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Summary 

Non linear dynamic behaviour of a normally excited preloaded Hertzian contact (including 

possible contact losses) is investigated using an experimental test rig. It consists on a double 

sphere plane contact loaded by the weight of a rigid moving mass. Contact vibrations are 

generated by a external Gaussian white noise and exhibit vibroimpact responses when the 

input level is sufficiently high. Spectral contents and statistics of the stationary transmitted 

normal force are analysed. A single-degree-of-freedom non linear oscillator including loss of 

contact and Hertzian non linearities is built for modelling the experimental system. 

Theoretical responses are obtained by using the stationary Fokker-Planck equation and also 

Monte Carlo simulations. When contact loss occurrence is very occasional, numerical results 

shown a very good agreement with experimental ones. When vibroimpacts occur, results 

remain in reasonable agreement with experimental ones, that justify the modelling and the 

numerical methods described in this paper. 

The contact loss non linearity appears to be rather strong compared to the Hertzian non 

linearity. It actually induces a large broadening of the spectral contents of the response. This 

result is of great importance in noise generation for a lot of systems such as mechanisms using 

contacts to transform motions and forces (gears, ball-bearings, cam systems, to name a few). 

It is also of great importance for tribologists preoccupied to prevent surface dammage. 

 



1. Introduction 

Hertzian contacts exist in many mechanical systems such as mechanisms and machines 

(gears, cam systems, rolling element bearings, …). Under operating conditions, these contacts 

are often excited by dynamic normal forces superimposed on a mean static load. These 

excitation forces which are deterministic or random, can result from external sources, such as 

applied load fluctuations, or from internal ones, such as roughness-induced vibrations. Under 

excessive excitation, contacts can exhibit undesirable vibroimpact responses, allowed by 

clearances introduced through manufacturing tolerances. Resulting dynamic behaviour is 

characterised by intermittent loss of contact and shocks leading to excessive wear, surface 

damage and excessive noise. 

In a companion paper (Part I: Harmonic excitation) [12], the dynamic behaviour of a 

fundamental preloaded Hertzian contact subjected to harmonic normal forces was studied. To 

this end, an improved experimental test rig permitted us to investigate the primary resonance 

in detail, including vibroimpact responses. Theoretical results were also presented to conclude 

on the main characteristics of the primary resonance.  

In the present second part of this work, the previous analysis is extended to the case of 

vibroimpact response of a preloaded and non-sliding dry Hertzian contact under Gaussian 

white random normal excitation. Comparisons between experimental and theoretical results 

permit us to conclude on some characteristics of the random dynamic responses, including 

vibroimpact behaviours. 

As the literature shows, there exist a few number of papers in this area. These include 

references [1-7]. They generally concern random normal vibrations for sliding contacts 

related to the internal random roughness surface induced excitation. 

Experimental results can be found for example in references [2-5;7]. In these studies, 

excitation random force applied to the contact is never exactly known because measurements 



are always performed during sliding conditions. It is estimated on the basis of assumptions on 

the spatial spectrum of the surface roughness input. Decrease of the frequency domain 

spectrum shape with a ω− 4 law is generally retained. These works principally focus on the 

interaction between normal and tangential forces, friction force vibrations and friction 

coefficient behaviour under dynamic conditions. Further, vibroimpact behaviours are very 

partially analysed. 

In a theoretical point of view, Nayak [1] presents a detailed analysis of a Hertzian contact 

excited by a broadband random normal force. But, intermittent loss of contact is partially 

taken into account. This problem is examined by Hess et al. [5] who consider also small 

values of probability of contact loss. The used theoretical method is based on the Fokker-

Planck equation, introducing the restoring elastic Hertzian force by a third order Taylor 

expansion. The procedure is refined by Pärssinen in a recent brief paper by introducing the 

real form of the theoretical restoring elastic Hertzian force [6]. 

2. Test rig and experimental procedure 

The experimental studied system is similar to the one presented in part I of this work [12]. 

