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Abstract

Using measure-capacity inequalities we study new functional inequalities, namely Lq-
Poincaré inequalities

Varµ(f q)1/q ≤ CP

∫

|∇f |2 dµ

and Lq-logarithmic Sobolev inequalities

Entµ

(

f2q
)1/q ≤ CLS

∫

|∇f |2 dµ .

As a consequence, we establish the asymptotic behavior of the solutions to the so-called
weighted porous media equation

∂u

∂t
= ∆um −∇ψ · ∇um

for m ≥ 1, in terms of L2-norms and entropies.
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1 Introduction

In this paper we analyze decay rates of the entropies associated to nonlinear diffusion equations
using inequalities relating entropy and entropy production functionals. Consider for instance
the Ornstein-Uhlenbeck semi-group on R

d, which is governed by

∂u

∂t
= ∆u− x · ∇u , t > 0 , x ∈ R

d ,

with an initial condition u0 ∈ C2
(

R
d
)

∩ L1
+(Rd, dγ). Here dγ = γ dx is the Gaussian measure

on R
d, γ(x) := (2π)−d/2 exp(−|x|2/2). Two entropies are widely used, namely

Varγ(u) :=

∫
(

u−
∫

u dγ

)2

dγ and Entγ(u) :=

∫

u log

(

u
∫

u dγ

)

dγ .

If u is a smooth solution of the Ornstein-Uhlenbeck equation, integrations by parts show that

d

dt
Varγ(u) = − 2

∫

|∇u |2 dγ and
d

dt
Entγ(u) = − 4

∫

|∇
√
u |2 dγ .



By the Poincaré inequality in the first case,

∀ f ∈ C1(Rd) , Varγ(f) 6

∫

|∇f |2 dγ ,

and Gross’ logarithmic Sobolev inequality, see [Gro75], in the second case,

∀ f ∈ C1(Rd) , Entγ
(

f2
)

6 2

∫

|∇f |2 dγ ,

it follows from Gronwall’s lemma that for any t > 0,

Varγ(u) 6 e−2tVarγ(u0) and Entγ(u) 6 e−2t Entγ(u0)

for all smooth initial conditions u0 in L2
γ(R

d) in the first case, or such that Entγ(u0) is finite
in the second case. With minor changes, the method can be extended to the semi-group
generated by

∂u

∂t
= ∆u−∇ψ · ∇u , t > 0 , x ∈ R

d ,

if ψ is a smooth function such that Z :=
∫

e−ψ dx is finite and the probability measure
dµψ = Z−1

ψ e−ψ dx satisfies a Poincaré inequality or a logarithmic Sobolev inequality. See for

example [ABC+00] for a review on this inequalities and there applications.

A natural question is how to extend the variance or the entropy convergence to nonlinear
semi-groups. Let m > 1, and consider the semi-group generated by the weighted porous media
equation

∂u

∂t
= ∆um −∇ψ · ∇um , t > 0 , x ∈ R

d ,

with a non-negative initial condition u(0, x) = u0(x). This equation, in short (WPME) is a
simple extension of the standard porous media equation, which corresponds to ψ = 0. We shall
refer to [Váz92] for an introduction on this topic. A major difference is that under appropriate
conditions on ψ the solution of (WPME) converges to its mean. In other words, the nonlinear
semi-group converges to the limit measure µψ. The variance of a solution solution of (WPME)
now obeys to

d

dt
Varµψ(u) = − 8

(m+ 1)2

∫

|∇um+1
2 |2 dµψ .

Classical Poincaré and logarithmic Sobolev inequalities are of no more use and have to be
replaced by adapted functional inequalities, which are the purpose of this paper. This paper
extends some earlier results on solutions to the porous media equation on the torus S1 ≡ [0, 1)
and related functional inequalities, see [CDGJ06]. As for the functional inequalities, we will
work in a more general framework involving two Borel probability measures µ and ν on a
Riemannian manifold (M,g), which are not necessarily absolutely continuous with respect
to the volume measure. To consider quantities like

∫

f q dµ and
∫

|∇f |2 dν, it is therefore
natural to work in the space of functions f ∈ C1(M), although slightly more general function
spaces can be introduced by density with respect to appropriate norms. If the measures were
absolutely continuous with respect to the volume measure, we could take functions which are
only locally Lipschitz continuous as in [BCR05].

In Section 2 we will define functional inequalities that we shall call Lq-Poincaré and Lq-
logarithmic Sobolev inequalities. Equivalence of these inequalities with capacity-measure cri-
teria will be established, based on Maz’ja’s theory. Links with more classical inequalities such
as weak Poincaré or weak logarithmic Sobolev inequalities are then studied in Section 3. Ex-
plicit criteria can be deduced from earlier works, mainly [BR03, BCR05, CGG05]. In Section 4
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we will give applications to the weighted porous media equation. Using the Lq-Poincaré and
Lq-logarithmic Sobolev inequalities we describe the asymptotic behavior of the solutions in
terms of variance or entropy. The proof of two variants of results of [BCR05] is given in an
appendix, see Section 5.

Throughout this paper, we intend to work under minimal assumptions and do not require
that the measures showing up on both sides of the inequalities are the same or that they are
absolutely continuous with respect to the volume measure. However, when only one measure
is specified, one has to understand that the measures µ and ν are the same on both sides of
the inequalities.

2 Two Lq-functional inequalities

2.1 Lq-Poincaré inequalities

Definition 2.1 Let µ and ν be respectively a probability measure and a positive measure
on M . Assume that q ∈ (0, 1]. We shall say that (µ, ν) satisfies a Lq-Poincaré inequality with
constant CP if for all non-negative functions f ∈ C1(M) one has

[

Varµ(f
q)
]1/q

:=

[

∫

f2q dµ−
(
∫

f q dµ

)2
]1/q

6 CP

∫

|∇f |2 dν . (1)

Note that if q > 1, Inequality (1) is not true if µ is not a Dirac measure. Consider indeed
f = 1 + ǫ g with ǫ→ 0 and g bounded. By applying Inequality (1) we get

[

q2ǫ2
(

Varµ
(

g2
)

+ o(1)
)

]1/q
6 ǫ2 CP

∫

|∇g|2 dν + o(ǫ2) .

If g is such that Varµ
(

g2
)

and
∫

|∇g|2 dν are both positive and finite, we obtain a contradiction
by letting ǫ→ 0 if q > 1.

Proposition 2.2 For any bounded positive function f , the function q 7→ Varµ(f
q)1/q is in-

creasing with respect to q ∈ (0, 1]. As a consequence, if the Lq1-Poincaré inequality holds, then
the Lq2-Poincaré inequality also holds for any 0 < q2 6 q1 6 1.

We shall say that Lq-Poincaré inequalities form a hierarchy of inequalities. The classical
Poincaré inequality corresponding to q = 1 implies all Lq-Poincaré inequalities for q ∈ (0, 1).

Proof ⊳ Without loss of generality, we may assume that f is positive. For any q ∈ (0, 1),

let F (q) := Varµ(f
q)1/q. We have

F ′(q)

F (q)
=

d

dq
logF (q) =

1

q

{

− logF (q) +
µ(f2q log f2) − µ(f q)µ(f q log f2)

F (q)q

}

.

Let h(t) := µ(f tq log f2)/µ(f tq), t ∈ (1, 2) and observe that by the Cauchy-Schwarz inequality,
2
q [µ(f tq)]2 h′(t) = µ(f tq (log f2)2)µ(f tq) − [µ(f tq log f2)]2 > 0. This proves that

h(2) =
µ(f2q log f2)

µ(f2q)
>
µ(f q log f2)

µ(f q)
= h(1) .

