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Summary 

The purpose of this paper is to investigate experimental and numerical dynamic responses 

of a preloaded vibro-impacting Hertzian contact under sinusoidal excitation. Dynamic 

response under random excitation is analysed in the second part of this paper. A test rig is 

built corresponding to a double sphere-plane contact preloaded by the weight of a moving 

cylinder. Typical response curves are obtained for several input levels. Time traces and 

spectral contents are explored. Both amplitude and phase of harmonics of the dynamic 

response are investigated.  

Linearised resonance frequency and damping ratio are identified from the almost linear 

behaviour under very small input amplitude. Increasing the external input amplitude, the 

softening behaviour induced by Hertzian nonlinear stiffness is clearly demonstrated. 

Resonance peak is confined in a narrow frequency range. Jump discontinuities are identified 

for both amplitude and phase responses. Forced response spectrum exhibits several harmonics 

because of nonlinear Hertzian restoring force. Numerical simulations show a very good 

agreement with experimental results. 

For higher input amplitude, system exhibits vibro-impacts. Loss of contact non-linearity 

clearly dominates the dynamic behaviour of the vibroimpacting contact and leads to a wide 

frequency range softening resonance. Spectral content of the response is dominated by both 

the first and the second harmonics. Evolution of the experimental downward jump frequency 

versus input amplitude allows the identification of the nonlinear damping law during 

intermittent contact. Simulations of the vibroimpacting Hertzian contact are performed using 

a shooting method and show a very good agreement with experimental results. 



 

1. Introduction 

Many mechanisms and mechanical devices use Hertzian contacts to transform motions and 

forces and to ensure rotation or translation motions. Under operating conditions, these 

contacts are often excited by dynamic normal forces superimposed on a mean static load. 

These excitation forces can be generated externally to the contact. They can also be generated 

by internal sources as roughness induced vibrations. Undesirable vibration responses can lead 

to excessive wear, contact fatigue and noise generation. Furthermore, in many mechanisms 

and mechanical devices such as gears and rolling element bearings, clearances introduced 

through manufacturing tolerances are necessary to ensure good functioning. Under excessive 

excitations, contacts can exhibit undesirable vibroimpact response leading to surface damage 

and excessive noise. In this context, study of the dynamic behaviour of fundamental Hertzian 

contacts including possible loss of contact is an essential stage in the understanding of the 

dynamics of more complex mechanical systems. 

Considering vibrations of Hertzian contact excited by sinusoidal force, numerous papers 

present theoretical studies concerning the primary resonance which occurs without loss of 

contact [1, 2, 3]. Nayak modeled a preloaded Hertzian contact problem using the harmonic 

balance method [1]. The primary resonance exhibits a nonlinear softening behaviour induced 

by the nonlinear contact stiffness. Nevertheless, bending of the resonance peak remains in a 

narrow frequency range. Other theoretical works related to the primary resonance of Hertzian 

contact include that of Hess and Soom [2]. They analysed the reduction of the average friction 

coefficient induced by the dynamic response, using the multiple scales method. Perret-Liaudet 

and Sabot analysed the primary resonance including vibroimpact responses using a shooting 

method in relation with a continuation method [3]. The effect of the contact loss non-linearity 

is strong as the softening resonance is established in a much wider frequency range. Finally, 

theoretical description of the 2-subharmonic resonance and of the 2-superharmonic resonance 

is achieved by Perret-Liaudet [4, 5]. 



 

Partial experimental results concerning the primary resonance are presented by Carson and 

Johnson [6]. They used an original test rig consisting of two rolling contact discs, one of them 

being regularly corrugated. Sabot et al. [7] experimentally studied a ball normally preloaded 

by a moving rigid mass. They clearly exhibited the softening primary resonance when no loss 

of contact occurs and analysed mechanical sources of damping. 

In this paper, experimental dynamic behaviour of a preloaded double sphere-plane 

Hertzian contact under sinusoidal excitation is investigated. Dynamic responses are 

investigated in detail including vibroimpact responses. Comparison with theoretical results 

permits us to conclude on the main characteristics of the system associated to both Hertzian 

non-linearity and contact loss non-linearity. After description of the studied dynamic model in 

section 2, we present the used test rig and the experimental procedure in section 3. 