Recall that it consists on a 25.4 mm diameter steel ball preloaded between two horizontal steel 

flat surfaces. The first one is rigidly fixed to a vertically moving cylinder, the second one is 

rigidly fixed to a heavy rigid frame. The double sphere-plane dry contact is loaded by a static 

normal load Fs = mg = 110 N which corresponds to the weight of the moving cylinder.  

Using a suspended vibration exciter, random normal force is applied to the moving cylinder 

and superimposed on the static load. For this end, a signal generator and a power amplifier are 

used to generate the white noise signal. This signal is filtered above 1 kHz which is up to 4 

times the experimental linearised contact frequency (f0 = 233.4 Hz). 

A piezoelectric force transducer is mounted between the vibration exciter and the moving 

cylinder to measure the excitation force. Normal force N(t) transmitted to the base through the 



contact is measured by a piezoelectric force transducer mounted between the lower plane and 

the rigid frame. Considering the experimental system and the transducer stiffness 

(8000 N/µm), the force measurement bandwidth is sufficiently wide (0-7 kHz). 

The input force and the dynamic response are displayed on a storage oscilloscope. 

Experimental average one-sided RMS magnitude spectra are measured with a real time 

spectrum analyser using a sampling rate of 4096 samples over the frequency bandwidth (0-

1 kHz) with a frequency resolution always less than 0.25 Hz. Average spectra were obtained 

with a number of spectrum up to 275. Dynamic responses are digitised using an A/D 

converter and stored for statistical post-treatments. These responses are sampled for a 20 s 

duration with sampling rate of 10000 samples per second. 

3. The theoretical dynamic model 

3.1 Equation of motion 

On the basis of identical assumptions that ones introduced in the first part of this work, the 

experimental system is modelled by a randomly excited single-degree-of-freedom non-linear 

dynamic system shown in Figure 1 and described by the following motion equation: 

 ))t(Wh1(sF2/3)]z(Hz[kzczm +=++ &&&  (1) 

In this equation, z is the normal displacement of the rigid mass m measured such as z < 0 

corresponds to loss of contact. Assuming viscous law, c is a damping coefficient, k is a 

constant given by the Hertzian theory, H is the Heaviside step function, W(t) is a stationary 

zero-mean Gaussian white noise and h controls level of the random normal force. From 

equation (1), the theoretical static contact compression zS and the linearised contact natural 

circular frequency Ω are given by: 
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Recall that data have been previously found from the experimental characteristics as: 
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dimensionless equation of motion is achieved in the same way as in part I: 
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In this equation, overdot indicates differentiation with respect to the dimensionless time τ, ζ is 

an equivalent viscous damping ratio, parameter h controls the input level and w(τ) is chosen 

as a stationary zero-mean Gaussian white noise with a unit power spectral density, 

1)(wwS =ϖ . So, considering the dimensionless excitation force )(wh)(f τ=τ , the power 

spectral density and autocorrelation function are given by: 

  h)(ffS =ϖ   (10) 

  Rff (τ) = 2πhδ(τ)  (11) 

where δ(τ) is the Dirac function. With this choice, one should notice that the power spectral 

density of W(t) is equal to 1/Ω. Hence, power spectral density of the excitation 

force )t(WhSF)t(F =  is equal to: 

  Ω==ω /h2
SF0S)(FFS   (12) 

From the experimental one sided spectral density 0G)f(FFG = , we have: 
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Finally, it should be noted from equation (9) that loss of contact corresponds to the inequality: 



 q < − 3/2 (15) 

3.2 Numerical methods 

To investigate theoretical dynamic responses, we have used several numerical methods as 

follows: 

- a classical numerical time integration explicit scheme, i.e. the central difference scheme, 

for achieving dynamic time histories of responses, 

- the stationary Fokker-Planck equation applied to system (6) under Gaussian white-noise 

excitation for describing the statistics of the dynamic responses, 

- classical statistical tools to describe random vibrations, 

- Monte Carlo simulations to estimate power spectral densities of responses of the randomly 

excited system. 

