

and ξ by substituting η into the y equation,

ξ =
y0a2 − x0b2

a2b1 + x0b3
. (27)

4.2 Iterative inverse mapping

In applications where the shape functions are more complex than QUAD4 elements, an analytical inversion

of the shape functions may become too tedious to be carried out. Figure 8 illustrates one such case. The

element in question is a 20 node 3D brick element, which contains a set of three 2nd order 3D shape

functions. The alternative is to use an iterative technique to compute the reference coordinates of data point,

p.

The iterative process begins with an initial guess of the reference coordinates, ~ξ0, which can be selected

from node coordinates, integration points, element center, or any other point inside the element. Consider a

formulation of the square of the forward error, f , where ~ξT (p) and ~xT (p) are the target coordinates of p,

f(~ξ) = δ2
x(~ξ) = (xT

j (p)− Si(~ξ)xj(n
e(p)
i ))2 . (28)

Notice that both xT
j (p) and xj(n

e(p)
i ) are known quantities, and Si are known functions of ~ξ, the unknowns.

Since the shape functions are continuous in the reference coordinate system, the function f(~ξ) must be

continuous and zero (its minimum) at the solution point ~ξT , f(~ξT ) = fmin = 0. Hence, it is possible to

minimize f to solve for the reference coordinates of p. Since the shape functions are polynomials, a gradient

method may be used for this purpose. Using this technique the condition,

gi =
∂f

∂ξi

= 0 , (29)

must be satisfied at the solution point. Hence, the iteration step is ∆~ξ = − 1
2H−1~g, where H is the Hessian

of f, Hij = ∂2f
∂ξi∂ξj

. The individual partial derivatives are computed from equation (28),
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(a) Reference Element

Corners:

Si(ξ, η, ζ) = 1
8 (1 + ξξi)(1 + ηηi)(1 + ζζi)(ξξi + ηηi + ζζi − 2)

Sides:

Si(ξ, η, ζ) = 1
4 (1 + ξ2)(1 + ηηi)(1 + ζζi)

~x(p) =
∑20

i=1 Si~x(n
e(p)
i )

(b) Shape Functions

Figure 8: A 20-node 3D brick element (BRK20)

∂f

∂ξi

= 2(xT
k (p)− Sl(~ξ)xl(n

e(p)
k )

∂Sl(~ξ)

∂ξi

,

∂2f

∂ξi∂ξj

= 2
∂Sl(~ξ)

∂ξi

∂Sl(~ξ)

∂ξj

+ 2(xT
k (p)− Sl(~ξ)xl(n

e(p)
k ))

∂2Sl(~ξ)

∂ξi∂ξj

.

The iteration should continue until reaching the stopping criteria, δx ≤ δallow. The stop criteria depends on

the inversion accuracy required by an application.

5 Numerical experiments

The efficiency of owner element search algorithms were estimated in section 3.3 by counting operations. It

assumed that other contributions to the algorithm’s time complexity are negligible (e.g. memory allocation,

different computation costs for integer and floating point arithmetic, etc). This section checks these as-

sumptions by comparing the theoretical estimates with numerical experiments. The computation times are

measured when interpolating data-point grids, with varying number of points, Np, over meshes of different

element numbers, Ne. The experiments are conducted with a C++ implementation of the interpolation al-

gorithms, with an ABAQUS 6.4 finite elements solver [1]. The computer test-bed is a Toshiba satellite A60

with a Pentium 4 processor running on a GNU/Linux Debian 3.1 operating system [2]. The FE model is

an open-hole plate specimen illustrated in Figure 9. The model’s left side is fully constrained, and the right

side subjected to a 1550 KPa surface traction. The data points, p, are located on a grid of step s (Figure 9) 3.

The total processing time, Tt, is measured by an embedded C++ timer, which measures the time in seconds

from the beginning of the interpolation procedure until all data points in the grid have been interpolated.

The procedure is repeated with different mesh sizes, Ne, and grid steps, s.