Hence we arrive at

qF ′(q)

F (q)
≥ − logF (q) +

(

1 − [µ(fq)]2

µ(f2q)

)

µ(f2q log f2)

F (q)q
= − logF (q) +

µ(f2q log f2q)

q µ(f2q)

≥ − logF (q) + log
(

µ(f2q)
)1/q ≥ 0

3



where the last two inequalities hold by Jensen’s inequality and by monotonicity of the loga-
rithm. ⊲

We will now give a characterization of the Lq-Poincaré inequality in terms of the capacity
measure criterion. Such a criterion has recently been applied in [BCR06, Che05, CGG05] to
give necessary and sufficient conditions for the usual, weak or super Poincaré inequality, and
the usual or weak logarithmic Sobolev inequality or the F -Sobolev inequality. The capacity
measure criterion allows to compare all these inequalities and can be characterized in terms
of Hardy’s inequality, in the one-dimensional case.

Let µ and ν be respectively a probability measure and a positive measure on M . Given
measurable sets A and Ω such that A ⊂ Ω ⊂M , the capacity Capν(A,Ω) is defined as

Capν(A,Ω) := inf

{∫

|∇f |2 dν : f ∈ C1(M) , IA 6 f 6 IΩ

}

.

If the set
{

f ∈ C1(M) : IA 6 f 6 IΩ

}

is empty then, by convention, we set Capν(A,Ω) :=
+∞. This the case of Capν(A,A) = +∞ for any bounded measurable set A and any ν with
a locally positive density.

Let q ∈ (0, 1) and define

βP := sup

{

∑

k∈Z

[

µ(Ωk)
]1/(1−q)

[

Capν(Ωk,Ωk+1)
]q/(1−q)

}(1−q)/q

where the supremum is taken over all Ω ⊂M with µ(Ω) ≤ 1/2 and all sequences (Ωk)k∈Z
such

that for all k ∈ Z, Ωk ⊂ Ωk+1 ⊂ Ω.

Theorem 2.3 Let µ and ν be respectively a probability measure and a positive measure on M .

(i) If q ∈ [1/2, 1) and (µ, ν) satisfies a Lq-Poincaré inequality with a constant CP, then
βP 6 21/q CP.

(ii) If q ∈ (0, 1) and βP < +∞, then (µ, ν) satisfies a Lq-Poincaré inequality with constant
CP 6 κP βP, for some constant κP which depends only on q.

Proof ⊳ The proof follows the main lines of Theorem 2.3.5 of [Maz85].

Proof of (i). Consider Ω ⊂M such that µ(Ω) ≤ 1/2 and let (Ωk)k∈Z
be a sequence such that

for all k ∈ Z, Ωk ⊂ Ωk+1 ⊂ Ω. Fix N ∈ N
∗ and for k ∈ {−N, . . . N}, let fk ∈ C1(M) be such

that IΩk 6 fk 6 IΩk+1
. If no such fk exists, that is if Capν(Ωk,Ωk+1) = +∞, then we discard

Ωk+1 from the sequence and reindex it. Finally, let (τk)k∈{−N,...N} be a non-increasing family
of non-negative reals numbers to be defined later. A function f on M is defined as follows:

(1) f = τ−N on Ω−N ,

(2) f = (τk − τk+1) fk + τk+1 on Ωk+1 \ Ωk for all k ∈ {−N,N − 1},

(3) f = τN fN+1 on ΩN+1 \ ΩN and f = 0 on Ω \ ΩN+1.

Using the fact that f = 0 on Ωc, it follows from the Cauchy-Schwarz inequality that

(
∫

f q dµ

)2

6 µ(Ω)

∫

f2q dµ ,
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from which we get

Varµ(f
q) >

1

2

∫

f2q dµ .

By the co-area formula, we obtain

∫

f2q dµ =

∫ ∞

0
µ({f > t}) d(t2q) >

N−1
∑

k=−N

∫ τk

τk+1

µ({f > τk}) d(t2q) =

N−1
∑

k=−N

µ({f > τk})
(

τ2q
k − τ2q

k+1

)

.

From 2q > 1, we get
(

τ2q
k − τ2q

k+1

)

> (τk − τk+1)
2q, and

Varµ(f
q) >

1

2

N−1
∑

k=−N

µ(Ωk) (τk − τk+1)
2q .

Using the Lq-Poincaré inequality we get

(

1

2

N−1
∑

k=−N

µ(Ωk) (τk − τk+1)
2q

)1/q

6 CP

∫

|∇f |2 dν .

On the other hand, with the convention τN+1 = 0, we have

∫

|∇f |2 dν =

N
∑

k=−N

(τk − τk+1)
2
∫

Ωk+1\Ωk

|∇fk|2 dν .

We may now take the infimum over all functions fk and obtain

(

1

2

N−1
∑

k=−N

µ(Ωk) (τk − τk+1)
2q

)1/q

6 CP

N
∑

k=−N

(τk − τk+1)
2 Capν(Ωk,Ωk+1) .

Next consider an appropriate choice of (τk)
N
k=−N : for k ∈ {−N, . . . N}, let

τk =

N
∑

j=k

(

µ(Ωj)

Capν(Ωj ,Ωj+1)

)
1

2 (1−q)

.

We observe that τk − τk+1 =
(

µ(Ωk)
Capν(Ωk,Ωk+1)

)1/(2(1−q))
and

{

N−1
∑

k=−N

µ(Ωk)
1/(1−q)

Capν(Ωk,Ωk+1)q/(1−q)

}(1−q)/q

6 21/q CP (1 + RN )

with RN := µ(ΩN )1/(1−q)

Capν(ΩN ,ΩN+1)q/(1−q)

{

∑N−1
k=−N

µ(Ωk)
1/(1−q)

Capν(Ωk,Ωk+1)q/(1−q)

}−1
. By taking the limit as N

goes to infinity, we obtain βP 6 21/q CP.

Proof of (ii). Let f be a smooth non-negative function on M and take q ∈ (0, 1]. For all a > 0,

Varµ(f
q) 6

∫

(f q − aq)2 dµ 6

∫

|f − a|2q dµ .
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With a := m(f), a median of f with respect to µ, define F+ = (f − a)+ and F− = (f − a)− =
F+ − (f − a), so that

Varµ(f
q) 6

∫

(f q − aq)2 dµ 6

∫

F 2q
+ dµ+

∫

F 2q
− dµ .

We recall that m = m(f) is a median of f with respect to the measure µ if and only if
µ({f > m}) > 1/2 and µ({f 6 m}) > 1/2. The computation of the term

∫

F 2q
− dµ is exactly

the same as the one of
∫

F 2q
+ dµ, so we shall only detail one of them. Let us fix ρ ∈ (0, 1),

note Ωk :=
{

F+ > ρk
}

for any k ∈ Z, and use again the co-area formula:

∫

F 2q
+ dµ =

∫ +∞

0
µ({F+ > t}) d(t2q) =

∑

k∈Z

∫ ρk

ρk+1

µ({F+ > t}) d(t2q) 6
1 − ρ2q

ρ2q

∑

k∈Z

µ(Ωk) ρ
2kq .