When necessary, these methods are described in the following. 

4. Experimental results 

4.1. Dynamics without loss of contact 

Figure 2 displays the experimental average one-sided RMS magnitude spectra of the 

transmitted normal force for various random input levels. These levels are chosen in such a 

way that no loss of contact occurs during the measure. For these cases, G0 = 1 10− 4, 

G0 = 4.5 10− 3 and G0 = 30 10− 3 N 2/Hz with corresponding values of h = 1 10− 6, 4.5 10− 5 and 

3 10− 4 respectively. For the lowest input level, the spectrum exhibits a single resonant peak 

close to the linearised contact frequency (233.4 Hz). This result is in very good agreement 

with the predicted one (232 Hz). In this case, linear behaviour can be assumed and an 

equivalent viscous damping ratio can be estimated from the half power frequency bandwidth 

method. Experimental curve leads to ζ less than 0.5 % . This result is coherent with the 

previous value found in the part I of this work [12]. 



When the input level increases, dynamic behaviour becomes weakly non-linear. Actually, a 

second peak close to the second harmonic of the linearised contact frequency arises. For the 

highest input level shown in Figure 2, the second peak value reaches 8 % of the main peak 

value. Furthermore, increasing the input level, we observe a weak broadening of the two 

peaks. We also observe weak decrease of the two peak frequencies. 

Experimental normal force probability density functions corresponding to the three preceding 

input levels are presented in Figure 3. The associated mean, standard deviation, and skewness 

values are given in Table 1. The normal force shows a nearly zero probability of intermittent 

contact loss (which corresponds to N<-1). Further, increasing the input level, the Gaussian-

like shape of the probability density function moves to a more and more asymmetrical shape. 

This is confirmed by the evolution of the skewness value given in Table 1. However, the 

deviation from a Gaussian process is weak. Considering the mean value of the normal force, it 

remains also very close to the applied static load. Further, the standard deviation reaches 40 % 

of the static normal force. 

Figure 4 displays an example of the time history of the normal force for an input level such 

that intermittent contact loss does not occur during acquisition data. In agreement with the 

spectral responses content, this trace is typical of a narrow-frequency-band random noise 

response. A slight asymmetrical response can be observed revealing the asymmetrical law of 

the restoring Hertzian elastic force around the static load. 

4.2. Dynamics with intermittent loss of contact  

When the random input level increases, intermittent contact loss may occur as the normal 

force can reach the static load. Figure 5 shows the experimental average one-sided RMS 

magnitude spectra for increasing random input levels, chosen in such a way that intermittent 

loss of contact occurs during the measure. For these cases, G0 = 6 10− 2, G0 = 1.7 10− 1 and 

G0 = 2.5 10− 1 N 2/Hz with corresponding values of h = 6 10− 4, 1.7 10− 3 and 2.5 10− 3 



respectively. The broadening of the resonant peaks is clearly observed. It is known that it is an 

essential property of spectrum shapes with large non-linearity and low damping [9]. One can 

also observe the rising of a broad third peak. Furthermore, resonant peaks shift to lower 

frequencies, particularly the second and the third ones. This can be explained by the more and 

more asymmetrical shape of the time trace of the transmitted force induced by the flight 

response of the cylinder. Hence, as expected, loss of contact non-linearity is stronger than the 

Hertzian contact one. 

Figure 6 displays the corresponding experimental normal force probability density functions. 

The associated mean value, standard deviation and skewness values are given in Table 2. 

Probability density functions are strongly asymmetrical and so deviate hardly from a Gaussian 

process. This is confirmed by Skewness values given in Table 2. Asymmetrical behaviour 

corresponds to the appearance of a peak at the zero transmitted normal force in the probability 

density functions (N=-1). In particular, the longer flight time of the cylinder, the higher the 

peak is. Calculation of the peak area allows estimation of the total loss of contact duration 

(this has been also estimated by treating time histories with coherent results). Results are 

reported in Table 3. For the highest input level, intermittent contact loss occurs during 

approximately 15 % of the overall time. 

