
HAL Id: hal-00122474
https://hal.science/hal-00122474

Submitted on 2 Jan 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DEPNET: A Methodology for Identifying and
Qualifying Dependencies Between Engineering Data
Mohamed Zied Ouertani, Khadidja Grebici, Lilia Gzara, Eric Blanco,

Dominique Rieu

To cite this version:
Mohamed Zied Ouertani, Khadidja Grebici, Lilia Gzara, Eric Blanco, Dominique Rieu. DEPNET:
A Methodology for Identifying and Qualifying Dependencies Between Engineering Data. The 17th
CIRP International Design Seminar, Mar 2007, Berlin, Germany. 10 p. �hal-00122474�

https://hal.science/hal-00122474
https://hal.archives-ouvertes.fr

DEPNET: A Methodology for Identifying and
Qualifying Dependencies Between Engineering
Data

M. Z. Ouertani 1, #, K. Grebici 2,3, L. Gzara 1, E. Blanco 2, D. Rieu 3

1 CRAN-Nancy University, BP239, Vandœuvre-lès-Nancy 54506, France;
2 GILCO-INPGrenoble, 46 Avenue Félix Viallet, 38031, Grenoble, France;
3 LSR-SIGMA- IMAG, 2 Place Doyen Gosse-38031-Grenoble , France.

Abstract

Collaborative design is a collection of the co-operated efforts undertaken
by a team of designers. Due to multi-actors interaction, conflicts can
emerge from disagreements between designers about proposed designs.
Therefore, a critical element of collaborative design would be conflict
resolution. In this paper, the DEPNET methodology is introduced to
support conflict management. This methodology is based on a Unified
Modelling Language (UML) traceability model to extract the data
dependencies network. This will allow identifying the conflict resolution
team as well as evaluating the impact of a selected solution. A case study
within an industrial partner is described to illustrate this methodology.

Keywords

Conflict Management, Data Dependencies Network, Case Study.

Introduction

Due to multi-actors interaction in collaborative product design, conflicts
can emerge from disagreements between designers about proposed designs
[5]. Thus, a critical element of collaborative design would be the conflict
management; which could be perceived as the succession of mainly five

phases [9]: (1) Conflict detection, (2) Identification of the conflict
resolution team, (3) Negotiation management, (4) Solution generation, and
(5) Solution impact assessment.

In this paper, the main objective is to come up with methodological
elements to allow the team identification and the assessment of the
solution impact on product and process organisation.

The identification of negotiation team constitutes a pre-requisite for
conflict resolution. Indeed, conflict resolution cannot be achieved by one
single actor; it requires the gathering of different expertise areas to avoid
unnecessary iteration. In order to provide a solution to the detected
conflict, design actors have to collaborate and negotiate forming this way
the negotiation team. It is then important to identify the right actors to
resolve a conflict, else new conflicts could occur.

Once a solution is generated, the latter leads often to modifications on a
subset of the already defined product parts as well as on the process
organisation. Indeed, the negotiation phase leads to a solution which often
implies changing one or more input data of the activity where the conflict
has emerged, and thus, generating a cascade of modifications on the
already produced data. These modifications require a re-execution of a set
of design activities necessary to achieve changes, and also an adjustment
to the preliminary project organisation.

Therefore, negotiators identification and impact assessment are highly
dependent on handled data during the design progress. This supposes
knowing the dependency links between the conflict source data and the
data previously produced. Consequently, solving these two phases mean:
• Identifying the dependencies network of the data handled during the

design progress in order to define the negotiation team.
• Qualifying the data dependency links in order to assess the impact of the

selected solution.
The remaining part of this paper is organised as follows. In section 2,

the data dependencies network components are described. This network is
composed of nodes and arcs representing respectively the handled data
during the design process and the dependency links existing between them
as well. Section 3 presents the DEPNET (product Data dEPendencies
NETwork identification and qualification) methodology to identify this
network. This methodology is based on a UML traceability model to track
the design progress; allowing this way to extract the data dependencies
network. Section 4 describes a case study to illustrate our approach.
Finally, section 5 concludes with some perspectives.

Data Dependencies Network

Network Nodes: Handled Data

Design work returns with a succession of tasks to define a new product
through the use and the generation of various product data. The handled
data can be of several types: structural, functional and geometrical, etc.
They correspond to the various descriptions of the product, elaborated by
designers during the development process, in terms of geometrical entities,
functions, bills of materials, CAD drawing, simulations, etc.

Depending on the margin left to the designer to elaborate data, on the
values of data properties and on the context in which it is committed,
product data can evolve through different states. Grebici et al. [3] identify
four data states: draft, exhibit, enable and deliverable, according to the
workspace where they are handled: private, proximity, project and public
workspaces. These concepts are summarised in the following:
• Draft is a piece of data that one has to apply the modalities of creation

and validation of hypothesis or solutions to a project or a design
problem. They are defined by a design actor individually.