Experimental and theoretical results are presented in section 4. 

2. The studied dynamic model 

2.1 Equation of motion 

The single-degree-of-freedom impact oscillator under study is shown in Figure 1. A 

moving rigid mass m is kept in contact with a flat surface and loaded by a static normal load 

FS. Assuming Hertzian contact law, the nonlinear restoring contact force can be derived from 

material properties and contact geometry [8]. When the system is excited by a purely normal 

zero-mean force F(t) superimposed on the static load, the equation of motion may be written 

as: 

 [ ] )t(FFz)z(Hkzczm s
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where z is the normal displacement of the rigid mass m measured such as z<0 corresponds to 

loss of contact, c is a damping coefficient, k is a constant given by the Hertzian theory and H 

is the Heaviside step function. For convenience, the damping is assumed to be a constant at all 

times in equation (1) but other laws are introduced later. 



 

When zero-mean excitation force is assumed, the static contact compression zs is given by 

the following equation: 

 
3/2

s
s k

F
z 





=  (2) 

Introducing the linearised contact natural frequency Ω and the damping ratio ζ given by: 
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and rescaling equation (1) by letting: 
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the dimensionless equation of motion is obtained as follows: 

 ( )( )[ ] )(f1q3
21q3

21Hq2q
2/3

τ+=+⋅++ζ+ &&&  (8) 

In this equation, overdot indicates differentiation with respect to the dimensionless time τ. 

It should be noted that loss of contact now corresponds to the inequality: 

 q < − 3/2 (9) 

In this paper, a purely harmonic excitation is considered. Then, the dynamic external 

normal force is: 

 )sin()(f ϖτσ=τ  (10) 

where σ controls the level of the excitation and ϖ is the dimensionless excitation circular 

frequency. 

2.2 Contact damping force 

To describe the contact damping force fd, one may assume also several viscous damping 

laws which can be expressed, considering the original model case as: 
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One can introduce a linear damping force (n = 0), or a damping force proportional to the 

contact radius (n = 1/2), or a damping force proportional to the elastic deformation and to the 

contact area (n = 1), or a damping force proportional to the elastic restoring force (n = 3/2). 

For these laws, it should be noted that damping acts only when contact. More complex 

damping contact laws have been introduced in preceding studies [9, 10, 11] but have not been 

investigated in this study. 

3- Test rig and experimental procedure 

3.1 Test rig 

Test rig is displayed in Figure 2. The experimental studied system corresponds to a double 

sphere-plane Hertzian contact. A 100C6 steel ball is compressed between the horizontal plane 

surfaces of two 100C6 steel thick discs which are rigidly fixed to a heavy rigid frame of a 

machine tool and a cylinder moving like a rigid body. 

Ball diameter is 25.4 mm and its weight is 70 g. Double sphere plane Hertzian contact is 

loaded by the weight of the moving cylinder. Its mass is m=11.4 kg, corresponding to a static 

load Fs=mg=110 N. The moving cylinder is held by six titanium thin stems connected to the 

rigid frame in order to prevent lateral displacements and rotations. Then, only vertical motion 

of the cylinder is authorised. Furthermore, stems also allow regulation of the cylinder 

verticality. 

Compliance of a rough and weakly loaded sphere-plane contact obtained experimentally 

may be different from the theoretical compliance supplied by the Hertz equation [12]. Planes 

were ground to obtain roughness Ra<0,4 µm in order to avoid this problem. Ball roughness is 

also weak (Ra<0.03 µm), so that, asperities are quite smaller than contact deflection and 

contact area. Finally, only dry contact is considered. Surfaces are cleaned before each run to 

remove grease from contact. 



 

The experimental system can be modelled by a two degrees of freedom nonlinear dynamic 

system. However, the ball mass is negligible with regard to that of the moving cylinder, and it 

can easily shown that, for sufficiently low frequencies, this model is equivalent to the 

previously defined single degree of freedom system (1) [7]. Constant k of the preceding 

restoring elastic force expression is deduced from the double sphere-plane Hertzian contact. 