Figure 7 displays an example of the time history of the normal force for an input level such 

that intermittent contact loss occurs. From time traces, we measure the total number of contact 

losses during the acquisition time (20 s). We estimate also the mean period of the cylinder 

flight. Results are presented in Table 3. For the highest input level, this mean period is 

approximately equal to 1.5 ms and the number of impacts becomes large (around 2200 during 

a observation time of 20 s). 

5. Theoretical results 

5.1. The stationary Fokker-Planck equation 



Assuming stationary Gaussian white noise excitation, statistics of the stationary response can 

be obtained using the Fokker-Planck equation [1,5,6,10]. To this end, consider the following 

second order non linear differential equation of motion, in the general form: 

 )(f)q(Gq2q τ=+ζ+ &&&  (16) 

where f(τ) is a zero mean stationary Gaussian white noise excitation with intercorrelation 

function Rff (τ) = 2π h δ(τ), i.e. a power spectral density Sff (ϖ) = h. G(q) represents the non 

linear restoring force including the non-linearity related to contact loss. The forward Fokker-

Planck equation which governs the transitional probability density function )0q,0qt,q,q(p &&  of 

system (16) is obtained as follows: 
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Considering the stationary case and after some rearrangements, the stationary joint probability 

density function )q,q(sp &  satisfies: 

 0]
q
sp

2
h

spq)[
qq

2(]
q
sp

2
h

sp)q(G[
q

=
∂
∂

ζ
π+

∂
∂−

∂
∂ζ+

∂
∂

ζ
π+

∂
∂

&
&

&&
 (18) 

Hence, a solution is achieved by requiring:  
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From (19) and (20), one easily obtains a solution for the stationary joint probability density 

function )q,q(sp &  as: 
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where A is a constant which normalises the density function. From (21), marginal densities 

for the displacement and the velocity appear statistically independents and a closed form for 

the displacement probability density function )q(qp  is easily achieved as follows: 

 








π
ζ−= ∫

q

0
ds)s(G

h
2expC)q(qp  (22) 

or from expression of G(q): 
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where C is a constant which normalises the marginal density function. 

As one can see in equation (21), marginal density function for the velocity is a Gaussian 

process. 
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where B is a constant which normalises the marginal density function. 

By using numerical integration methods, statistical moments of the displacement q(τ) are 

computed from the probability density function (23). 
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Since the relation between the displacement q(τ) and the elastic restoring force N(τ) is known, 

the probability density function of the elastic restoring force pN(N) is derived in a classical 

manner [11]. 

Consider the relation N = G(q): 
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If qi, i = 1..r, are all real roots of (26), one obtains the probability density function of the 

elastic restoring force as: 
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where N’(q) is the derivative of N with respect to q. 

Finally: 
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where δ is the Dirac delta function. Notice that pN is zero for N < −1, and contains an impulse 

at N = −1 of area equal to the probability of loss of contact. Notice also that: 
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Statistical moments are given as follows: 
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from which mean value, standard deviation and skewness values can be derived. 

5.2. Monte Carlo simulations 

We have performed Monte Carlo simulations to estimate response spectral densities of the 

randomly excited system. For this end, we have used an explicit numerical time integration 

scheme (central difference method) for solving the motion equation (9) and for achieving 



dynamic time histories of the normal force. Spectra were obtained via a Fast Fourier 

Transform procedure with a number of samples equal to 2048. Average spectra were obtained 

with a number of spectrum up to 400. To simulate the Gaussian white noise external force, we 

have considered a sufficiently wide band limited pseudo-random signal given by: 

  ∑ φ+τϖ=τ
=
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1k
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Frequencies ϖk are independent and uniformly distributed in ]0,ϖmax] and WM is a coefficient 

which take into account the frequency resolution. 

 h.fWM ∆=  (32) 

Choosing phases φk as follows: 

 )r2cos(r22 21k π−π=φ  (33) 

where r1 and r2 are two random numbers uniformly distributed over [0,1], the signal is 

normally distributed. 

