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Abstract : The aim of this study is to analyse the influence of the mechanical

characteristics of the set of components on the critical rotational speeds of a gearbox. The

case of a gearbox fitted out with a helical gear pair was considered. The shafts and the

casing were discretised using the finite element method. The elastic coupling between the

toothed wheels was characterised by a 12 x12 stiffness matrix. The bearings were

modelled using radial, axial and rotational stiffness elements. The calculation of the

vibration response induced by the static transmission error showed that the highest

dynamic mesh forces correspond to a resonant excitation of modes which have a high

potential energy associated with the mesh stiffness. The numerical simulations performed

showed that a realistic prediction of  the critical rotational speeds should take account of all

the components of the gearbox.

1- INTRODUCTION

In the course of designing a geared system, it is important to be able to predict those

rotational speeds which will lead to the highest dynamic mesh forces and to the highest

vibrational and acoustic levels. These speeds are associated with resonant excitation

phenomena (conventional or parametric resonance) of certain natural modes of the

gearbox.

There are many sources of vibrational excitation for a geared system [1, 2, 3, 4]. For a

gearbox operating at a constant average speed, the excitations and, in particular, the static

transmission error, are periodical functions. As it is possible to fix the operating speed of a

gearbox over a wide range of speeds, each of the harmonic components of the static

transmission error has the capacity to excite a mode of the gearbox in a resonant manner.

The excitation of some modes leads to strong amplifications of the mesh force. This type

of phenomenon has been brought to light by experimental investigations [5] and by using

simplified models [6]. The object of our study is to introduce a more complete dynamic



model with a view to indicating the influence of each of the mechanical components of a

gearbox on the localisation of critical rotational speeds.

2- MODEL OF THE GEARBOX

The gearbox studied is fitted out with a helical gear pair. The main characteristics of the

gear are presented in Table 1. The driving and the driven wheels are identical.

Z 49 Normal module 3.5 mm

Base radius (mm) 80.5 mm Facewidth 35 mm

Transverse pressure

angle αααα
20° Centre distance 171.5 mm

Base helix angle ββββ 20° Total contact ratio eγγγγ 2.878

Table1. Gear characteristics.

The shafts and the casing of the gearbox were discretised using a finite element

method. The shafts were modelled using beam elements with two nodes and 6 degrees of

freedom for each node (see Figure 1).

Each toothed wheel was modelled with

concentrated mass elements and rotary

inertias at three nodes along the shaft.

The contact zone between the teeth was

modelled using a symmetrical 12x12

stiffness matrix which couples the 6 degrees

of freedom of the driven wheel with the 6

degrees of freedom of the driving wheel.

This matrix is defined from the geometrical

characteristics of the gear and from the

mesh stiffness, according to the method

described in [5]. Figure 1. Model of the shafts.

The input and output inertias corresponding to the motor and the load are equal to

1 kg.m². They are connected to the shafts through torsion stiffness elements which model

the elasticity of the couplings utilised to connect the motor and the load to the gearbox.

The elastic coupling induced by the rolling element bearings between the shafts and the

casing is complex. On the one hand, their stiffnesses are non-linear functions of the

transmitted load. On the other hand, they induce elastic couplings between 5 degrees of

freedom of the shaft and 5 degrees of freedom of the casing [7]. Each bearing can be

modelled with a 10x10 stiffness matrix, after linearising each term around the static

equilibrium position. In this study, we supposed that the coupling terms were negligible.

For each of the four identical bearings in the gearbox, we introduced one axial stiffness,



two radial stiffnesses situated in two perpendicular directions, and two stiffnesses coupling

the rotation of the free sections along the shafts to the box (rotational stiffnesses).

The steel casing is a 450x280x160 mm

parallelepiped which is 10 mm thick. it was

modelled using shell elements and three-

dimensional structural solids to represent

the bearing housings (see Figure 2).

The elastic model of the whole gearbox

has approximately 1000 elements and

7000 degrees of freedom.