• Exhibit is a piece of data that one applies a persuasion modality in
accordance with what is represented in either for convincing about the
existence of a problem or for showing a solution and allowing a
common construction and the point of view exchanged.

• Enabled traces are data the designer accepts to diffuse to others, after his
agreement with a collective prescription to which he takes part. It is
non-officially validated data but sufficiently convincing to be published.

• Deliverable are data that transmit a strong regulation. They have been
formally verified and validated (by hierarchy). They are those
contractual supports to being communicated to the customer.

Network Arcs: Dependency Links

According to Kusiak [7], a dependency between variables is the effect of
change in a value of one variable on another variable. Whereas, for Wang
[10], two components are said to have dependency relation if any of the
two can not be completed without the other. These definitions reveal that
two kinds of dependencies may exist between two product data:
dependency at creation and dependency at modification. Both of these
dependencies kinds will allow us to qualify a dependency link.

Dependency at creation

Two data are said “dependent at creation” if the creation of one of them
depends on the creation of the second one – this corresponds to the
dependency definition in [10]. Some research works have attempted to
define attributes to express this link, such as: the relevance, the usage and
the completeness [2]. We are particularly interested in the completeness
attributes which draw the actual data variation interval. The design actor
should express how should be the variation interval of the consumed data.
Higher is the completeness attribute value, smaller would be the input data
interval variation. The completeness attribute is then considered as the “at
creation dependency” measure. The completeness attribute values are:
• 0 Weak: the input data could be given below a certain maximum value
• 1 Not Vital: the input data should be given within a certain value range
• 2 Vital: the input data should be given with the smallest value range
• 3 Extremely Vital: the input data should be precisely given

Dependency at change:

Two data are said “dependent at modification” if the change of one of
them implies the modification of the second one – this corresponds to the
dependency definition in [7]. Attributes such as Level Number, Importance
Ratings, and Probability of Repetition [1] were proposed to define this
dependency link. We focused on the probability of repetition attribute
since it constitutes the hardest to obtain input for simulating an iterative
development process. The Probability of Repetition reflects the probability
of one element causing rework in another. Krishnan et al. [6] defines the
dependency at change measure as the multiplication of both attributes:
Variability and Sensitivity.

Variability is the likelihood that the output data provided by one task
would change after being initially released. The variability measurement
scale is:
• 0 Null: the output data don’t vary
• 1 Low: the output data varies but few
• 2 Moderate: the output data is instable
• 3 High: the output data is very instable

Sensitivity is the degree to which work is changed as the result of
absorbing transferred product data. The sensitivity measurement scale is:
• 0 Null: output sensitivity is null to most input changes
• 1 Minor: output sensitivity is low to most input changes
• 2 Moderate: output sensitivity is medium to most input changes
• 3 Major: output sensitivity is high to most input changes.

Dependency degree

In order to qualify the dependency link between two data, the
dependency at creation and the dependency at change measures are
aggregated to one criterion to express the dependency degree between two
data. Therefore, the attributes completeness, variability and sensitivity are
aggregated to measure the dependency degree (cf. Eq.1). As they are
complementary attribute, a multiplicative utility function is utilised in the
aggregation of the variability and sensitivity attributes (V*S). When the
variability value is “0” and the completeness value is different from “0”,
the dependency degree value must be different of “0”, since that a not null
completeness implies a dependency at creation.

Dependency Degree = Completeness * (1 + (Variability * Sensitivity)) (1)

Accordingly, the resultant range value of the dependency degree is an
integer between 0 and 30, whereas {0, 1, 2, 3 and 4} denotes a weak
dependency and a low risk of rework, and {15, 20, 21 and 30} denotes a
very high dependency and a high risk of rework. The values {5, 6, 7, and
8} and {9, 10, 12 and 14} describe respectively a moderate and a high
dependency and risk of rework.

DEPNET to Build up the Data Dependencies Network

The objective of the DEPNET methodology is to come up with
methodological elements that allow the identification of data dependencies
and then their qualification. In order to do so, the first step is to trace the
design process progress by storing it in a database system. Then, a set of
queries are applied on the obtained data to extract the network.

Traceability Model

Traceability in product development is defined by Hamilton and Beeby
[4] as the ability to discover the design history of every feature of a
product. Traceability dimensions can be described by answering the basic
questions adopted from the Zachman framework [11]:

What are the traceable items: refers to the design objects, requirements,
design decisions, etc. which will allow building up the data dependencies
network. As design process deals mainly with consuming, exchanging,
communicating and producing product data, the traceable items to
represent by the data dependencies network are the handled product data.