Assuming identical mechanical properties for the ball and the discs leads to: 
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where E is the Young modulus (210 Gpa), ν is the Poisson's ratio (0.29) and R is the ball 

radius (12.7 mm). 

Then, theoretical characteristics of the experimental system are: 

 k=5.98 109 N.m-3/2 (13) 

 zs=7 µm (14) 

 f0= π
Ω
2

=232 Hz (15) 

The second natural frequency of the double sphere-plane contact has been calculated and 

confirmed experimentally. Below this frequency (5500 Hz), the single degree of freedom 

system is justified. 

Maximum contact pressure induced by static load has been calculated using Hertz theory 

(p0=1.2 GPa) to ensure an elastic contact. 

3.2 Instrumentation and acquisition 

Contact is normally excited by a vibration exciter connected to the moving cylinder and 

suspended with four springs. Sinusoidal input is applied to the moving cylinder and 

superimposed on the static load Fs. For this end, a signal generator and a power amplifier are 

used.  



 

A piezoelectric force transducer is mounted between the vibration exciter and the moving 

cylinder to measure the excitation force F(t). The vertical response )t(z&&  of the cylinder is 

measured by a piezoelectric accelerometer. Normal force N(t) and tangential forces T(t) 

transmitted to the frame through the contact are measured by a piezoelectric tri-axis force 

transducer. Classical charge amplifiers are used for all responses. 

Regulation of the cylinder verticality leads to a quasi-perfectly normal load. During 

experimental measures, we check that tangential forces are negligible and remain always 

lower than 1 % of the normal force transmitted to the frame. Considering the experimental 

system and the transducer stiffness (8000 N/µm), the force measurement bandwidth is 0-

7 kHz. 

The input force and the dynamic responses are displayed on a four-channel storage 

oscilloscope. Spectral contents (amplitude and phase) are measured with a real time spectrum 

analyser using a sampling rate of 4096 samples over the frequency bandwidth. Then the 

frequency resolution is never unless than 0.25 Hz for all spectral quantities. Each harmonic of 

signal is analysed using a lock-in amplifier. This one is based on a phase sensitive detection to 

single out the components of the signal (frequency, amplitude, and phase). 

4- Forced dynamic response to a sinusoidal excitation 

All the experimental data obtained show a near perfect similarity between the fluctuating 

part of the normal force and the vertical acceleration of the moving cylinder. Measured 

correlation coefficients are always up to 99 %. Then, for convenience, only results associated 

to the normal force are presented. 

4.1 Dynamics without contact loss 

When external input amplitude is very small (σ =0.03 %), contact dynamic behaviour is 

almost linear, even if the resonance curve is slightly asymmetrical (see Figure 3). No jump 

phenomenon occurs and harmonic normal force is observed. Linearised contact frequency 



 

measured from these experimental data (f0=233.4 Hz) is close to the predicted natural 

frequency since the relative error is less than 0.5 % (see equation (15)). Analysis of the 

amplitude response curve of H1 allows to estimate an equivalent viscous damping ratio close 

to ζ=0.5 %. This result is coherent with preceding studies [7]. 

For higher external input amplitudes, experimental normal force N(t) presents not only H1 

component associated to the input frequency ϖ but also H2 component associated to the 

second harmonic 2ϖ. The others harmonic components remain always negligible. Amplitude 

and phase of the two first harmonics (H1 and H2) are displayed in Figures 4 and 5, for two 

external input amplitudes. They are obtained increasing or decreasing the external input 

frequency, such as stationary process can be assumed at each frequency. 

For an external input amplitude σ =0.6 %, the system exhibits a nonlinear softening 

behaviour since the amplitude frequency response curve is bent to frequencies lower than the 

linearised contact natural frequency. Distortion of the phase response curve is also clearly 

demonstrated. The bending of the resonance curve leads to multi-valued amplitude and phase 

responses for ϖ < 1. Two stable solutions and one unstable solution exist leading to a pair of 

saddle node bifurcations and hence, to jump discontinuities. Jump discontinuities occur for 

both harmonic components H1 and H2. The downward jump frequency ϖd corresponds to the 

phase resonance. Decreasing the external frequency, the phase angle of H1 component relative 

to the excitation varies from 180° to 0° with a jump discontinuity from 90° to 0°. Phase angle 

of H2 component is twice the phase angle of H1 component. During data acquisition, tracking 

of these phase angles allows the prediction of the downward jump discontinuity before it 

occurs. 