Figure 2. Model of the casing.

3- COMPUTATION OF THE VIBRATORY RESPONSE

In studying the forced vibrations of the gearbox, we supposed that the only excitation is

the static transmission error [2]. The main contributions to this error are the fluctuation of

the mesh stiffness and the geometry faults of the gear pair [1, 8, 9]. In the stationary

regime, they induce a periodical excitation. The matrix equation which governs vibrations

of the discretized gearbox can be written as follows :

Mx + Kx + k(t)Dx = F + E(t) (1)

In this equation, M and K are the classical mass and stiffness matrices provided by the

finite element method and F is the classical external force vector. Matrix D is derived from

the geometric characteristics of the gear pair, E is an equivalent force vector induced by

the unloaded static transmission error and k(t) is the periodic mesh stiffness. In the modal

base defined from the time-invariant homogeneous counterpart equation and by

introducing a viscous modal damping, the matrix equation (1) can be changed into :

mq + cq + kq + g(t)dq = s (2)

Here, m, c and k are the mass, damping and stiffness diagonal matrices, s is the modal

force vector and g(t).d is a non-diagonal matrix which is induced by the fluctuating part of

the mesh stiffness and which couples the equations of motion. To solve the equation (2),

we used the Spectral Iterative Method described in [5]. This method provides a direct

spectral description of the vibratory response at every degree of freedom.

The object of this study is to characterise the influence of different mechanical

parameters on the modes which lead to high dynamic mesh force. We chose a static

transmission error resulting from a harmonic variation of the mesh stiffness. We chose an

average value of the mesh stiffness equal to 4.108 N/m and a peak amplitude of its

harmonic fluctuation equal to 4.107 N/m. The constant motor torque was equal to 500 Nm.

We chose equivalent viscous damping rates of 3% for each mode.



4- MODES EXCITED BY THE STATIC TRANSMISSION ERROR

It is possible to identify the modes which can be excited by the static transmission error

using an energy approach. For the j-th mode, the local potential energy U
m
j( )
 associated

with the mesh stiffness, the total potential energy U
T
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 and the energy rate ρ

m
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where [km] is the local stiffness matrix associated with the mesh stiffness and [KT] is the

global stiffness matrix.

The modes which have the highest ρm energy rate are called the φm modes. The

higher ρm is, the higher the dynamic mesh load should be.

For each bearing, the ρra energy rates associated with the radial stiffness elements and

the ρro energy rates associated with the rotational stiffness elements can similarly be

defined.

5- INFLUENCE OF SHAFT BENDING

Our first step was to calculate the natural modes of the gearbox for a model which only

takes into account torsion vibrations of shafts, gear and couplings (see Figure 3a). By

analysing the mode shapes, two φm modes with ρm energy rates equal to 34% (1531 Hz)

and 61% (3140 Hz) could be detected. Figure 3b displays the evolution of the root mean

square value of the mesh force relative to the mesh frequency. The resonances of the φm
modes generate the highest mesh loads.

We then calculated the natural modes for the gearbox using a model taking into

account tension, compression, torsion and bending vibrations of shafts and gear (see

Figure 4a). The casing and the bearings were assumed to be rigid. The shafts were

considered to be simply supported. The presence of three φm modes with ρm energy rates

equal to 22%, 26% and 27% is noted (1251 Hz, 3056 Hz and 3682 Hz). Unlike the other

modes of the structure, the shapes of these modes simultaneously offer bending and

torsion vibrations. This phenomenon is explained by the fact that the gear couples the

complete set of degrees of freedom of the driven wheel to the complete set of degrees of

freedom of the driving wheel. Figure 4b displays the evolution of the root mean square

value of the mesh force relative to the mesh frequency. The φm modes generate three

resonances. The difference between these results and the previous ones shows a shaft

bending effect. A torsion model does not allow the appropriate prediction of the critical



rotational speeds. It is further noted that this type of model over-estimates the level of

dynamic overloads.
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Figure 3a. Natural frequencies of the model including torsion vibrations of shafts, gear and
couplings.
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Figure 3b. Root mean square value of the mesh force versus mesh frequency.
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Figure 4a. Natural frequencies of the model including torsion, tension, compression and
bending vibrations of shafts and gear.
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Figure 4b. Root mean square value of the mesh force versus mesh frequency. (Torsion,
tension, compression and bending________; Torsion --------).