Figures 10(a) and 10(b) show the test results for the ST2 algorithm, which uses the bounding-box and

cross-product tests to sequentially scan the entire list of finite elements. The execution time, Tt, increases

linearly with Ne and Np when Np and Ne are held constant. Notice that the slopes of Tt increases with Ne

and Np. The experimental behavior is in agreement with theO(Ne×Np) time complexity T̂t|st2 in section

3The data point grids encompass only a square window on the center of the model. Since the numbering of the elements follows a

rectangular pattern, the square data field can be considered average.
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(a) (b)

Figure 9: (a)Test-Specimen Geometry: The model is an open-hole tensile test with the left side fully con-

strained and the right side subjected to a 1550 KPa surface traction. (b) Details of the finite elements mesh.

3.3 (Table 1). Figure 10(c) shows the results for the ST3 algorithm, which uses a combination of the cross-

product and bounding-box tests and a virtual mesh container. Clearly, the interpolation algorithm using the

virtual mesh is more efficient than the previous algorithm. For large number of points (Ne ≥ 5000), the

virtual mesh reduces computation times by a factor of 10 to 60 times. Notice that Tt varies linearly with

Np and Ne, but unlike the previous case, the slopes of these curves are independent of Ne and Np. These

results match the O(ANe +BNp) in the time complexity T̂t|st3 (A and B are functions of mesh distortion,

but independent of Ne and Np, see Table 1).

0

10

20

30

40

50

60

0 5000 10000 15000 20000 25000 30000 35000 40000

T
t
(s

ec
on

d
s)

Np

Ne = 11803
9492
7860
6555
4767

(a) ST2

0

5

10

15

20

25

30

35

40

45

50

3000 4000 5000 6000 7000 8000 9000 10000

T
t
(s

ec
on

d
s)

Ne

Np = 947
5048

12394
17288
37228

(b) ST2 (transpose)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000 25000 30000 35000 40000

T
t
(s

ec
on

d
s)

Np

Ne = 11803
9492
7860
6555
4767

(c) ST3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

T
t
(s

ec
on

d
s)

Ne

Np = 947
5048

12394
22987
37228

(d) ST3 (transpose)

Figure 10: Element search times (measured numerically)

Next, Figures 11(a) and 11(b) show the recorded inverse mapping times for analytic and iterative inverse

mapping algorithms. The iterative technique is a 2D Newton-Raphson minimization of δx. The optimizer

has a stopping criterion of |δx| < 1e−5mm. Inverse mapping times for both techniques show a linear

variation with Np and no tendency with respects to Ne. The scatter on the graphs is due to a dependency of

the inverse mapping cost on the position of the data points inside an element (see Appendix A). The figures

show that inverse mapping is performed very quickly in comparison to the owner element search. For

the analytic solution, nearly 250000 data points are interpolated in less than 1 CPU second. The iterative

approach is significantly slower, but still is capable of interpolating 40000 points in about 5 seconds. If

the field comparison is performed several times over a constant mesh, the index of the owner element
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and reference coordinates of each data point can be saved after the first interpolation and reused in each

subsequent comparison. This practice can permit further reduction in interpolation time.
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Figure 11: Inverse mapping and interpolation times using (a) analytic and (b) iterative inversion algorithms.

This interpolation technique is now applied to the construction and visualization of error maps. The

plate with a hole (Figure 9) is composed of an orthotropic material of properties E11 = 100 GPa, E22 =
36 GPa, G12 = 25 GPa, ν12 = 0.54 GPa. A “reference model” is solved with a fine mesh of approximately

33000 elements, and its nodal displacements are taken as the experimental data field. The error maps are

produced by solving several models with the same material properties, but varying mesh densities Ne, and

interpolating displacements at each data point. Figure 12 shows two error maps of the normalized distance,

J(p) =

√

√

√

√

(

u(p)ref − u(p)test

uref
max − uref

min

)2

+

(

v(p)ref − v(p)test

vref
max − vref

min

)2

, (30)

where p ∈ nref. mesh. Notice that as the number of elements increases the mesh approximates better the

curvature around the hole, which decreases the error J .
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(a) Test mesh: Ne = 700
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(b) Test mesh: Ne = 1500

Figure 12: Error maps J(p) between a reference mesh of Ne = 30000 and test meshes of (a) Ne = 700 and

(b) Ne = 1500.