By Hölder’s inequality with parameters (1/(1 − q), 1/q) one gets

∫

F 2q
+ dµ 6

1 − ρ2q

ρ2q

(

∑

k∈Z

µ(Ωk)
1/(1−q)

Capν(Ωk,Ωk+1)q/(1−q)

)1−q(
∑

k∈Z

ρ2k Capν(Ωk,Ωk+1)

)q

6
1 − ρ2q

ρ2q
βqP

(

∑

k∈Z

ρ2kCapν(Ωk,Ωk+1)

)q

.

For k ∈ Z, define gk := min
{

1,
(F+−ρk+1

ρk−ρk+1

)

+

}

. Then we have IΩk 6 gk 6 IΩk+1
,

Capν(Ωk,Ωk+1) 6

∫

Ωk+1\Ωk

|∇gk|2 dν =
1

ρ2k(1 − ρ)2

∫

Ωk+1\Ωk

|∇F+|2 dν .

Hence
∫

F 2q
+ dµ 6

1 − ρ2q

ρ2q (1 − ρ)2q
βqP

(∫

|∇F+|2 dν
)q

.

The same inequality holds for F−:

∫

F 2q
− dµ 6

1 − ρ2q

ρ2q (1 − ρ)2q
βqP

(∫

|∇F−|2 dν
)q

.

Using the inequality aq + bq 6 21−q(a+ b)q for any a, b > 0, ones gets

(Varµ(f
q))1/q 6 κP βP

∫

|∇f |2 dν

with κP := 2(1−q)/q minρ∈(0,1)
(1−ρ2q)

1/q

ρ2 (1−ρ)2 . ⊲

2.2 Lq-logarithmic Sobolev inequalities

Definition 2.4 Let µ and ν be respectively a probability measure and a positive measure
on M and assume that q ∈ (0, 1]. We shall say that (µ, ν) satisfies a Lq-logarithmic Sobolev
inequality with constant CLS if and only if, for any non-negative function f ∈ C1(M),

Entµ
(

f2q
)1/q

:=

(∫

f2q log f2q

∫

f2q dµ
dµ

)1/q

6 CLS

∫

|∇f |2 dν .

6



It is well known that Entµ
(

f2
)

> Varµ(f) for any non-negative function f , for any probability
measure µ. Hence, for any q ∈ (0, 1], any Lq-logarithmic Sobolev inequality results in a Lq-
Poincaré inequality with corresponding measures.

Let q ∈ (0, 1) and define

βLS = sup











∑

k∈Z

[

µ(Ωk) log
(

1 + e2

µ(Ωk)

)]1/(1−q)

[Capν(Ωk,Ωk+1)]
q/(1−q)











(1−q)/q

where the supremum is taken over all Ω ⊂M with µ(Ω) ≤ 1/2 and all sequence (Ωk)k∈Z
such

that, for all k ∈ Z, Ωk ⊂ Ωk+1 ⊂ Ω.

Theorem 2.5 Let µ and ν be respectively a probability measure and a positive measure on M .
If q ∈ (0, 1) and βLS < +∞, then (µ, ν) satisfies a Lq-logarithmic Sobolev inequality with
constant CLS 6 κLS βLS, where κLS depends only on q.

This theorem is the counterpart for the Lq-logarithmic Sobolev inequality of Theorem 2.3, (ii).
As for Theorem 2.3, (i), related results will be stated in Corollary 3.8.

Proof ⊳ Let f be a smooth function on M , m = m(f) a median of f with respect to µ, and
Ω+ := {|f | > m}, Ω− := {|f | < m}. As in [BR03], we can write the dual formulation

Entµ
(

f2q
)

6 sup

{
∫

(|f |q −mq)2+ hdµ : h > 0 ,

∫

eh dµ 6 e2 + 1

}

+ sup

{∫

(|f |q −mq)2− hdµ : h > 0 ,

∫

eh dµ 6 e2 + 1

}

. (2)

Such an inequality follows from Rothaus’ estimate, [Rot85],

Entµ
(

g2
)

6 Entµ
(

(g − a)2
)

+ 2µ
(

(g − a)2
)

for any a ∈ R, and the fact that, according to Lemma 5 in [BR03],

Entµ
(

(g − a)2+
)

+ 2µ((g − a)2+) 6 sup

{
∫

(g − a)2+ hdµ : h > 0 ,

∫

eh dµ 6 e2 + 1

}

.

Estimates for the positive and the negative part are exactly the same, so we will give details
only for F+ := (|f |−m)+. Using the fact that (tq−1)2 < (t−1)2q for any t > 1, for q ∈ (0, 1),
we get

∫

(|f |q −mq)2+ hdµ 6

∫

F 2q
+ hdµ .

Let ρ ∈ (0, 1).

∫

F 2q
+ hdµ =

∫ +∞

0

∫

F+>t
hdµ d(t2q) =

∑

k∈Z

∫ ρk

ρk+1

∫

F+>t
hdµ d(t2q)

6
∑

k∈Z

(

ρ2qk − ρ2q(k+1)
)

∫

F+>ρk+1

hdµ =
1 − ρ2q

ρ2q

∑

k∈Z

ρ2qk

∫

F+>ρk
hdµ .

Using Lemma 6 of [BR03], which asserts that

∫

F+>ρk
hdµ 6 µ(Ωk) log

(

1 +
e2

µ(Ωk)

)

7



where Ωk :=
{

F+ > ρk
}

, we obtain

sup

{∫

F 2q
+ hdµ : h > 0 ,

∫

eh dµ 6 e2 + 1

}

6
1 − ρ2q

ρ2q

∑

k∈Z

ρ2qkµ(Ωk) log

(

1 +
e2

µ(Ωk)

)

.

By Hölder’s inequality, it follows that

Entµ

(

F 2q
+

)

6
1 − ρ2q

ρ2q

∑

k∈Z

ρ2qk µ(Ωk) log

(

1 +
e2

µ(Ωk)

)

6
1 − ρ2q

ρ2q







∑

k∈Z

[

µ(Ωk) log
(

1 + e2

µ(Ωk)

)]1/(1−q)

[Capν(Ωk,Ωk+1)]
q/(1−q)







1−q
(

∑

k∈Z

ρ2k Capν(Ωk,Ωk+1)

)q

6
1 − ρ2q

ρ2q
βqLS

(

∑

k∈Z

ρ2k Capν(Ωk,Ωk+1)

)q

6
1 − ρ2q

ρ2q
βqLS

(∫

|∇F+|2 dµ
)q

.

The same computation shows that

Entµ

(

F 2q
−

)

6
1 − ρ2q

ρ2q
βqLS

(
∫

|∇F−|2 dµ
)q

.

Summing both contributions in Inequality (2) completes the proof with

κLS = 2
1−q
q
(

1 − ρ2q
)1/q

ρ−2 .

⊲

3 Weak inequalities and explicit criteria

The goal of this section is to provide tractable criteria to establish Lq-Poincaré and the
Lq-logarithmic Sobolev inequalities. The strategy here is to adapt results which have been
obtained for weak Poincaré inequalities by Barthe, Cattiaux and Roberto in [BCR05]. Two
important results stated in this paper are extended to measures µ and ν which are not supposed
to be absolutely continuous with respect to the volume measure, and given with proofs in
Section 5.

3.1 Lq Poincaré and weak Poincaré inequalities

Even if the constants βP and βLS provide an estimate of the best constant of the Lq-Poincaré
and the Lq-logarithmic Sobolev inequalities, their expressions in terms of suprema taken over
infinite sequences of sets are a priori difficult to use. In this section, we look for simpler
criteria and establish upper and lower bounds on the constants.