6- INFLUENCE OF THE ROLLING ELEMENT BEARINGS

The numerical results presented below were obtained from a model which takes into

account not only the tension, compression, torsion and bending vibrations of shafts and

gear, but also the elasticity of bearings. The nominal values of the radial (identical in the

two perpendicular directions), axial and rotational stiffnesses of the bearings were

respectively equal to 109 N/m, 108 N/m and 106 Nm/rad.

Figure 5a supplies the first natural frequencies associated with this new model. The first

and the second natural frequencies of the structure (16 Hz and 95 Hz) correspond to pure

torsion modes. They are controlled by couplings. The gearbox presents two axial modes

(590 Hz and 605 Hz), four bending modes (1728 Hz, 2237 Hz, 2898 Hz, 2961 Hz), and

one torsion mode for the shafts (1768 Hz). The φm modes (1191 Hz, 3365 Hz and 4157

Hz) are not the first modes of the system.

The figure 5b displays the evolution of the root mean square value of the mesh force

relative to the mesh frequency. The presence of three resonances is noted. Comparison

with the rigid bearings model shows that the elasticity of the bearings modifies the critical

rotational speeds.
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Figure 5a. Natural fequencies of the model including the vibration of the bearings .
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Figure 5b. Root mean square value of the mesh force versus mesh frequency.

(Elastic bearings ________; Rigid bearings --------).



Influence of radial stiffness

In order to analyse in more detail the influence of the rolling element bearings on modes

which lead to a high mesh force, we have varied the radial stiffness within the range 108

N/m to 1010 N/m. This range corresponds to the usual values encountered in geared

systems. By comparison, the average mesh stiffness value for the gearbox studied is 4

108 N/m.

Figure 6 displays the map of the root mean square value of the mesh force relative to

radial stiffnesses of bearings and mesh frequency. For the gearbox studied and within the

considered stiffness variation range (108 N/m to 1010 N/m), we observed the following

characteristics :

1- The frequencies of the φm modes change with the radial stiffnesses of the bearings.

This evolution appears for radial stiffnesses which are all the greater when the frequency

of the φm mode is high. It depends on the modal potential energy associated with the

radial stiffness elements, that is the ρra energy rates of the φm modes. Thus:

- For the first φm modes (frequency lower than 2000 Hz), the ρra energy rates are high

between 108 and 109 N/m and then lower from 109 N/m. So, the evolution of the

frequencies of the φm modes is high between 108 and 109 N/m, and then weak from 109

N/m.

- For the φm modes situated at higher frequencies (frequency over 2000 Hz), the ρra
energy rates are nil between 108 and 109 N/m and increase from 109 N/m. The evolution

of the frequencies of the φm modes is initially fairly weak between 108 and 109 N/m, and

then more obvious from 109 N/m.

2- The evolution of the frequency of the φm modes is accompanied by a modification of the

mode shape so that the ρm energy rates of the φm modes, that is the potential energy

associated with the mesh stiffness, decrease.

3- The resonances of the φm modes (1676 Hz, 3349 Hz and 4139 Hz for K=108 N/m), in

the end disappear to the benefit of the onset of new φm' modes situated at lower

frequencies (respectively 1364 Hz, 3311 Hz and 4053 Hz for K= 1010 N/m). This

behaviour leads to lower critical rotational speeds when the radial stiffnesses are greater.