Also, Monte Carlo simulations have been used to obtain statistics of the stationary responses 

treating the theoretical time histories. Statistical moments have been estimated over 105 times 

the period of the linearised system with up to 250 samples by period. 

5.3. Theoretical results 

5.3.1 Statistics of the stationary response 

The probability densities of the elastic restoring force are shown in Figure 8 (h = 3 10− 6, 

8 10− 5, 5 10− 4) and Figure 9 (h = 1.2 10− 3, 2 10− 3, 3.2 10− 3) for increasing input levels and 

for a damping ratio equal to 0.5%. The two figures correspond respectively to input levels 

chosen in such a way that no loss and loss of contact occurs. Both results derived from the 

Fokker-Planck equation and the Monte Carlo simulations are shown. As we can see, a good 

agreement between the two methods is observed. Small differences observed on Figure 9 can 



result from numerical errors associated to the estimation of the Dirac value at N=−1. By 

comparing Figure 8 and Figure 3, we conclude on a good agreement between experimental 

and numerical results. Actually, the introduced input levels leading to the same probability 

density function shapes are not exactly the same but appear to be of the same order. 

Moreover, it should be stated that the pertinent variable is the ratio between damping ratio and 

input level (see equation 21). Further, damping law as well as damping value are not exactly 

known particularly when the amplitude response grows. So, in our opinion, adjusting damping 

ratio gives no more satisfaction than adjusting input level. However, one can assume that the 

experimental damping ratio of 0.5 % is overestimated. Actually, by taking into account the 

average ratio between the two series of input levels, we conclude that a damping ratio equal to 

0.3 % is more convenient. By comparing Figure 9 and Figure 6, we conclude on a satisfactory 

agreement between experimental and numerical results when intermittent contact losses 

occur. Of course, the theoretical infinite value and Dirac function at N = −1  cannot be 

observed in the experimental case. Further, ball motion between the two planes associated to 

the second mode and clearly experimentally observed (see Figure 7) is a source of 

discrepancy between theoretical and experimental probability density functions. Numerical 

statistics obtained from equation (25) are given in Table 4. Statistical results obtained from 

Monte Carlo simulations are reported in Table 5. Concerning standard deviations, satisfactory 

agreement is obtained between measured and computed results (see Tables 1 and 2). In 

accordance with the preceding remarks, we have found that this agreement becomes very 

good if we scale the input level by damping ratio with a value equal to 0.3 % . So, we can 

conclude that the numerical tools used in this study are suitable for describing standard 

deviations, even if the probability density function are not exactly the same when contact 

losses occur. Concerning mean values, discrepancy between experimental results and 

numerical ones is found. However, it should be pointed out that the numerical mean values 



remain very close to the static applied load which is coherent with experimental data. Further, 

samplings of both experimental time traces and those obtained from Monte Carlo simulations 

are perhaps not sufficient to ensure precise estimate of the mean value. Concerning skewness 

values, good agreement between experimental and Monte Carlo simulations results is 

obtained, but discrepancies appear with results obtained from the Fokker-Planck equation. We 

don’t have precise explanation, but we can assume that sampling procedure leads numerical 

errors for estimating skewness values. Finally, probabilities of contact loss given in Table 4 

have been computed from equation (23). Again, very good agreement with experimental 

results is observed (compare the total loss of contact duration given in Table 3).  

5.3.2 Response spectra 

Figures 10 and 11 display the numerical average one-sided RMS magnitude spectra for 

increasing input levels (h = 3 10− 6, 8 10− 5, 5 10− 4, 1.2 10− 3, 2 10− 3, 3.2 10− 3). Comparisons 

with Figures 2 and 5 reveals a very good agreement between experimental and numerical 

results when intermittent contact losses do not occur. The agreement remains satisfactorily 

when contact losses occur, even if experimental level of the second and third peaks are higher 

than those obtained from numerical simulations. 