Normal response is very high for relatively small input amplitude, so that external input 

amplitude σ =1 % leads to dynamic response just below loss of contact. Frequencies of 

upward jump and downward jump discontinuities have decreased. They are close to ϖu=0.984 



 

and ϖd=0.957. The downward jump frequency agrees very well with the theoretical value 

predicted considering the backbone curve (ϖd=0.953) [1]. As we can see in Figures 3 and 4, 

H2 component amplitude becomes non-negligible and reaches 17 % of H1 component 

amplitude in the resonance peak. This behaviour results from the asymmetrical characteristic 

of the nonlinear restoring Hertzian force around the static equilibrium. 

Minimum and maximum peak amplitudes of the normal force are displayed in Figure 6. 

Time history of the normal force at the resonance peak is displayed in Figure 7. It shows 

hardening behaviour in compression (Νmax = Fs + 1.3 Fs) and softening behaviour in extension 

(Νmin = Fs - 0.92 Fs). Spectrum of the normal force is displayed in Figure 8. H1 component 

appears up to 1 although loss of contact does not occur. Consequently, resonance peak cannot 

be accurately predicted from analytical methods only taking into account the fundamental 

harmonic such as the harmonic balance method and the multiple scales method [1, 2]. H2 

component is close to 0.2 and the higher components are negligible. 

Finally, the softening behaviour, well known through numerical results [1, 2, 3], is clearly 

demonstrated experimentally. Nonlinear behaviour associated to Hertzian contact is rather 

weak since the resonance curve is confined in a narrow frequency range close to the linearised 

contact frequency.  

4.2 Dynamics with intermittent contact loss 

For this set of experimental results, it is important to say that good repeatability was 

always observed. 

Experimental results show that a small input amplitude is likely to induce intermittent loss 

of contact. When σ >1.2 %, loss of contact occurs as the normal force reaches 100 % of the 

static load, that is to say the vertical acceleration of the moving cylinder reaches the gravity 

acceleration. Vibro-impact response leads to contact fatigue and undesirable noise (until 

80 dB 1 meter far from the test rig). Figures 9 and 10 display the frequency response curves 



 

for increasing input amplitudes up to 1.2 % of the static load. Loss of contact non-linearity 

clearly dominates the dynamic behaviour. It strongly bends the frequency response curve to 

low frequency (softening behaviour). For instance, in the case of an input amplitude close to 

7 % of the static load, upward jump frequency is equal to ϖu=0.909 and peak resonance 

occurs at ϖd=0.560 (nearly half the linearised contact frequency), so that, dynamic vibro-

impact response can be established over a wide frequency range. Furthermore, the spectral 

content of the response is now much richer. H2 component amplitude reaches up to 80 % of 

H1 component amplitude in the peak resonance. We can also observe irregularities on the 

frequency response curve just before the downward jump occurs. These ones certainly result 

from the excitation of the second mode, inducing a ball motion between the upper and the 

lower planes. 

Figure 11 displays the experimental downward jump frequency ϖd versus the input 

amplitude σ. We can observe three behaviours. Just below the linearised contact frequency, 

(0.957< ϖd <1) no loss of contact occurs and the downward jump frequency decreases slowly. 

When vibroimpacts occur, the downward jump frequency suddenly decreases over a relatively 

large frequency range and then slowly decreases (0.675< ϖd <0.957). Then, the downward 

jump frequency suddenly decreases again (ϖd<0.675). 