6 Conclusions

This article proposes and analyzes algorithms for mapping mesh information to arbitrary points using finite

element’s shape functions. The algorithms consist of two parts: the identification of the owner element,

and the mapping of interpolation points into the element’s reference coordinate system. The interpolation

is then a direct evaluation of the element’s shape functions.
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The strategy for determining the owner element for each data point is critical to the numerical efficiency

of the procedure. The use of a virtual mesh has been proposed as an alternative to sequentially searching

the entire list of finite elements. It was shown that this indexing technique permits the time complexity

to increase linearly with increasing mesh size, Ne, and number of data points, Np, contrary to sequential

techniques, which increase quadratically with Ne ×Np. In addition to the virtual mesh, an efficient test for

determining if a point belongs to an element has been developed. It is a combination of a fast approximate

test based on bounding-boxes and an exact test based on cross-products, which works for all linear elements.

Inverse mapping has been discussed through the analytical example of bilinear quadrilateral elements, and

numerically in the general cases.

Finally, the different interpolation strategies have been implemented in C++, and applied to a finite

elements model of open-hole tensile test. As a typical example, the best strategy (virtual mesh, mixed test)

interpolates over 40,000 data points in less than 1 second for a finite elements mesh of 10,000 elements

on a Pentium 4, 2.8 GHz computer. The numerical tests have confirmed the theoretical analysis based on

operations counting.
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A Search time details for QUAD4 elements

Search technique 1 (cross-product test + sequential scan):

Algorithm D.1 contains the pseudocode for ST1, which sequentially scans a list of finite elements using the

cross-product test. The time complexities for this test are estimated by counting operations in this code. To

compute the average failure time, T̂f |cp (failure time for a cross-product test), notice that an external point

may fall outside any of the vertex cones with equal probability (see table 2). Hence,

T̂f |cp =
T̂f1 + T̂f2 + T̂f3 + T̂f4

4
=

15 + 30 + 45 + 60

4
. (31)

Failure Node Number of Operations

1 2× Cross-Product + 1× Comparison

2 4× Cross-Product + 2× Comparison

3 6× Cross-Product + 4× Comparison

4 8× Cross-Product + 6× Comparison

Table 2: Cross-product test: Number of operations for failure at the nth vertex cone. Note: Each Cross-

Product requires 7 operations.

For an internal point all vertex cones must be tested, hence T̂s = T̂f4,

T̂f |cp =
75

2
(32)

and T̂s|cp = 60 . (33)

Applying equation 12 yields,
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T̂c|ST1 = 1
Ne

∑Ne

i=1 T̂i ,

= 1
Ne

∑Ne

i=1(i− 1)T̂f + T̂s ,

=
T̂f

Ne

∑Ne

i=1 i +
T̂f

Ne

∑Ne

i=1(T̂s − T̂f ) ,

= T̂f ×
Ne+1

2 + (T̂s − T̂f ) ,

= T̂f ×
Ne

2 + (T̂s −
T̂f

2 ) .

Substituting values for T̂f |cp and T̂s|cp yields,

T̂c|cp =
75

4
Ne +

165

4
. (34)

The total processing time for ST1 is

T̂t|ST1 =
75

4
NeNp +

165

4
Np . (35)

Search technique 2 ( bounding-box and cross-product tests + sequential scan):

Algorithms D.2 and D.3 contains the pseudocode for ST2, which sequentially scans a list of finite elements

using the bounding-box and cross-product tests. The algorithm begins by computing the bounding boxes

for each element in the preprocessor, then storing them in memory. the average time required to build a

bounding box T̂b|bb is

T̂b|bb = 4× Assignment + 3× 4× Comparisons + 6+2
2 × Assignment ,

T̂b|bb = 20 . (36)

Each data point’s coordinates are tested against the bounding-box’s reference points, pmin and pmax (2

comparisons per dimension). Notice, that external points may fail a comparison at any dimension with

equal probability (see Algorithm D.3), thus the average failure time T̂f |bb is

T̂f |bb = 1+2+3+4
4 × Comparison ,

T̂f |bb =
5

2
. (37)

For an internal point all comparisons must be performed, hence T̂s|bb is

T̂s|bb = 4 . (38)