Since the experimental test rig does not permit higher input levels, it can be interesting to 

know the effect of increasing input level on the transmitted force response through numerical 

simulations. Figure 12 displays the average one-sided RMS magnitude spectra of the elastic 

restoring force for input levels higher than the preceding ones. The result is a large 

broadening of the spectral density response, in such a way that preceding peaks completely 

disappear. 

5.3.3 Effect of the Hertzian contact law on response spectra  



Since linear restoring force law is introduced in a lot of modelling of practical systems, it is of 

interest to compare results between modellings which include the Hertzian contact law or not. 

For this end, we have consider a simplified model for describing the elastic restoring force as 

follows: 

 1)q1(H).q1(N −++=  (34) 

Figure 13 displays the numerical average one-sided RMS magnitude spectra for three input 

levels (h = 8 10− 5, 2 10− 3, 1.4 10− 2) showing comparisons between results obtained from the 

two models. As one can see, identical results are obtained around the primary peak. In 

contrast, the simplified model is not suitable to describe the dynamic behaviour in the range 

of higher frequencies. Depending on the objective, approximation (34) can be favourably 

introduced under cover of saving of numerical time consuming. 

6. Conclusion 

An experimental test rig consisting on a dry double sphere-plane Hertzian contact is modelled 

as a nonlinear single-degree-of-freedom system. Nonlinear normal force response of this 

randomly excited system is analysed through experimental and theoretical results. 

For very low input force amplitude, almost linear behaviour is observed, and the experimental 

linearised contact frequency is deduced with a very good agreement with the predicted one. 

Equivalent viscous damping ratio is less than 0.5 %. Increasing the input amplitude reveals 

the second harmonic spectral peak. Probability density functions of the response show a little 

deviation from a Gaussian process resulting from the Hertzian non-linearity as long as 

intermittent contact loss is very occasional. 

As the input level increases, the probability of intermittent loss of contact strongly increases. 

The probability density functions of the response become largely asymmetrical. Furthermore, 

we observe the rising of the third harmonic spectral peak and the broadening of spectral 



peaks. This last behaviour is known as an essential property of the power spectral density of 

systems with large non-linearity and low damping. It is clearly verified in our experimental 

results. 

For all these behaviours, numerical and experimental results agree. We conclude that the 

associated theoretical model is sufficiently accurate, despite the fact that damping is modelled 

in a very simple way. So, compared to vibrations under harmonic excitation, precise 

knowledge of the damping law during vibroimpact response is less determining. Also, 

stationary Fokker-Planck equation and Monte Carlo simulations are suitable methods for 

describing the dynamic behaviour of the impacting Hertzian contact under normal random 

excitation. 

In future, further numerical and experimental works are planned to take into account the effect 

of a lubricating film and the effect of sliding surfaces. 
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9. Nomenclature 

m rigid moving mass 

c damping coefficient 

k constant obtained from Hertzian theory 

Fs static load 

F(t) excitation normal force 

W(t) Gaussian white noise process 

h parameter controlling input level  



z(t) normal displacement 

zs static contact compression 

Ω linearised natural circular frequency 

f0 linearised natural frequency 

ζ damping ratio 

τ dimensionless time 

q(τ) dimensionless normal displacement 

f(τ) dimensionless excitation normal force 

w(τ) dimensionless Gaussian white noise process 

ω circular frequency 

ϖ dimensionless circular frequency 

N(τ) Hertzian elastic restoring force 

Sxx(ω) power spectral density of x 

Gxx(ω) one-sided power spectral density of x 

Rxx(τ) intercorrelation function of x 

px(x) probability density function of x 

E[x], x  mean value of x 

σ, standard deviation 

γ, skewness value 

 



Table 1. Mean value E[N], standard deviation σ, and skewness γ of the measured 

dimensionless transmitted force. 

Table 2. Mean value E[N], standard deviation σ and skewness γ of the measured 

dimensionless transmitted force. 