The first idea is relate the Lq-Poincaré inequality and the weak Poincaré inequality introduced
by Röckner and the fourth author in [RW01]. Let us define the oscillation of a bounded
function f by Oscµ(f) := supessµf−infessµf . If µ is absolutely continuous with respect to the

volume measure and f is continuous, we can therefore define such a quantity as (supf̃ − inf f̃)
where f̃ is the restriction of f to the support of µ. Our definition slightly differs from the one
of [RW01], which is based on supessµ|f −

∫

f dµ|.
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Definition 3.1 Let µ and ν be respectively a probability measure and a positive measure on M .
We shall say that (µ, ν) satisfies a weak Poincaré inequality if there exists a non-negative non
increasing function on (0,+∞)∋s 7→ βWP(s) such that, for any bounded function f ∈ C1(M),

∀ s > 0 , Varµ(f) 6 βWP(s)

∫

|∇f |2 dν + s
[

Oscµ(f)
]2
.

Since Varµ(f) 6 µ((f−a)2) for all a ∈ R, and as a special case, for a = (supessµf+infessµf)/2,

Varµ(f) 6
[

Oscµ(f)
]2
/4, which means that we can assume that βWP(s) ≡ 0 for any s > 1/4.

Proposition 3.2 Let q ∈ [1/2, 1). If (µ, ν) satisfies the Lq-Poincaré inequality, then it also
satisfies a weak Poincaré inequality with βWP(s) = kβP s

1−1/q, k := (11 + 5
√

5)/2.

Proof ⊳ By Theorem 2.3, the constant βP is finite. Let A ⊂ Ω ⊂ M with µ(Ω) 6 1/2 and
consider the sequence: (Ωk)k∈Z

such that Ωk = A for all k 6 0 Ωk = Ω and for all k > 0.
Notice that Capν(Ωk,Ωk+1) = ∞ if Ωk = Ωk+1. By definition of βP we get

[µ(A)]1/q

βP
6 Capν(A,Ω) .

Using the method of Barthe, Cattiaux and Roberto in [BCR05], Theorem 2, one can then
prove that (µ, ν) satisfies a weak Poincaré inequality with constant βWP(s). See Theorem 5.3
for a precise statement and apply it with γ(s) = βP s

1−1/q. ⊲

Another criterion to prove Lq-Poincaré inequalities is based on Theorem 2.3.6 of [Maz85].

Theorem 3.3 ([Maz85]) Let q ∈ [1/2, 1). For all bounded open set Ω ⊂ M , if (Ωk)k∈Z
is

an increasing sequence of open sets such that Ωk ⊂ Ωk+1 ⊂ Ω, then

∑

k∈Z

µ(Ωk)
1/(1−q)

[Capν(Ωk,Ωk+1)]
q/(1−q)

6
1

1 − q

∫ µ(Ω)

0

(

t

Φ(t)

)q/(1−q)

dt ,

where Φ(t) := inf {Capν(A,Ω) : A ⊂ Ω , µ(A) > t}.
Notice that as a consequence, βP 6 (1 − q)−(1−q)/q ‖t/Φ(t)‖Lq/(1−q)(0,µ(Ω))

Corollary 3.4 Let q ∈ [1/2, 1) and assume that (µ, ν) satisfies a weak Poincaré inequality
with function βWP. Then (µ, ν) satisfies satisfies a Lq-Poincaré inequality with

βP 6 κP

(

4
1−q

)
1−q
q ‖βWP(·/4)‖

L
q

1−q (0,1/2)

where κP is defined in Theorem 2.3.

Proof ⊳ The method is again similar to the one of Theorem 2 in [BCR05]; see Theorem 5.3
in Section 5. If (µ, ν) satisfies a weak Poincaré inequality, then for all Ω ⊂M with µ(Ω) ≤ 1/2,
A ⊂ Ω,

µ(A)

4βWP(µ(A)/4)
6 Capν(A,Ω) .

Hence for t > 0, Φ(t) > t
4βWP(t/4) , and the result follows. ⊲

Proposition 3.2 and Corollary 3.4 can be summarized as follows. For any q ∈ [1/2, 1),

Lq-Poincaré =⇒
Weak Poincaré

with βWP(s) = C s
q−1
q

=⇒ Lq
′

-Poincaré
∀ q′ ∈ (0, q)

.

As we shall see in Section 3.5, weak Poincaré inequalities with βWP(s) = C s
q−1
q do not imply

Lq
′

-Poincaré inequalities with q′ = q.

9



3.2 Lq-Logarithmic Sobolev and weak logarithmic Sobolev inequalities

Lq-Poincaré have been established in terms of weak Poincaré inequalities in Section 3.1. Very
similar characterizations can be done for Lq-logarithmic Sobolev in terms of weak logarithmic
Sobolev inequalities. Recall first the definition of the weak logarithmic Sobolev inequality.

Definition 3.5 Let µ and ν be respectively a probability measure and a positive measure on M .
We sall say that (µ, ν) satisfies a weak logarithmic Sobolev inequality if there exists a positive
and non-increasing function hWLS on R

+ such that for any bounded function f ∈ C1(M),

∀ s > 0 , Entµ
(

f2
)

6 hWLS(s)

∫

|∇f |2 dν + s
[

Oscµ(f)
]2
.

A preliminary step amounts to state the analogue of Proposition 3.2.

Proposition 3.6 Let q ∈ [1/2, 1). If µ is absolutely continuous with respect to the volume
measure and (µ, ν) satisfies the Lq-logarithmic Sobolev inequality, then it also satisfies a weak
logarithmic Sobolev inequality with hWLS(s) = cq s

1−1/q for some positive constant cq.

Proof ⊳ By Legendre duality, for any non-negative function f ,
∫

f2q g dµ 6 Entµ
(

f2q
)

∀ g such that

∫

eg dµ 6 1 .

Let A ⊂ Ω ⊂ M with µ(Ω) 6 1 and assume that f ∈ C1(M) is such that IA 6 f 6 IΩ. Then
by the Lq-logarithmic Sobolev inequality for (µ, ν), we get

(∫

A
g dµ

)1/q

≤
(∫

f2q g dµ

)1/q

≤ βLS

∫

|∇f |2 dν .

Choose now g = −∞ on Ωc, g = 0 on Ω\A and g = log(1+1/(2µ(A)) on A so that
∫

egdµ ≤ 1.
Using IA ≤ f ≤ IΩ, a simple computation gives

Entµ
(

f2q
)1/q ≥

[

µ(A) log

(

1 +
1

2µ(A)

)]1/q

≥ c1/q
µ(A) log

(

1 + e2

µ(A)

)

[

µ(A) log
(

1 + e2

µ(A)

)]1−1/q

where c := log 2/ log(1 + 2e2). Now optimizing in f leads to

Capν(A,Ω) ≥ c1/q

βLS

µ(A) log
(

1 + e2

µ(A)

)

[

µ(A) log
(

1 + e2

µ(A)

)]1−1/q
,

which entails the desired weak logarithmic Sobolev inequality by [CGG05, Th. 2.2] ⊲

Let us study the reciprocal property.