Next, we assume the first i finite elements in the list will be discarted by the bounding-box test. After

i elements, a list of N cl (the average number of bounding-boxes claiming a data point) elements will be

searched using the cross-product test, hence,

T̂c|ST2 =
1

Ne

Ne
∑

i=1

(i− 1)T̂f |bb + T s|cl , (39)

T̂t|ST2 = T̂b|bbNe + T̂c|bbNp . (40)

Where T s|cl is the average time to search N cl finite elements using the cross-product test,

T s|cl =
1

N cl

Ncl
∑

k=1

(k − 1)T̂f |cp + kT̂f |cp + T̂s|cp . (41)
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Evaluating the expressions yields,

T s|cl =
N cl − 1

2
(T̂s|bb + T̂f |cp) + T̂s|cp − T̂f |cp ,

T̂c|bb =
Ne − 1

2
T̂f |bb + T s|cl − T̂f |bb .

Substituting values for T̂f |bb, T̂s|bb, T̂f |cp, T̂s|cp we obtain the time complexity for ST2,

T̂c|ST2 =
5

4
Ne +

83

4
N cl +

442

4
, (42)

and the total processing time,

T̂t|ST2 =
5

4
NeNp +

83

4
N clNp +

442

4
Np + 20Ne . (43)

Search technique 3 ( bounding-box and cross-product tests + virtual mesh):

Algorithm D.5 contains the pseudo code for initializing a VM using a bounding box. The total build time

for ST3, T̂b|ST3, is divided into the time to calculate virtual mesh’s borders, T̂bg|vm, initialize an element’s

bounding box, T̂b|bb and time to add the element’s reference to a range of virtual elements, T̂add|vm. Hence,

T̂b|ST3 = T̂bg|vm + (T̂b|bb + T̂add|vm)Ne . (44)

Algorithm D.7 determines the boundaries of the virtual mesh, thus

T̂bg = 4 Assignment + 4Ne × Comparison +

(

1

Ne

Ne
∑

i=1

2i× Assignment

)

+ 4 Math Operations ,

T̂bg|vm = 5Ne + 7 . (45)

Algorithm D.6 contains the pseudo code to add finite elements to the virtual mesh,

T̂add|vm = 2× Get(γ(p)) + Nve × Assignment ,
= 2× (6) + Nve ,

T̂add|vm = Nve + 12 . (46)

Where Nve is the average number of virtual elements containing a reference to the same finite element.

This number is dependent on the mesh geometry and virtual mesh step (see section 3.2). Substituting values

for equation (44),

T̂b|vm = T̂bg|vm +
[

T̂b|bb + T̂add|vm

]

Ne ,

= (5Ne + 7) +
[

20 + Nve + 12
]

Ne ,

T̂b|vm = (Nve + 37)Ne + 7 . (47)

Algorithm D.4 is the pseudo-code for retrieving a virtual element. Notice that a virtual element is retrieved

using only 2 operations per dimension,

T̂e|vm = 6 . (48)

The bounding-box and cross-product tests are used to search the lists ev . Thus the time to search a virtual

element, T̂se|ve , has the same computational complexity as ST2. Substituting the average number of

elements in ev , Nk, into equation (42) yields,

T̂se|ve =
5

4
Nk +

83

4
N cl +

442

4
. (49)
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In general, the time complexity and total search time for ST3 are

T̂c|ST3 = T̂e|vm + T̂se|ve (50)

and T̂t|ST3 = T̂b|vm + T̂c|ST3 ×Np (51)

respectively. Substituting yields,

T̂c|ST3 = 6 +
5

4
Nk +

83

4
N cl +

442

4
(52)

and T̂t|ST3 = (Nve + 37)Ne +

[

6 +
5

4
Nk +

83

4
N cl +

442

4

]

Np + 7 (53)

B Inverse mapping theorems

This section establishes a mathematical basis for the inversion technique presented in section 4.1. The

presented proofs are limited to elements posessing a unique analytical inverse (i.e. elements with non-

zero Jacobians). For a robust interpolation algorithm, it is recommended that the mesh generator possess

an algorithm to minimize mesh distortion (usually available in mesh generating software). For all other

elements, the analytical inverse mapping algorithm will propose a solution, which must be verified using

forward mapping (presented in section 4). In the case where the analytical solution cannot be obtained

analytically, an alternate technique should be used instead.