Where the traceable items are: refers to the design actions handling the
product data during the design process. Two management levels of the
design process exist, the prescribed one and the emerging one. At the
prescribed level, the process is composed of phases which are composed of
planned activities. The emergent level corresponds to the non planned
activities occurring during the design progress.

Who are the resources playing different roles in the creation,
modification and exchange of the product data.

Why – How product data are created, modified and/or evolved the way
it is; this corresponds to the design rationale behind the design actions.

When are the product data being created, modified and/or evolved; this
corresponds to the starting and finishing date of the design actions (phase,
planned activities and/or non planned activities).

Fig. 1. UML traceability model to track data dependencies during design progress

To allow tracking the design progress in a database system, the various
constructs discussed above are formalized in the UML model Fig. 1.

From Traceability Model to Data Dependencies Network

Based on the model presented in Fig. 1, a traceability tool was defined.
This tool is a kind of an a posteriori workflow tool which allows declaring
the design ongoing. This tool allows each actor involved in the design
process to declare, when achieving his design action: the phase, planned
activity or non planned activity he is executing; the objective if his design
action; the input and the output data used and generated with the

associated sensitivity, variability and completeness measures, as well as
the maturity attributes (for enabled or deliverable maturities); and, the
justification of the choices made during the design action.

These declarations must be done by all the involved actors during each
one of their design actions. Once the design process ongoing is declared,
the captured constructs are stored in a database whose tables correspond to
the various classes of the traceability model described above. Indeed, each
process element declared by actors corresponds to an instantiation of one
of the database tables. Then, a set of queries can be applied to the stored
data in order to collect the dependencies of the conflict source data. These
queries are applied as many times as it is necessary in order to identify the
whole conflict dependant data. Once the dependency network is extracted,
it is possible to identify the negotiation team and the design activities to be
re-executed. The data on which depends the piece of data source of
conflict are identified through the network backward coverage; the piece
of data source of conflict is the starting point. Then, a set of queries are
applied in order to identify the actors responsible of theses data realisation.
The formers (i.e. these actors) will then be part of the negotiation team that
will resolve the conflict. We should note that the negotiation team could be
dynamic during the conflict resolution process. Indeed, as the conflict
resolution process goes on, new problems/conflicts may be detected. It is
then necessary to invite the most qualified actors to solve these. As a
result, the dependencies network could be used several times in the
conflict resolution and the negotiation team composition could vary over
time. Once a solution to the conflict is selected, the impacted data are
identified through the data dependency network (i.e. a forward cover of the
network starting from the data to which leads the selected solution).

Case Study: Turbocharger Design Process

The case study described in this section concerns the design process of a
turbocharger within our industrial partner. The mechanical concept of a
turbocharger is based on three main parts. A Turbine Wheel which is
driven by the exhaust gas from a pump to spin the second main part, an
Impeller – i.e. a Compressor Wheel – whose function is to force more air
into the pump's intake, or air supply. The third basic part is a Center Hub
Rotating Assembly (CHRA) which contains bearing, oil circuit, cooling,
and a shaft that directly connects the turbine and impeller. At the
beginning of the turbocharger design process, the concerned actors have at
their disposal a set of specification as well as of requirements to respect.

According to these specifications, the impeller designer – i.e.
compressor wheel process design responsible – starts his planned activity
“to define the impeller part”. The latter has to define the impeller attributes
composed of wheel cast-material, expected compressor inlet/outlet
temperature etc. Once these attributes completed, the impeller designer
define the exducer and inducer diameters of the compressor wheel as well
as the 3D CAD drawing. The last task of the impeller designer is to define
the impeller housing and how should this part be connected to the engine.
In order to do it, the impeller designer calculates the impeller attributes
Trim and A/R1. These attributes make the designer able to finish the
impeller 3D CAD drawing.

Based on customer data, turbocharger specifications and impeller
defined attributes, the turbine designer – i.e. turbine wheel process design
responsible – concurrently starts his planned activity “to define the turbine
wheel”. The turbine designer defines first a set of turbine attributes to
reach the turbocharger performance. These attributes are composed of the
wheel, nozzle ring and insert ring material, the inlet/outlet turbine pressure.
Once these attributes defined, the turbine designer starts defining the wheel
dimensions as well as the 3D CAD drawing of the turbine wheel. The
wheel dimensions consist of calculating the exducer and inducer
diameters. Then, the designer finishes his part design by defining the
turbine housing by calculating the turbine attributes Trim and A/R.