Theorem 3.7 Let q ∈ [1/2, 1). For any Ω ⊂M , (Ωk)k∈Z
such that Ωk ⊂ Ωk+1 ⊂ Ω, one gets

∑

k∈Z

[

µ(Ωk) log
(

1 + e2

µ(Ωk)

)]1/(1−q)

[Capν(Ωk,Ωk+1)]
q/(1−q)

6
1

1 − q

∫ µ(Ω)

0

(

t

ψ(t)

)q/(1−q)

dt ,

where ψ(t) := inf
{

Capν(A,Ω) : A ⊂ Ω , µ(A) log
(

1 + e2

µ(A)

)

> t
}

.
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Proof ⊳ The proof is a direct adaptation of the proof of Theorem 3.3 (see pages 122 and
123 of [Maz85]). ⊲

As a consequence, we obtain the following characterization. Let c := log 2/(2 log(1 + 2e2)).

Corollary 3.8 Let q ∈ [1/2, 1). Assume that (µ, ν) satisfies a weak logarithmic Sobolev in-
equality with function hWLS. Then it satisfies a Lq-logarithmic Sobolev inequality if

∫ 1/2

0
hWLS(c t)q/(1−q) dt < +∞ .

In such a case, the optimal constant of the Lq-logarithmic Sobolev inequality is bounded by

κLS

(

4
1−q

∫ 1/2
0 hWLS(c t)q/(1−q) dt

)(1−q)/q
, where κLS is defined in Theorem 2.5.

Proof ⊳ By Theorem 2.2 in [CGG05] (also see Lemma 5.4), for all Ω ⊂M with µ(Ω) ≤ 1/2,
A ⊂ Ω,

µ(A)
2 log

(

1 + 1
2µ(A)

)

hWLS

[

µ(A)
2 log

(

1 + 1
2µ(A)

)] 6 Capν(A,Ω) ,

Picking c = log(2)/(2 log(1 + 2e2)), we thus get

c
µ(A) log

(

1 + e2

µ(A)

)

hWLS

[

c µ(A) log
(

1 + e2

µ(A)

)] 6 Capν(A,Ω) .

Theorem 3.7 then gives the result because ψ(t) ≥ c t /hWLS(c t). ⊲

As a consequence of Proposition 3.6 and Corollary 3.8, we have the following result.

Corollary 3.9 Let q ∈ [1/2, 1) and assume that (µ, ν) satisfies a Lq-logarithmic Sobolev
inequality. Then for all 0 < q′ < q, all Ω ⊂ M with µ(Ω) ≤ 1/2 and all sequence (Ωk)k∈Z

such that, for all k ∈ Z, Ωk ⊂ Ωk+1 ⊂ Ω, we have

βq
′

LS = sup











∑

k∈Z

[

µ(Ωk) log
(

1 + e2

µ(Ωk)

)]1/(1−q′)

[Capν(Ωk,Ωk+1)]
q′/(1−q′)











(1−q′)/q′

< +∞ .

This result completes that of Theorem 2.5. Unfortunately the equivalence is not proved for the
Lq-logarithmic Sobolev inequality. This however proves the counterpart of Proposition 2.2,
namely the hierarchy between Lq-logarithmic Sobolev inequalities. Summarizing the results
of this subsection, we have for any q ∈ [1/2, 1),

Lq-Logarithmic Sobolev =⇒
Weak logarithmic Sobolev

with hWLS(s) = C s
q−1
q

=⇒ Lq
′

-Logarithmic Sobolev
∀ q′ ∈ (0, q)

.

3.3 A Hardy condition on R

On R, to a probability measure µ and a positive measure ν with density ρν with respect to
Lebesgue’s measure, if mµ is a median of µ, we associate the functions

R(x) := µ([x,+∞)) , L(x) := µ((−∞, x]) , r(x) :=

∫ x

mµ

1

ρν
dx and ℓ(x) :=

∫ mµ

x

1

ρν
dx .
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Proposition 3.10 Let q ∈ [1/2, 1], and let µ and ν be respectively a probability measure and
a positive measure on R. With the above notations, (µ, ν) satisfies a Lq-Poincaré inequality if

∫ ∞

mµ

| r R |q/(1−q) dµ <∞ and

∫ mµ

−∞
| ℓ L |q/(1−q) dµ <∞ .

Analogoulsy, (µ, ν) satisfies a Lq-logarithmic Sobolev inequality if

∫ ∞

mµ

| r R logR |q/(1−q) dµ <∞ and

∫ mµ

−∞
| ℓ L logL |q/(1−q) dµ <∞ .

Proof ⊳ The proof of Theorem 3 in [BCR05] can then be adapted to the setting of
Proposition 3.10. It relies on weak Poincaré inequalities. Taking advantage of Varµ(f) 6

µ(|F−|2) + µ(|F+|2)) with F± := (f − f(mµ))±, we notice that the weak Poincaré inequality

Varµ(f) 6 k γ(s)

∫

|∇f |2 dν + s
[

Oscµ(f)
]2 ∀ s ∈ (0, 1/2)

holds if we are able to prove independently for g = F+ and g = F− that the inequality

µ(|g|2) 6 k γ(s)

∫

|∇g|2 dν + s
[

supessµg
]2 ∀ s ∈ (0, 1/2)

holds for some positive non increasing function γ on (0, 1) and for k := (11 + 5
√

5)/2. For
this purpose, we are going to rely on Lemma 5.2. If A and B are two measurable subsets of
M = (mµ,∞) such that A ⊂ B and µ(B) 6 1/2, then

Capν(A,B) > Capν
(

A, (mµ,∞)
)

= Capν
(

(a,∞), (mµ,∞)
)

=
1

r(a)

where a = inf A. By Lemma 5.2, it is therefore sufficient to prove that

1

r(a)
>

R(a)

γ(R(a))
∀ a > mµ .

With the change of variables t = R(a), a > mµ, this amounts to require that

γ(t) > t (r ◦R−1)(t) .

With no restriction, we can choose γ(t) := t (r ◦R)−1(t) for any t ∈ (0, 1/2).

By Corollaries 3.4 and 3.8, (µ, ν) satisfies a Lq-Poincaré inequality if βWP ∈ Lq/(1−q)(0, 1/2)
and a Lq-logarithmic inequality if hWLS ∈ Lq/(1−q)(0, 1/2). ⊲

3.4 Examples

Let us illustrate the above results on Lq-Poincaré and Lq-logarithmic Sobolev inequalities with
examples on M = R, in case of a single measure µ = ν. We start with some observations on
Lq-Poincaré inequalities.

(i) The classical Poincaré inequality implies a Lq-Poincaré inequality for all q ∈ [1/2, 1)
by Proposition 2.2. This gives an explicit estimate of the constant κp,q of Theorem 1
of [CDGJ06] when p q = 2, that is κp,q > 2p+2 π2. Recall indeed that 1/(4π2) is the
Poincaré constant of the uniform measure on [0, 1), with periodic boundary conditions.
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(ii) For p ∈ (0, 1), the probability measure dµ = e−|x|p/(2Γ(1 + 1/p)) dx, x ∈ R, satisfies a
weak Poincaré inequality with βWP(s) = C log(2/s)2/p−2 for some positive constant C.
As a consequence, µ also satisfies a Lq-Poincaré inequality for all q ∈ [1/2, 1).

(iii) For α > 0, the probability measure dµ = α (1 + |x|)−1−α dx/2, x ∈ R, satisfies a
weak Poincaré inequality with βWP(s) = C s−2/α for some positive constant C, see
[RW01, BCR05]. Then for any q ∈ [1/2, 1), the probability measure µ satisfies a Lq-
Poincaré inequality if α > 2q/(1 − q). As in Example 1.1 of [Wan06] in case of Orlicz-
Poincaré inequalities (see below), the Lq-Poincaré inequality is not satisfied for α =
2q/(1 − q).