Table 3. Loss of contact duration. 

Table 4. Mean value E[N], standard deviation σ and skewness γ of the computed 

dimensionless transmitted force by using the Fokker-Planck equation. 

Table 5. Mean value E[N], standard deviation σ and skewness γ of the computed 

dimensionless transmitted force by using Monte Carlo simulations. 



Figure 1. The studied randomly excited single-degree-of-freedom oscillator. 

Figure 2. Experimental one sided RMS spectra of the transmitted normal force for h ≈ 1 10− 6, 

4.5 10− 5 and 3 10− 4 (respectively a, b, c).  

Figure 3. Probability density functions of the measured transmitted normal force for 

h ≈ 1 10− 6, 4.5 10− 5 and 3 10− 4 (respectively a, b, c).  

Figure 4. Time traces of the transmitted normal force h ≈ 1 10− 6, 4.5 10− 5 and 3 10− 4 

(respectively a, b, c). 

Figure 5. Experimental one sided RMS spectra of the transmitted normal force for h ≈ 6 10− 4, 

1.7 10− 3 and 2.5 10− 3 (respectively a, b, c).  

Figure 6. Probability density functions of the measured transmitted normal force for 

h ≈ 6 10− 4, 1.7 10− 3 and 2.5 10− 3 (respectively a, b, c).  

Figure 7. Time traces of the transmitted normal force for h ≈ 6 10− 4, 1.7 10− 3 and 2.5 10− 3 

(respectively a, b, c). 

Figure 8. Probability density functions of the elastic restoring force for h = 3 10− 6, 8 10− 5 and 

5 10− 4 (respectively a, b, c). Results obtained from the stationary Fokker-Planck equation 

(   ) and from Monte Carlo simulations ( ! ). 

Figure 9. Probability density functions of the elastic restoring force for h = 1.2 10− 3, 2 10− 3, 

3.2 10− 3 (respectively a, b, c). Results obtained from the stationary Fokker-Planck equation 

(   ) and from Monte Carlo simulations ( ! ). 

Figure 10. Numerical one sided RMS spectra of the elastic restoring force for h = 3 10− 6, 

8 10− 5 and 5 10− 4 (respectively a, b, c).  

Figure 11. Numerical one sided RMS spectra of the elastic restoring force for h = 1.2 10− 3, 

2 10− 3 and 3.2 10− 3 (respectively a, b, c). 



Figure 12. Numerical one sided RMS spectra of the elastic restoring force for h = 7 10− 3, 

1.4 10− 2 and 3 10− 1 (respectively a, b, c).  

Figure 13. Numerical one sided RMS spectra of the elastic restoring force obtained with an 

Hertzian elastic contact law (thin line) and a linear one (thick line). h = 8 10− 5, 2 10− 3 and 

1.4 10− 2 (respectively a, b, c).  



 

h E[N] σσσσ    γγγγ 

1.0 10− 6 -9.8 10− 5 0.03 0.011 

4.5 10− 5 7.0 10− 6 0.15 0.089 

3.0 10− 4 4.6 10− 5 0.38 0.260 

 

Table 1. Mean value E[N], standard deviation σ, and skewness γ of the measured 

dimensionless transmitted force. 

J. PERRET-LIAUDET AND E. RIGAUD  



 

h E[N] σσσσ    γγγγ 

6.0 10− 4 -2.1 10− 4 0.70 0.406 

1.7 10− 3 -3.4 10− 4 0.78 0.464 

2.5 10− 3 -2.4 10− 4 1.01 0.758 

 

Table 2. Mean value E[N], standard deviation σ and skewness γ of the measured 

dimensionless transmitted force. 
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h Total loss of contact 
duration 

Nunber of loss of 
contact during 20 s 

Mean period of 
cylinder fly 

6.0 10− 4 3 % 693 0.9 ms 

1.7 10− 3 6 % 1050 1.1 ms 

2.5 10− 3 15 % 2227 1.5 ms 

 