Concurrently to the impeller and turbine parts definition activities, the
CHRA designers specify their parts; based on the impeller and turbine
defined parts and the turbocharger specifications. The CHRA designers
have to define the bearing system (frame size, diameter, etc.), oil circuit
(filtration, seals, etc.), shaft, etc. In order to do so, the designers have to
exchange preliminary information making possible the process progress.
Not only must the components within the turbocharger itself be precisely
coordinated, but the turbocharger and the engine it services must also be
exactly matched. If they're not, engine inefficiency and even damage can
be the results. Thus, it's important that the concerned actors collaborate
closely by coordinating their activities as well as the data exchange.
Indeed, the different parts are highly dependent and modifying one of them
impacts the others. Figure 2 recapitulates the precedence dependencies
between handled data – an arrow defines the direction of a dependency.

Suppose that the turbine designer detect a conflict when defining the
turbine 3D CAD drawing. In order to resolve this conflict, the negotiation
team is formed. The negotiation members are those they participated in the
design process leading to the turbine 3D CAD drawing. Hence, the team

1 A/R is the inlet cross-sectional area divided by the radius from the turbo centerline to the centroid.

members are: the turbine designer, the impeller designer, the innovation
team, the customer, the project manager etc. Once this team resolves the
conflict, the modification impact is propagated according to the data
dependencies network. Starting from the data to be modified the impact is
propagated on the whole data dependencies network.

Fig. 2. Partial view of the data dependencies links during the turbocharger design.

Conclusions

In this paper, the DEPNET methodology has been introduced to support
conflict management; in particular negotiation team formation and impact
propagation on product data and process organisation. The proposed
methodology is based on a process traceability method support to building
up the data dependencies network composed of nodes i.e. product data and
arcs i.e. dependency links. A tool is developed in order to implement this
methodology and an illustration is done with a simplified case study [8].

However, further thoughts remain to be carried out for the process re-
organisation problematic. In fact, the DEPNET methodology presents a
support for conflict management. Based on data dependencies network,
designers are able to identify negotiators and to propagate modifications
on previously defined product data. These modifications often require a re-
execution of activities producing data to be modified. In order to do so, it
is necessary, first to identify the projects to reorganise, since a data can be
used in several concurrent processes; and next, to define the needs to these

processes and the objectives to achieve with them. The third phase would
be to model and to analyse these processes. A description of the different
aspects of the processes is then to be given. The execution and the
coordination of the activities, the exchanged data and the allocated
resources are to be analysed. Finally, based on the result of the modelling
and the analysis phases, the process can be properly redesigned. Strategies
to manage the overlapping of coupled product development activities are
to be proposed to answer questions such as: when should downstream
activity act on upstream data? How should the activities be overlapped
when downstream activity cannot work on preliminary data?

References

1. Browning TR, Eppinger SD (2002) Modelling Impacts of Process Architecture
on Cost and Schedule Risk in Product Development. IEEE Transactions on
Engineering Management, Vol. 49(4), 428-442.

2. Culley SJ, Davies S, Hicks BJ, McMahon CA (2005) An assessment of quality
measures for engineering information sources. 15th ICED Melbourne,Australia.

3. Grebici K, Blanco E, Rieu D (2005) Toward Non Mature Information
Management in Collaborative Design Processes. 15th ICED. Melbourne,
Australia.

4. Hamilton VL, Beeby ML (1991) Issues of Traceability in Integrating Tools.
IEE Colloquium Tools and Techniques for Maintaining Traceability During
Design. London, UK.

5. Klein M (1995) Conflict Management as Part of an Integrated Exception
Handling Approach. AI in Engineering Design Analysis and Manufacturing,
Vol. 9, 259-267.

6. Krishnan V, Eppinger SD, Whitney DE (1997) A Model-Based Framework for
Overlapping Product Development Activities. Management Science, Vol.
43(4), 437-451.

7. Kusiak A, Wang J (1995) Dependency analysis in constraint negotiation. IEEE
Transactions on Systems, Man, and Cybernetics, Vol. 25, 1301- 1313.

8. Ouertani MZ, Gzara L (Submitted) Tracking Product Information
Dependencies in Collaborative Design for Conflict and Change Management,
Computer Aided Design Journal.

9. Ouertani MZ, Gzara-Yesilbas L, Lombard M, Ris G (2006) Managing Data
Dependencies to Support Conflict Management. Proceedings of 16th CIRP
International Design Seminar, Kananaskis, Alberta, Canada, pp 342-352.

10. Wang KL, Jin Y (2000) Managing dependencies for collaborative design. The
ASME DETC/CIE conference. Baltimore, MA.

11. Zachman JA (1987) A Framework for Information Systems Architecture. IBM
Systems Journal, Vol. 26(3), 276-292.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