Definition 1. Kinematically admissible element: Let the shape functions F of a 2D bi-linear quadrilateral

element be defined by equations 54, such that (ξ, η)ǫ[−1, 1]2. A kinematically admissible element is such

that the nodal arrangement in the real coordinate system does not contain any crossing segments, and has a

non-zero area.

Let the shape functions, F : ξ(p)→ x(p) , of a QUAD4 element be written as

x0 = x− a0 = a1ξ + a2η + a3ξη
and y0 = y − b0 = b1ξ + b2η + b3ξη ,

(54)

where the coefficients ai and b1 are

a0 = 1
4 [(xn1 + xn2) + (xn3 + xn4)] ,

a1 = 1
4 [(xn2 − xn1) + (xn3 − xn4)] ,

a2 = 1
4 [(xn3 + xn4)− (xn1 + xn2)] ,

a3 = 1
4 [(xn1 − xn2) + (xn3 − xn4)] ,

b0 = 1
4 [(yn1 + yn2) + (yn3 + yn4)] ,

b1 = 1
4 [(yn2 − yn1) + (yn3 − yn4)] ,

b2 = 1
4 [(yn3 + yn4)− (yn1 + yn2)] ,

b3 = 1
4 [(yn1 − yn2) + (yn3 − yn4)] .

Proposition 1. If a1 + a3η 6= 0, then for all kinematically admissible elements, the inverse function,

F−1 : ~x(p)→ ~ξ(p), is a solution of the quadratic system,

ξ = x0−a2η
a1+a3η

and Aη2 + Bη + C = 0 , (55)

where the coefficients A,B and C are

A = a3b2 − a2b3 ,
B = (x0b3 + a1b2)− (y0a3 + a2b1) ,

and C = x0b1 − y0a1 .

Proposition 2. If a1 + a3η = 0, a1 6= 0, and a3 6= 0, then for all kinematically admissible elements, the

function F−1 : ~x(p)→ ~ξ(p) is

ξ = y0a3+a1b2
a3b1−a1b3

and η = −a1

a3

. (56)

Proof. For all kinematically admissible elements such that a1 + a3η = 0, a1 6= 0 and a3 6= 0, we prove

that a3b1 − b3a1 6= 0, which guarantees 56 can be used without division by zero. Assuming without loss of

generality that the nodes are numbered counter-clockwise. If a3b1 − b3a1 = 0 then a3b1 = b3a1,
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(a) (b)

Figure 13: If any two node vectors ~12, ~23, ~34, or ~41 are parallel and point in the same direction, the nodal

configuration is kinematically inadmissible.

[(yn2 − yn1) + (yn3 − yn4)][(xn1 − xn2) + (xn3 − xn4)] =
[(yn1 − yn2) + (yn3 − yn4)][(xn2 − xn1) + (xn3 − xn4)] .

Simplifying the expression yields,

(xn2 − xn1)(yn4 − yn3) = (xn4 − xn3)(yn2 − yn1) ,

⇒
(yn4 − yn3)

(xn4 − xn3)
=

(yn2 − yn1)

(xn2 − xn1)
.

Thus, the vectors ~12 and ~34 point to the same direction, which results in a kinematically inadmissible

configuration (see 13(a)).

Proposition 3. For all kinematically admissible elements, such that a1 + a3η = 0 and a3 = 0, the inverse

function F−1 : ~x(p)→ ~ξ(p) is

ξ = y0a2−b2x0

b3x0+a2b1
and η = x0

a2

. (57)

Proof. The proof follows directly from substitution into equation 54. It shows that if there is a division by

zero in equation 57 the element is kinematically inadmissible.

part 1:

For all kinematically admissible elements, such that a1 + a3η = 0, and a3 = 0, it is necessary that a2 6= 0.

If a1 + a3η = 0, and a3 = 0 then a1 = 0, thus

(xn2 − xn1) = (xn4 − xn3) and (xn1 − xn2) = (xn4 − xn2) ,

⇒ xn3 = xn4 and xn1 = xn2 .