Influence of rotational stiffness

We also varied the rotational stiffness of the bearings between 104 Nm/rad and

108 Nm/rad. This range enables the study of the influence of the different types of

bearings : ball-type bearings (low rotational stiffness), cylindrical roller-type bearings

(average rotational stiffness) and taper roller-type bearings (high rotational stiffness).

Figure 7 displays the map of the root mean square value of the mesh force relative to

rotational stiffnesses of bearings and mesh frequency. The frequencies of the φm modes



change with the rotational stiffness of the bearings. The evolution of these frequencies

depends on the ρro energy rates associated with the rotational stiffness elements. The ρro
energy rates are high between 106 and 107 Nm/rad. So, the evolution of the frequencies

of the φm modes is high between 106 and 107 Nm/rad. The resonances of the φm modes

(respectively 1110 Hz, 3100 Hz and 3914 Hz for K=104 Nm/rad) disappear to the benefit

of the onset of new φm' modes (respectively 1259 Hz and 3459 Hz for K=108 Nm/rad).
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Figure 6. Root mean square value of the mesh force versus radial stiffnesses of bearings (X

axis) and mesh frequency (Y axis).
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Figure 7. Root mean square value of the mesh force versus rotational stiffnesses of

bearings (X axis) and mesh frequency (Y axis).



7- INFLUENCE OF THE CASING

In order to assess the influence of the mechanical properties (elasticity and inertia) of

the casing on the critical rotational speeds of the gearbox, a modal analysis of the

complete gearbox was carried out. The model takes account of the whole set of

components of the gearbox, that is to say the gear, the shafts, the bearings, the casing,

the couplings and the input and output inertias. For this new study, we chose radial

stiffnesses of bearings equal to 109 N/m and rotational stiffnesses equal to 106 Nm/rad.

Figure 8 supplies the first natural frequencies of the new model.

A detailed examination of the new modes enabled us to conclude that :

- Within the considered frequency range, the φm modes are numerous but the ρm energy

rate in each is fairly low.

- The vibrations of the shafts are coupled with the vibrations of the casing. The dynamic

behaviour of the casing thus interacts with the gear set.

- Because of vibrations of the casing, the frequency and the shape of each φm mode are

different from those calculated with a rigid casing.

0 1000 2000 3000 4000 5000 (Hz)

Figure 8. Natural frequencies of the system. Model including casing elasticity.

We then compared the evolution of the root mean square value of the mesh force with

the previous results (rigid casing). This comparison is offered for radial stiffnesses-

rotational stiffnesses of bearings respectively equal to 108 N/m-104 Nm/rad (Figure 9a),

109 N/m-106 Nm/rad (Figure 9b) and 1010 N/m-108 Nm/rad (Figure 9c).

As displayed in Figure 9a, the mechanical properties of the casing do not change the

φm modes for radial stiffnesses equal to 108 N/m and rotational stiffnesses equal to 104

Nm/rad. In point of fact, the casing vibrations are not coupled with those of the gear.

Conversely, for higher bearing stiffnesses, the dynamic behaviour of the gear is then highly

affected by the elastic properties of the casing. As illustrated in Figures 9b and 9c, the

resonances are more numerous. The frequencies of these resonances have changed

appreciably and the maximum level of the mesh force has dropped.

Parametric studies have shown that rotational stiffnesses play a more significant role

than the radial stiffnesses of the coupling between the casing and the gear set.
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Figure 9a. Root mean square value of mesh force versus mesh frequency.
Elastic casing (__________) and rigid casing (--------------).

Krot = 104 Nm/rad. Krad = 108 N/m.
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Figure 9b. Root mean square value of the mesh force versus mesh frequency.
Elastic casing (__________) and rigid casing (--------------).

Krot = 106 Nm/rad. Krad = 109 N/m.
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Figure 9c. Root mean square value of the mesh force versus mesh frequency.
Elastic casing (__________) and rigid casing (--------------).

Krot = 108 Nm/rad. Krad = 1010 N/m.