Similar remarks can be done for Lq-logarithmic Sobolev inequalities.

(i) Gross’ logarithmic Sobolev inequality implies the Lq-logarithmic Sobolev inequality, for
all q ∈ [1/2, 1).

(ii) For p ∈ (0, 1), the probability measure dµ = e−|x|p/(2Γ(1 + 1/p)) dx, x ∈ R, satisfies a

weak logarithmic Sobolev inequality with hWLS(s) = C (log 1/s)(2−p)/p for some positive
constant C, see [CGG05]. As a consequence, dµ also satisfies a Lq-logarithmic Sobolev
inequality for all q ∈ [1/2, 1).

(iii) For α > 0, the probability measure dµ = α (1 + |x|)−1−α dx/2, x ∈ R, satisfies the

weak logarithmic Sobolev with hWLS(s) = C s−2/α (log(1/s))(2+α)/α for some positive
constant C, see [CGG05]. Then for any q ∈ [1/2, 1), the probability measure µ satisfies
a Lq-logarithmic Sobolev inequality if α > 2q/(1 − q).

At the light of the above examples Lq-Poincaré and Lq-logarithmic Sobolev inequalities seem
to be satisfied by the same measures. This is not true as shown by the following example.
On R, the probability measure

dµ =
Cα,β

1 + |x|1+α |log x|β
dx with α > 0 , β ∈ R ,

satisfies a weak Poincaré inequality with βWP(s)=C s−2/α(log(1/s))−2β/α for some constant

C > 0 and a weak logarithmic Sobolev inequality with hWLS(s)=C
′s−2/α(log(1/s))1+2(1−β)/α

for some positive constant C ′. Fix α such that 2
α

q
1−q = 1. Using Bertrand’s integrals, the

probability measure µ satisfies a Lq-Poincaré inequality if and only if β > 1, and a Lq-
logarithmic Sobolev inequality if and only if β > 1 + 1/(1 − q). The two conditions clearly
differ.

3.5 Orlicz-Poincaré inequalities

The Lq-Poincaré inequality for q ∈ [1/2, 1) is a particular case of the Orlicz-Poincaré inequality
introduced by Roberto and Zegarlinski in [RZ06] in the sub-Gaussian case and by the fourth
author in [Wan06], in the others cases.

Proposition 3.11 Let q ∈ [1/2, 1]. Then the Lq-Poincaré inequality holds for some CP > 0
if and only if the following Orlicz-Poincaré inequality

(∫

|f − µ(f)|2q dµ
)1/q

≤ COP

∫

|∇f |2 dµ . (3)

holds for some COP > 0.
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Proof ⊳ We notice that Varµ(f
q) ≤

∫

(f q − a)2 dµ for any a ∈ R, and as a special case
for a = µ(f). The function t 7→ (tq − 1)/(t − 1)q is monotone increasing on (1,∞) and
converges to 1 as t → ∞, so that (tq − 1)2 6 (t − 1)2q for any t ∈ (1,∞). This proves that
Varµ(f

q) ≤
∫

|f −µ(f)|2q dµ. Inequality (3) therefore implies the Lq-Poincaré inequality. On
the other hand, let F := f −m, where m is a median of f . We have

‖f − µ(f)‖2q = ‖F − µ(F )‖2q ≤ ‖F‖2q + µ(|F |) ≤ 2 ‖F‖2q ,

and hence

µ(|f − µ(f)|2q) ≤ 22q

∫

(F 2q
+ + F 2q

− ) dµ .

As in the proof of Theorem 2.3, (3) follows from βP <∞. ⊲

We are now in position to prove that weak Poincaré inequalities with βWP(s) = C s
q−1
q and

Lq Poincaré inequalities are not equivalent (see the end of Section 3.1), or to be precise that

Weak Poincaré

with βWP(s) = C s
q−1
q

6=⇒ Lq-Poincaré .

By Proposition 3.11 and according to [Wan06, Proposition 3.2], µ(f2q/(1−q)) is finite for
any f ∈ C1 with ‖f‖Lip ≤ 1. An example for which a weak Poincaré inequality with
βWP(s) = C s(q−1)/q holds while the Lq Poincaré inequality is wrong is given by µ = ν =
α (1 + |x|)−1−α dx/2, x ∈ R, α = 2q/(1 − q), which satisfies a weak Poincaré inequality with
βWP(s) = C s(q−1)/q for some positive constant C, and f(x) :=

√
1 + x2.

3.6 Perturbation, tensorization and concentration of measure

Proposition 3.12 (i) Let µ, ν be respectively a probability measure and a positive measure
on M . Assume that h is a bounded function on M and define the probability measure
dµh := Z−1

h eh dµ with Zh :=
∫

eh dµ. If (µ, ν) satisfies a Lq-Poincaré (resp. a Lq-
logarithmic Sobolev) inequality with constant CP (resp. CLS), then (µh, ν) satisfies a Lq-
Poincaré (resp. a Lq-logarithmic Sobolev) inequality with constant CP exp (Oscµ(h)/q)
(resp. CLS exp (Oscµ(h)/q)).

(ii) If for any i ∈ {1, · · · , n}, µi is a probability measure and (µi, µi) satisfies a Lq-Poincaré
(resp. a Lq-logarithmic Sobolev) inequality with constant CPi (resp. CLSi), then (⊗n

i=1µi,
⊗n
i=1µi) satisfies a Lq-Poincaré (resp. Lq-logarithmic Sobolev) inequality on Mn with

constant n1/q−1max16i6n CPi (resp. n1/q−1max16i6n CLSi).

(iii) If µ is a probability measure and (µ, µ) satisfies a Lq-Poincaré inequality, then for any
non-negative function f ∈ C1 with ‖f‖Lip ≤ 1 there exists t0 > 0 and C > 0 such that

∀ t > t0 , µ({f ≥ t}) ≤ C

t2q/(1−q)
. (4)

Proof ⊳ The first point is based on the same proof as in Theorem 3.4.1 and 3.4.3 of [ABC+00].
We observe that for any a ∈ R,

Varµh(f
q) 6

∫

|f q − a|2 dµh 6 e−Oscµ(h)

∫

|f q − a|2 dµ ,

and apply the Lq-Poincaré inequality with a = µ(f). Similarly, with a = µ(f), we get

Entµh(f
q) 6

∫
[

f q log

(

f q

a

)

+ f q − a

]

dµh 6 e−Oscµ(h) Entµ(f
q) .
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The second point is almost the same as in Theorem 3.2.1 and 3.2.2 of [ABC+00]: for all
functions f ∈ C1(M) (see Proposition 1.4.1 of [ABC+00]), by sub-additivity of the variance,

Var⊗ni=1µi
(f q) 6

n
∑

i=1

∫

Varµi(f
q) d⊗n

i=1 µi .

Apply the Lq-Poincaré inequality,
[

Varµi(f
q)
]1/q

6 CPi

∫

|∇xif |2 dµi, component by compo-
nent to get

Var⊗ni=1µi
(f q) 6

n
∑

i=1

∫
(

CPi

∫

|∇xif |2 dµi
)q

d⊗n
i=1 µi .