If a2 = 0 then

xn3 + xn4 = xn1 + xn2 ,

⇒ xn1 = xn2 = xn3 = xn4 .

Hence, the resulting node coordinates are collinear, which represents a kinematically inadmissible element.
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part 2:

Assume that a2 6= 0 and that b1a2 + b3x0 = 0. Using x0 = x− a0,

b3x = b3a0 − b1a2 ,

[(yn1 − yn2) + (yn3 − yn4)]x =
1
4 [(yn1 − yn2) + (yn3 − yn4)][xn1 + xn2 + xn3 + xn4]

− 1
4 [(yn2 − yn1) + (yn3 − yn4)][(xn3 + xn4)− (xn1 + xn2)] .

case 1: b3 6= 0

Substituting xn1 = xn2 and xn3 = nn4 and simplifying yields,

[(yn1 − yn2) + (yn3 − yn4)]x = [(yn1 − yn2) + (yn3 − yn4)][xn1 + xn3]
+[(yn2 − yn1) + (yn3 − yn4)][xn3 − xn1] .

Solving for x,

x =
(yn3 − yn4)xn1 + (yn1 − yn2)xn3

(yn3 − yn4) + (yn1 − yn2)
.

Defining α and β, where α + β = 1 yields,

x = αxn1 + βxn3 .

For any internal point it is necessary that both α > 0 and β > 0. However, if yn3 − yn4 > 0 it follows that

yn1 − yn2 < 0 for an element with no intersecting edges. Hence, α and β always have opposite signs for a

valid element, thus the point x is not an internal point.

case 2: b3 = 0

It follows that

(yn3 − yn4) + (yn1 − yn2) = 0 ,

yn1 − yn2 = yn4 − yn3 ,

0 = (yn3 − yn4)xn1 + (yn1 − yn2)xn3 ,

0 = (yn2 − yn1)xn1 + (yn1 − yn2)xn3 ,

xn1 − xn3 = 0⇒ xn1 = xn3 ,

⇒ xn1 = xn2 = xn3 = xn4 .

The result is a collinear nodal arrangement, which is kinematically inadmissible.
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C Selecting the virtual mesh grid size

The build time, T̂b|vm, and time complexity, T̂c|vm , are both directly proportional to the average number of

finite elements in ev , Nk and the average number of virtual elements that share a reference to the same finite

element, Nve, respectively (equations (47) and (52)). To determine the best compromise between search

time and build time, we define the ratio α,

α =
Ae

dx× dy
. (58)

. Where Ae is the average area of the finite element’s bounding-boxes and dx × dy the virtual mesh’s

grid step. Notice that as the grid step decreases towards zero (i.e. α → ∞), the numbers Nk → 1 and

Nve →∞ (Figure 14(c)). Similarly, for an infinite mesh, as the grid step increases to infinity (i.e. α→ 0),

the numbers Nk →∞ and Nve → 1. The exact relationship between these numbers is highly dependent on

the geometry of the finite elements mesh. An approximation of this relationship is obtained by neglecting

mesh distortion (see Figure 14) and considering only their limiting behaviors,

Nk ≈
A1

α
+ A2 =

1

α
+ 1 (59)

and Nve ≈ B1α + B2 = α + 1 (60)

The proposed approximations satisfy the limiting behavior of α. In addition, for α = 1, if we consider the

possible offset of the virtual and real mesh, it is required that Nk and Nve are bounded by [1, 4], which is

also satisfied by the choices of coefficients Ai = 1, Bi = 1 (see Figure C).

(a)

(b) (c)

Figure 14: Different combinations of finite elements bounding-box grids (dotted lines) and virtual meshes.

Substituting equations (59) and (60) values into Tt|ST3 yields an expression in the form of

T̂t|ST3 = ANp + BN clNp + C(α)Ne +DNpNk(α) + E .

Differentiating the expression and solving for a zero, α∗, we obtain

α∗ =

√

1.25Np

Ne

. (61)

Substituting this value into equation (53), results in the optimum processing time for the virtual mesh,
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Figure 15: Plot of equations (59), and (60) in logscale. The plots include a variation of the coefficients to

represent the limiting cases. Notice that the two equations are symmetric with respects to each other.