8- INFLUENCE OF THE TORSION STIFFNESS OF THE FLEXIBLE COUPLINGS

We have connected the torsion stiffness of the coupling and the torsion stiffness of the

adjacent half-shaft in series. The figures 10a and 10b show that, for a low torsion stiffness

of the coupling, the equivalent stiffness of the coupling+shaft set is comparable to the

stiffness of the coupling. For a torsion stiffness of the coupling which is greater than that of

the shaft, the torsion stiffness of the coupling+shaft set converges towards the stiffness of

the shaft.

The evolution of the torsion stiffness of the coupling+shaft set is significantly different

according to whether the shafts are long (and thus flexible) or short (and thus stiff). For

160 mm-long shafts, the coupling+shaft set has a stiffness which constantly remains below

the torsion stiffness of the gear set. For 80-mm long shafts, the sitffness of the

coupling+shaft set is initially below the torsion stiffness of the gear set. It becomes equal to

and then greater than this stiffness when the torsion stiffness of the couplings increases.
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Figure 10a. Long shafts. Figure 10b. Short shafts.

Torsion stiffness of the coupling+shaft set versus torsion stiffness of the coupling.

Figures 11 and 12 display the evolution of the root mean square value of the mesh

force for a flexible coupling (104 Nm/rad) and a stiff coupling (108 Nm/rad). The model

used is the model where the gearbox casing is rigid.

For long shafts, we see that a variation of the stiffness of the couplings only modifies

the first torsion modes of the gearbox. The φm modes (3350 Hz and 4155 Hz) are identical

for flexible couplings and stiff couplings. Any variation of the torsion stiffness of the

couplings thus has no appreciable influence on the critical rotational speeds.

For short shafts, the frequency of the φm modes is equal to 1388 Hz and 2717 Hz when

the torsion stiffness of the couplings is low (104 Nm/rad) and it is equal to 208 Hz and

3427 Hz when the torsion stiffness of the couplings is greater (108 Nm/rad). These

differences translate the appreciable influence of the torsion stiffness of the couplings on

the dynamic behaviour of the gearbox. In point of fact, the frequency of the φm modes

increased with the stiffness of the couplings (from 1388 to 2084 Hz and from 2717 to 3427



Hz) while the amplitude of the resonance decreased. New φm' modes appeared at lower

frequencies (208 Hz and 661 Hz).

For a coupling stiffness equal to 104 Nm/rad, the motor and the load correspond to

vibration nodes of the φm modes. They are totally disconnected from the gear set by the

distortion of the couplings. For a stiffness equal to 108 Nm/rad, the first φm mode (208 Hz)

corresponds to the first mode of the gearbox. This mode is dominated by torsion

vibrations. The shafts, the couplings, the motor and the load move as rigid bodies. The

gear set being the most flexible torsion element, this alone is distorted. For short shafts

and stiff couplings, a φm mode with a low frequency, which is related to the presence of

high input and output inertias, thus appears.
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Figure 11. Long shafts. Root mean square value of the mesh force versus mesh

frequency.

Kacc = 104Nm/rad ( ------- ); Kacc = 108Nm/rad (_____).
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Figure 12. Short shafts. Root mean square value of the mesh force versus mesh

frequency.

Kacc = 104Nm/rad ( ------- ); Kacc = 108Nm/rad (_____).



9- CONCLUSION

To study the dynamic behaviour of a helical gearbox we modelled its components using

the finite element method.

We defined a method enabling the identification of the φm modes which can be excited

by the static transmission error, based on a modal analysis of the gearbox.

We showed that these φm modes generated the highest dynamic mesh forces and

consequently the strongest vibration levels of the casing.

We showed the influence of bending along the shafts, of the elasticity of the bearings,

of the mechanical properties of the casing and of the torsion stiffnesses of the couplings

on the critical rotational speeds of the gearbox.

We can thus conclude that the critical rotational speeds for a geared system can only

be realistically predicted by a global model including the shafts, the bearings, the casing,

the couplings and the input and output inertias.
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