Hölder’s inequality with q ∈ (0, 1), and the identity
∑n

i=1 x
q
i 6 n1−q(

∑n
i=1 xi)

q for xi > 0, give

Var⊗ni=1µi
(f q) 6

n
∑

i=1

(

CPi

∫

|∇f |2 d⊗n
i=1 µi

)q

6 n1−q

(

max
16i6n

CPi

n
∑

i=1

∫

|∇f |2 d⊗n
i=1 µi

)q

,

with the notation
∑n

i=1 |∇xif |2 = |∇f |2. The proof for the Lq-logarithmic Sobolev inequality
is similar and relies on the sub-additivity of the entropy:

Ent⊗ni=1µi

(

f2q
)

6

n
∑

i=1

∫

Entµi
(

f2q
)

d⊗n
i=1 µi .

Property (iii) is inspired by the method of Aida, Masuda and Shigekawa in [AMS94]. Define
a(t) := µ({f ≥ t}) and choose t0 such that a(t0) ≤ 1/2. For any t > t0, define g :=
min

{

1
t (f − t)+, 1

}

. On the one hand, by the Cauchy-Schwarz inequality,

(
∫

gq dµ

)2

=

(
∫

f>t0

gq dµ

)2

6 µ({f > t0})
∫

g2q dµ 6
1

2

∫

g2qdµ ,

Varµ(g
q) >

1

2

∫

g2q dµ >
1

2
µ({f > 2t}) =

1

2
a(2t) .

On the other hand, by the Lq-Poincaré inequality,

(

1

2
a(2t)

)1/q

6

(

1

2
Varµ(g

q)

)1/q

6 CP

∫

|∇g|2 dµ 6 CP
µ({t 6 ρ < 2t})

t2

using the fact that, a.e., |∇f |2 6 ‖f‖Lip 6 1. With κ := 21/q CP, this proves that

t2 (a(2t))1/q + κa(2t) 6 κa(t) ∀ t > t0 ,

and as a consequence,
t2 (a(2t))1/q 6 κa(t) ∀ t > t0 .

With c := κq t−2q
0 and an := a(2n t0), this means

an+1 6 c 2−2nq aqn ∀ n ∈ N .

If bn := 22nαn with (n + 1)αn+1 = n q αn − 2n q, then bn+1 6 c bqn and lim supn→∞ bn is
therefore bounded by the unique fixed point, b̄, of b 7→ c bq. The sequence (αn)n∈N converges
to q/(1 − q). Hence

a(t) 6 an 6 O
(

2
−2n q

1−q

)

as t→ ∞ ,

where n is the integer part of log(t/t0)/ log 2. This concludes the proof. ⊲
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4 Application to the weighted porous media equation

Let d be a positive integer and ψ ∈ C2(Rd) a function such that
∫

e−ψdx < +∞. We define
the probability measure

dµψ :=
e−ψ dx

Zψ

and the operator L on C2(Rd) by

∀ f ∈ C2(Rd) , Lf := ∆f −∇ψ · ∇f .

Such a generator L is symmetric in L2
µψ

(Rd),

∀ f, g ∈ C1(Rd) ,

∫

f Lg dµψ = −
∫

∇f ·∇g dµψ .

We consider for m > 1 the nonlinear partial differential equation

∂u

∂t
= Lum (WPME)

for t > 0, x ∈ R
d, corresponding to a non-negative initial condition u(0, x) = u0(x) for any

x ∈ R
d. Such an equation will be called the weighted porous media equation.

4.1 L1-contraction, existence and uniqueness

The existence proof is based on the method developed by Vázquez in [Váz92]. The main
difference between the standard porous media and the weighted porous media equations is
that a natural space to study weak solutions of (WPME) is a weighted space, for instance
L2
µψ

(Rd), which contains all constant functions. We shall first consider the case of a bounded
domain and then extend solutions to the whole space.

Consider first a bounded domain Ω ⊂ R
d with smooth boundary. Denote by Q = Ω× [0,+∞),

Σ = ∂Ω× [0,+∞). Let u0 be a positive function in Ω which satisfies n ·∇u0 = 0 on ∂Ω, where
n = n(x) denotes the outgoing normal unit vector at x ∈ ∂Ω. We shall say that u is classical
solution of (WPME) in Ω if u is a C2 function on Q such that







ut = Lum in Q
u(·, 0) = u0 in Ω
n · ∇u = 0 on Σ

(5)

Lemma 4.1 (L1-contraction principle) Let Ω ⊂ R
d be a bounded domain with smooth

boundary. If u, û are two classical solutions of (5) with smooth positive initial data u0 and û0,
then for all t > τ > 0 one gets
∫

Ω
(u(t, x) − û(t, x))+ dµψ(x) 6

∫

Ω
(u(τ, x) − û(τ, x))+ dµψ(x) 6

∫

Ω
(u0(x) − û0(x))+ dµψ(x) .

Proof ⊳ Let χ ∈ C1(R) be such that 0 6 χ 6 1, χ(s) = 0 for s 6 0, χ′(s) > 0 for s > 0. We
obtain

∫

Ω
(u− û)t χ(um − ûm) dµψ =

∫

Ω
L(um − ûm)χ(um − ûm) dµψ

= −
∫

Ω
|∇(um − ûm)|2 χ′(um − ûm) dµψ ,
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using that n ·∇(um− ûm) = 0 on Σ. Therefore, by taking χ as a smooth approximation of the
function sgn+

0 which is identically equal to 1 on (0,+∞) and to 0 on (−∞, 0], and observing
that

∂

∂t
(u− û)+ = sgn+

0 (u− û)
∂

∂t
(u− û) ,

we get that
d

dt

∫

Ω
(u− û)+ dµψ 6 0 .

⊲

Lemma 4.1 results in a Maximum Principle for (WPME).

Corollary 4.2 (Maximum Principle and uniqueness) Let Ω ⊂ R
d be a bounded domain

with smooth boundary and consider two classical solutions u, û of (5) with smooth positive
initial data u0 and û0. If u0 6 û0 in Ω, then u 6 û in Q. As a consequence, the classical
solution of (WPME) is unique.

We may now apply the existence theory for non degenerate parabolic equations as in [LSU67].

Proposition 4.3 Let Ω ⊂ R
d be a bounded domain with smooth boundary. For any positive

function u0 ∈ C∞, there exits a classical solution u of (5) with initial datum u0. Moreover,
for all τ > 0,

∫

Ω

∫ τ

0
|∇u(t, x)m|2 dt dµψ(x) −

∫

Ω
um+1(τ, x) dµψ(x) = −

∫

Ω
u0(x)

m+1 dµψ(x) .

Proof ⊳ Since the initial datum u0 is positive on Ω̄, which is bounded, it follows that
min(u0) > 0. Standard quasilinear theory (see chapter 6 of [LSU67]) applies, thus providing
us with a classical solution of (WPME). For all τ > 0, we have

∫

Ω
um+1(τ, x) dµψ(x) −

∫

Ω
u0(x)

m+1 dµψ(x) =

∫

Ω

(∫ τ

0

∂

∂s
um+1(s, x) dt

)

dµψ(x)

= −(m+ 1)

∫

Ω

∫ τ

0
|∇um|2 dµψ dt

after an integration by parts. ⊲

The results obtained for a bounded domain can be extended to solutions in the whole euclidean
space. Various results can be stated which are out of the scope of our paper, so let us make
some simplifying assumptions.

Proposition 4.4 Let u0 be a C1 ∩ Lm+1
µψ

(Rd) positive initial condition. Then there exists a
unique classical solution of the (WPME) with initial datum u0.

Proof ⊳ We can approximate the solution using the following scheme:

(1) Consider an initial datum which is uniformly bounded away from 0, for instance un0 =
u0 + 1/n.