Figure 12 displays the normal force time histories for various input amplitudes. Input 

frequency is close to the downward jump frequency. Responses are asymmetrical and 

momentary loss of contact can be clearly observed. Then, for σ =1.4 % (and ϖ =0.9), loss of 

contact occurs during 40 % of the overall time, for σ =3 % (ϖ =0.76), loss of contact occurs 

during 60 % of the overall time, and for σ =7 % (ϖ =0.55), loss of contact occurs during 75 % 

of the overall time. For the last case, cylinder fly period reaches 5.8 ms. Furthermore, 

instantaneous transmitted normal force reaches 600 % of the static load for the presented time 

histories. However, plastic deformation has not been observed on surfaces. 



 

Finally, we can observe that the last time history of the normal force exhibits the influence 

of the second mode characterised by the ball motion between the upper and the lower planes. 

4.3 Theoretical results 

We have used a classical numerical time integration explicit scheme (central difference) 

for achieving dynamic time histories of theoretical responses. A specific computing method 

devoted to nonlinear problems is used to obtain the primary resonance, that is to say a 

shooting method with continuation technique (see for example [13, 14]). 

In the case of an external input amplitude just below loss of contact, theoretical prediction 

of the primary resonance is displayed in Figure 13 and compared to experimental results. As 

we can see, theoretical results are in very good agreement with experimental ones for both 

amplitude and phase response curves. The narrow frequency band of the softening resonance 

is confirmed. Damping ratio introduced in the numerical model (0.45%) is close to the one 

experimentally measured at very low excitation (see section 4.1). By introducing different 

damping laws (see equation (11) ), we have numerically observed that they don't affect the 

primary resonance curves. This result is coherent with preceding study [7]. 

Figure 14 displays the primary resonance exhibiting the strong nonlinear behaviour 

induced by loss of contact. The wide frequency range softening resonance observed is in good 

agreement with experimental results. However, the introduced damping ratio is higher than 

the one experimentally measured at very low excitation. In the contrary of the preceding case, 

the damping contact law strongly influences the downward jump frequency prediction.  

Downward jump frequencies ϖd versus input amplitude σ (see equation (11) ) are 

displayed in Figure 15 for different damping laws. Results are compared with experimental 

ones displayed in Figure 11. On the contrary to third experimental behaviour observed for 

ϖd<0.675, the two first experimental behaviours can be explained by theoretical results. As 

expected, for a constant input amplitude, downward jump frequency associated to damping 



 

proportional to elastic restoring force is higher than the one associated to linear damping 

during contact. A linear damping law during contact is not suitable in contrast with nonlinear 

model. Even if the predicted and the experimental behaviours are similar, predicted softening 

resonance peaks are wider than experimental ones, for all the introduced damping laws during 

contact. Several explanations may be done as follows: 

- Other sources of damping may exist becoming more and more significant with the amplitude 

response. 

- Other kinds of damping law during contact may be more adapted to treat the theoretical 

model. 

- Some interactions between the first and the second modes may affect the dynamic behaviour 

of the system resulting in occurrence of other bifurcations. 

Anyway it appears necessary to carry on efforts of research in order to obtain precise 

knowledge of damping mechanisms during impacts. Actually, in our opinion, damping in 

vibroimpact conditions is not adequately modelled at the present time. 

Finally, time traces of the steady state normal force response are given in Figures 16 and 

17 illustrating respectively a case without loss of contact and a case with. Theoretical results 

are in a good agreement with experimental ones (see Figures 7 and 12) despite adjustment of 

damping ratio in vibroimpact conditions. In particular, when impacts occur, flight time ratio is 

correctly predicted, compared to in contact time and maximum amplitude. Nevertheless, 

increasing the damping ratio is necessary to adjust levels, even if a damping proportional to 

elastic restoring force is introduced. 

5- Conclusion 

An original test rig has been built and improved in order to analyse vibrations of a double 

sphere-plane preloaded Hertzian dry contact excited by a purely harmonic input normal force. 

Theoretical and experimental results concern the primary resonance. Experimental linearised 



 

contact frequency and theoretical value are very close (233 Hz). Damping ratio measured with 

small input amplitude is very low (0.5 %). 

For input amplitude lower than 1 % of the static load, no loss of contact occurs. 

Experimental dynamics clearly demonstrates the softening behaviour of Hertzian contacts 

well known through numerical results.  