Table 3. Loss of contact duration. 
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h E[N] σσσσ    γγγγ p(q<−1.5<−1.5<−1.5<−1.5) 

3 10− 6 -1.57 10− 3 0.03 - 0.010 ≈ 0 % 

8 10− 5 -4.23 10− 3 0.16 - 0.054 ≈ 0 % 

5 10− 4 -2.81 10− 2 0.40 - 0.157 ≈ 0 % 

1.2 10− 3 -1.33 10− 3 0.60 0.502 2 % 

2.0 10− 3 -1.66 10− 3 0.75 0.710 7 % 

3.2 10− 3 -2.14 10− 3 0.91 0.951 15 % 

 

Table 4. Mean value E[N], standard deviation σ and skewness γ of the computed 

dimensionless transmitted force by using the Fokker-Planck equation. 
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h E[N] σσσσ    γγγγ 

3 10− 6 -3.0 10− 4 0.03 0.018 

8 10− 5 -1.0 10− 3 0.15 0.097 

5 10− 4 -2.0 10− 3 0.38 0.260 

1.2 10− 3 -4.1 10− 3 0.57 0.490 

2.0 10− 3 -4.2 10− 3 0.72 0.666 

3.2 10− 3 -4.4 10− 3 0.88 0.917 

 

Table 5. Mean value E[N], standard deviation σ and skewness γ of the computed 

dimensionless transmitted force by using Monte Carlo simulations. 
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Figure 1. The studied randomly excited single-degree-of-freedom oscillator. 
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Figure 2. Experimental one sided RMS spectra of the transmitted normal force for h ≈ 1 10− 6, 

4.5 10− 5 and 3 10− 4 (respectively a, b, c).  
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Figure 3. Probability density functions of the measured transmitted normal force for 

h ≈ 1 10− 6, 4.5 10− 5 and 3 10− 4 (respectively a, b, c). 
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Figure 4. Time traces of the transmitted normal force h ≈ 1 10− 6, 4.5 10− 5 and 3 10− 4 

(respectively a, b, c). 
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Figure 5. Experimental one sided RMS spectra of the transmitted normal force for h ≈ 6 10− 4, 

1.7 10− 3 and 2.5 10− 3 (respectively a, b, c). 
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Figure 6. Probability density functions of the measured transmitted normal force for 

h ≈ 6 10− 4, 1.7 10− 3 and 2.5 10− 3 (respectively a, b, c).  
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Figure 7. Time traces of the transmitted normal force for h ≈ 6 10− 4, 1.7 10− 3 and 2.5 10− 3 

(respectively a, b, c). 
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Figure 8. Probability density functions of the elastic restoring force for h = 3 10− 6, 8 10− 5 and 

5 10− 4 (respectively a, b, c). Results obtained from the stationary Fokker-Planck equation 

(   ) and from Monte Carlo simulations ( ! ). 
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Figure 9. Probability density functions of the elastic restoring force for h = 1.2 10− 3, 2 10− 3, 

3.2 10− 3 (respectively a, b, c). Results obtained from the stationary Fokker-Planck equation 

(   ) and from Monte Carlo simulations ( ! ).  
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Figure 10. Numerical one sided RMS spectra of the elastic restoring force for h = 3 10− 6, 

8 10− 5 and 5 10− 4 (respectively a, b, c). 
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Figure 11. Numerical one sided RMS spectra of the elastic restoring force for h = 1.2 10− 3, 

2 10− 3 and 3.2 10− 3 (respectively a, b, c). 
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Figure 12. Numerical one sided RMS spectra of the elastic restoring force for h = 7 10− 3, 

1.4 10− 2 and 3 10− 1 (respectively a, b, c). 
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Figure 13. Numerical one sided RMS spectra of the elastic restoring force obtained with an 

Hertzian elastic contact law (thin line) and a linear one (thick line). 

h = 8 10− 5, 2 10− 3 and 1.4 10− 2 (respectively a, b, c).  
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