T̂ ∗

t |ST3 =

(

√

1.25Np

Ne

+ 38

)

Ne +

[

6 +
5

4

(√

Ne

1.25Np

+ 1

)

+
83

4
N cl +

442

4

]

Np + 7 . (62)

D Pseudo code for search algorithms

Algorithm D.1: CROSS PRODUCT TEST(Element E, Point P )

comment: Scalar Cross-Product: Po(origin), P1(head), P2(head)

procedure SCP(Point Po, Point P1, Point P2)
{

return ((P1.x− Po.x) ∗ (P2.y − Po.y)− (P2.x− Po.x) ∗ (P1.y − Po.y))

procedure CROSSPRODUCTTEST(Element E, Point P )






































































if SCP(E.node[1], E.node[Nn], P ) ∗ SCP(E.node[1], P, E.node[2]) < 0
then return (false)

for i← 2 to Nn − 1

do

{

if SCP(E.node[i], E.node[i + 1], P ) ∗ SCP(E.node[i], P, E.node[i− 1]) < 0
then return (false)

if SCP(E.node[Nn], E.node[0], P ) ∗ SCP(E.node[Nn], P, E.node[Nn − 1]) < 0
then return (false)

return (true)
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Algorithm D.2: INITIALIZEBOUNDINGBOX(Element E)

comment: 4 Assignment Operations

E.xmin = E.node[0].x
E.xmax = E.node[0].x
E.ymin = E.node[0].y
E.ymax = E.node[0].y

comment: 3× 4 Comparison + 6max or 2min Assignment Operations

for i← 1 to 3

do















































if E.xmin > E.node[i].x
then E.xmin = E.node[i].x

if E.xmax < E.node[i].x
then E.xmax = E.node[i].x

if E.ymin > E.node[i].y
then E.ymin = E.node[i].y

if E.ymax < E.node[i].y
then E.ymax = E.node[i].y

Algorithm D.3: ISINSIDETHEBOUNDINGBOX(Element E, Point P )

if P.x > E.xmax

then return (false)
else if P.y > E.ymax

then return (false)
else if P.x < E.xmin

then return (false)
else if P.y < E.ymin

then return (false)
else return (true)

Algorithm D.4: GET VIRTUAL ELEMENT INDEX(Point P )

comment: (1 Subtraction + 1 Division + 1 Cast Operation) × Dimension

procedure GET INDEX(V ector P, i, j)
{

i = FLOOR((P.x− x0)/dx)
j = FLOOR((P.y − y0)/dy)

Algorithm D.5: INITIALIZE VIRTUAL MESH(Elements List Ve)

procedure INITIALIZE VIRTUAL MESH(Elements List Ve)














SETUP VIRTUAL MESH GEOMETRY(Ve)
for each Element E ∈ Ve

do

{

INITIALIZEBOUNDINGBOX(E) #see D.2
ADD FINITE ELEMENT TO VIRTUAL MESH(E)
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Algorithm D.6: ADD FINITE ELEMENT TO VIRTUAL MESH(Element E)

procedure ADD FINITE ELEMENT TO VIRTUAL MESH(Element E)






























comment: Determining the VE index range for Element E

GET INDEX(E.Pmin, imin, jmin) #see D.4
GET INDEX(E.Pmax, imax, jmax)
for i← imin to imax

do

{

for j ← jmin to jmax

do
{

V irtualMesh[i][j]← E

Algorithm D.7: SETUP VIRTUAL MESH GEOMETRY(Elements List Ve)

procedure SETUP VIRTUAL MESH GEOMETRY(Elements List Ve)


























































































































comment: Determining the boundary of the VM:

x0 = xf = x of first node of first element in Ve

y0 = yf = y of first node of first element in Ve

for each Element E ∈ V e and for each Node P ∈ E

do















































if P.x < x0

then x0 = P.x
if P.x > xf

then xf = P.x
if P.y < y0

then y0 = P.y
if P.y > yf

then yf = P.y

comment: Determining the mesh steps

dx = (xf − x0)/(number of x divisions)
dy = (yf − y0)/(number of y divisions)
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