The resonance curve is bent to frequencies lower than the linearised contact natural 

frequency, leading to saddle-node bifurcations and jump discontinuities. We have observed 

that the dynamic response is dominated by both the H1 component associated to the input 

fundamental frequency ϖ and the H2 component associated to the second harmonic 2ϖ. Jump 

discontinuities happening for both components H1 and H2 and the associated phases are 

clearly shown. But we can conclude that the Hertzian non-linearity remains rather weak since 

the resonance peak is confined in a narrow frequency range close to the linearised contact 

frequency. This result is confirmed by theoretical analysis. 

As the damping is low, a small input amplitude is likely to induce vibroimpacts (around 

1.2% of the mean static load). Loss of contact nonlinearity clearly dominates the dynamic 

behaviour as it strongly bends the frequency response curve to low frequencies (softening 

behaviour). Actually, resonance peak is established over a wide frequency range. Amplitude 

of the H2 component becomes higher and higher and cylinder fly duration becomes longer and 

longer as input amplitude increases. 

Specific computing methods devoted to nonlinear problems, i.e. shooting and continuation 

methods, have been used to treat the loss of contact non-linearity and to investigate theoretical 

dynamic response of the Hertzian contact. Theoretical results qualitatively agree very well 

with experimental ones. Quantitatively, slight discrepancies appear. Particularly, it is 

necessary to increase the theoretical damping ratio with the amplitude response even if a 

viscous damping proportional to the restoring elastic force is introduced. This result reveal a 

lack of comprehension of damping physical sources. So, in our opinion, some efforts of 



 

research are necessary to obtain precise knowledge of damping mechanisms in vibroimpact 

conditions. 
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7- Nomenclature 

m rigid mass 

c damping coefficient 

k Hertzian constant  

Fs static load 

F(t) excitation normal force 

z(t) normal displacement 

zs static contact compression 

Ra surface roughness 

R ball radius 

E Young modulus 

ν Poisson’s ratio 

Ω linearised natural circular frequency 

f0 linearised natural frequency 

p0 static contact pressure 

ζ damping ratio 

τ dimensionless time 

q(τ) dimensionless normal displacement 

f(τ) dimensionless excitation normal force 



 

fd(τ) dimensionless contact damping force 

ϖ dimensionless excitation frequency 

σ level of sinusoidal force 

N(t) transmitted normal force 

T(t) transmitted tangential force 

Nmax maximum transmitted normal force 

Nmin minimum transmitted normal force 

H1 first hamonic of the transmitted normal force 

H2 second harmonic of the transmitted normal force 

ϖu upward jump frequency 

ϖd downward jump frequency 



 

Figure 1. Studied single degree of freedom oscillator. 

Figure 2. Test rig. (1) Vibration exciter, (2) force transducer, (3) moving cylinder, (4) 

accelerometer, (5) ball, (6) tri-axis force transducer, (7) rigid frame. 

Figure 3. Normal force vs. external frequency for σ = 0.03 %. 

Figure 4. First harmonic amplitude and phase responses vs. external frequency for 

σ = 0.6 % (!) and σ = 1 % ("). 

Figure 5. Second harmonic amplitude and phase responses vs. external frequency for 

σ = 0.6 % (!) and σ = 1 % ("). 

Figure 6. Maximum and minimum peak amplitudes of the normal force vs. external frequency 

for σ = 1 %. 

Figure 7. Time history of the normal force for σ = 1 % and ϖ = 0.957. 

Figure 8. Amplitude spectrum of the normal force for σ = 1 % and ϖ = 0.957. 

Figure 9. First harmonic amplitude vs. external frequency for σ =1.4 %, σ = 3 % and σ = 7 %. 

Figure 10. Second harmonic amplitude vs. external frequency for σ = 1.4 %, σ = 3 % 

andσ = 7 %. 

Figure 11. Downward jump frequency vs. input amplitude. 

Figure 12. Time histories of the normal force at the resonance peak for σ = 1.4 % (ϖ=0.9), 

σ =3 % (ϖ=0.76), and σ = 7 % (ϖ=0.57). 

Figure 13. Comparison between predicted (σ = 0.6 % and ζ = 0.45 %) and experimental 

amplitude and phase responses without loss of contact. Thick line: predicted stable response; 

dotted line: predicted unstable response; upward experimental response (#) and downward 

experimental response ("). 

Figure 14. Comparison between predicted (σ = 0.6 %, ζ = 0.45 %, n=3/2 in equation (11) )and 

experimental responses with loss of contact. Thick line: predicted stable response; dotted line: 

predicted unstable response; thin line: experimental response. 



 

Figure 15. Downward jump frequency vs. input amplitude for several damping laws (n=0, 

n=1/2, n=1, n=3/2 in equation 11) 

Figure 16. Numerical time history of the normal force without vibroimpacts σ = 1.1 %, 

ζ = 0.45 % and ϖ = 0.957. 

Figure 17. Numerical time history of the normal force with vibroimpacts for σ = 7.8 %, 

ζ = 1 % and ϖ = 0.57. 



 

 

Figure 1. Studied single degree of freedom oscillator. 
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Figure 2. Test rig. 

(1) Vibration exciter, (2) force transducer, (3) moving cylinder, (4) accelerometer, (5) ball, (6) 

tri-axis force transducer, (7) rigid frame. 
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Figure 3. Normal force vs. external frequency for σ = 0.03 %. 
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Figure 4. First harmonic amplitude and phase responses vs. external frequency for 

σ = 0.6 % (!) and σ = 1 % ("). 
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Figure 5. Second harmonic amplitude and phase responses vs. external frequency for 

σ = 0.6 % (!) and σ = 1 % ("). 
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Figure 6. Maximum and minimum peak amplitudes of the normal force vs. external frequency 

for σ = 1 %. 
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Figure 7. Time history of the normal force for σ = 1 % and ϖ = 0.957. 

E. RIGAUD AND J. PERRET-LIAUDET 

 

N
(t)

 

-1,5

-1

-0,5

0

0,5

1

1,5

0 4.5 10-3 9 10-3 



 

ϖ 

Figure 8. Amplitude spectrum of the normal force for σ = 1 % and ϖ = 0.957. 
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Figure 9. First harmonic amplitude vs. external frequency for σ =1.4 %, σ = 3 % and σ = 7 %. 
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Figure 10. Second harmonic amplitude vs. external frequency for σ = 1.4 %, σ = 3 % and 

σ = 7 %. 
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Figure 11. Downward jump frequency vs. input amplitude. 

E. RIGAUD AND J. PERRET-LIAUDET 

 

σ 

0

0.02

0.04

0.06

0.08

0.5 0.6 0.7 0.8 0.9 1 1.1



 

t (s) 

Figure 12. Time histories of the normal force at the resonance peak for σ = 1.4 % (ϖ=0.9), 

σ =3 % (ϖ=0.76), and σ = 7 % (ϖ=0.57). 
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Figure 13. Comparison between predicted (σ = 0.6 % and ζ = 0.45 %) and experimental 

amplitude and phase responses without loss of contact. Thick line: predicted stable response; 

dotted line: predicted unstable response; upward experimental response (#) and downward 

experimental response ("). 
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Figure 14. Comparison between predicted (σ = 0.6 %, ζ = 0.45 %, n=3/2 in equation (11) )and 

experimental responses with loss of contact. Thick line: predicted stable response; dotted line: 

predicted unstable response; thin line: experimental response. 
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Figure 15. Downward jump frequency vs. input amplitude for several damping laws (n=0, 

n=1/2, n=1, n=3/2 in equation 11) 

E. RIGAUD AND J. PERRET-LIAUDET 

σ 

0,00

0,02

0,04

0,06

0,5 0,6 0,7 0,8 0,9 1 1,1

n=3/2

n=1/2

n=1

n=0



 

 

t (s) 

Figure 16. Numerical time history of the normal force without vibroimpacts σ = 1.1 %, 

ζ = 0.45 % and ϖ = 0.957. 
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Figure 17. Numerical time history of the normal force with vibroimpacts for σ = 7.8 %, 

ζ = 1 % and ϖ = 0.57. 
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