(2) Consider a regularized drift term ψn such that ψn ≡ ψ in B(0, n) and ψn(x) ≡ cn |x|2/2
in B(0, n)c, with cn > 0.
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(3) Modify the operator L by considering Lnfm := ∇(an(f)∇f) −∇ψn · ∇fm where a0 is a
smooth positive function on [0,mn−(m−1)] and such that an(s) = msm−1 for any s > 1/n.
The standard theory of parabolic equations applies and provides us with a solution un of
the regularized equation, ∂un/∂t = Ln umn .

(4) Prove an L1-contraction principle as in Lemma 4.1, from which we deduce a Maximum
Principle and the uniqueness of the approximating solution un. We observe that un is a
solution of (WPME) with initial datum un0 , except that ψ has to be replaced by ψn.

(5) Barrier functions based on the solution of the heat equation can be provided, thus showing
the conservation of the L1-norm (with respect to the measure dµψ) and uniform estimates
with respect to n ∈ N.

(6) Take a pointwise monotone limit as n→ ∞ and obtain a weak solution u(t, x) of (WPME)
with initial datum u0. Classical regularity properties (see for instance [LSU67, Chap. 6])
prove that the weak solution is a classical solution on R

d.

⊲

4.2 Asymptotic behavior of the solutions

Theorem 4.5 Let m > 1.

(i) If (µψ, µψ) satisfies a Lq-Poincaré inequality, q = 2/(m+1), for some constant CP > 0,
then for any initial condition u0 ∈ L2(µψ), we have

∀ t > 0 , Varµψ (u(·, t)) 6

(

[

Varµψ(u0)
]−(m−1)/2

+
4m (m− 1)

(m+ 1)2
CP t

)−2/(m−1)

.

Reciprocally, if the above inequality is satisfied for any u0, then (µψ, µψ) satisfies a
Lq-Poincaré inequality with constant CP.

(ii) If (µψ, µψ) satisfies a Lq-logarithmic Sobolev inequality, q = 1/m, for some constant
CLS > 0, then for any non-negative initial condition u0 such that Entµψ(u0) < ∞, we
have

∀ t > 0 , Entµψ (u(·, t)) 6

(

[

Entµψ (u0)
]1−m

+
4 (m− 1)

m
CLS t

)−1/(m−1)

.

Reciprocally, if the above inequality is satisfied for any u0, then (µψ, µψ) satisfies a
Lq-logarithmic Sobolev inequality with constant CLS.

Proof ⊳ Let us briefly sketch the first result.

d

dt
Varµψ(u) = 2

∫

ut u dµψ = 2

∫

uLum dµψ = −2

∫

∇u · ∇(um) dµψ

= − 8m

(m+ 1)2

∫

|∇um+1
2 |2 dµψ .

One can now apply the Lq-Poincaré inequality with u = f2/(m+1), q = 2/(m + 1), to get

d

dt
Varµψ(u) ≤ − 8m

(m+ 1)2
CP

[

Varµψ (u)
]
m+1

2 .

A simple integration of this differential inequality gives the result. Reciprocally, a derivation
at t = 0 gives the Lq-Poincaré inequality with constant CP. The proof in the second case is
similar. ⊲
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Example 4.6 Consider on R
d the probability measure µ given by

dµ(x1, · · · , xn) := Z−1 eW (x1,··· ,xn)
n
∏

i=1

dxi

(1 + |xi|)1+α
,

where Z is a normalization constant and W a bounded function on R
d. By Proposition 3.12,

the measure µ satisfies a Lq-Poincaré inequality with q ∈ [1/2, 1) if α > 2q/(1 − q). Then the
variance of the solution to the associated (WPME) converges to 0 as t→ +∞ if m > (α+4)/α.

5 Appendix. A Variant of two results of [BCR05]

We present variants of Theorem 1 and 2 in [BCR05], in which we remove any assumption on
the absolute continuity of the measure µ with respect to the volume measure.

We recall that (µ, ν) satisfies a weak Poincaré inequality with associated function βWP if

Varµ(f) 6 βWP(s)

∫

|∇f |2 dν + s
[

Oscµ(f)
]2 ∀ s ∈ (0, 1/4) , ∀ f ∈ C1(M) .

See Definition 3.1 for details.

Theorem 5.1 [BCR05] Let µ and ν be respectively a probability measure and a positive mea-
sure on M . Assume that that (µ, ν) satisfies a weak Poincaré inequality for some non-negative
non increasing function βWP(s). Let γ(s) := 4βWP(s/4). Then for every measurable subsets
A, B of M such that A ⊂ B and µ(B) 6 1/2,

Capν(A,B) ≥ µ(A)

γ(µ(A))
.

Proof ⊳ The proof of [BCR05] can be extended to the case of two measures µ and ν without
changes. Let us sketch it for completeness. Let f be such that IA 6 f 6 IB and observe
that Oscµ(f) 6 1. By the Cauchy-Schwarz inequality,

(∫

f dµ
)2

6 µ(B)
∫

f2 dµ 6
1
2

∫

f2 dµ.
Hence

βWP(s)

∫

|∇f |2 dν + s > Varµ(f) ≥ 1

2

∫

f2 dµ ≥ µ(A)

2
,

which completes the proof after noticing that a
γ(a) = a

4βWP(a/4) 6 sups∈(0,1/4)
a/2−s
βWP(s) with

a/2 = µ(A)/2 6 1/4. ⊲

In the next result, we explicitly remove the assumption of absolute continuity with respect to
the volume measure. Let k := (11 + 5

√
5)/2 ≈ 11.0902.

Lemma 5.2 Let µ and ν be respectively a probability measure and a positive measure on M .
For some θ ∈ (0, 1), consider a positive non increasing function γ on (0, θ) and assume that
for every measurable subsets A, B of M such that A ⊂ B and µ(B) 6 θ,

Capν(A,B) ≥ µ(A)

γ(µ(A))
.

Then for every function f ∈ C1(M) such that µ(Ω+) 6 θ, Ω+ := {f > 0}, and every s ∈ (0, 1)
one has

∫

f2
+ ≤ k γ(s)

∫

Ω+

|∇f |2 dν + s
[

supessµ f
]2
.
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Proof ⊳ Fix s ∈ (0, 1). Let c = c(s) := inf{t ≥ 0 : µ({f+ > t}) ≤ s}. If c = 0
then µ(Ω+) ≤ s and

∫

Ω+
f2
+ dµ ≤ s supessµf

2
+. We also know that c 6 supessµf+ and

s0 := µ({f+ > c}) ≤ s. For a given ρ ∈ (0, 1), let Ωk := {f+ > cρk} for any k ∈ N

and define sk := µ(Ωk). We observe that

s0 6 s 6 s1 6 s2 6 . . . 6 µ(Ω+) 6 θ .

Using the decomposition Ω+ = Ω0 +
⋃

k∈N
(Ωk+1 \ Ωk), we get

∫

Ω+

f2
+ dµ =

∫

Ω0

f2
+ dµ+

∑

k>0

∫

Ωk+1\Ωk

f2
+ dµ 6 s0

[

supessµf+

]2
+
∑

k∈N

c2 ρ2k (sk+1 − sk) .

Since s0 6 s, we can actually write

∫

Ω+

f2
+ dµ =

∫

Ω0

f2
+ dµ+

∑

k>0

∫

Ωk+1\Ωk

f2
+ dµ 6 s

[

supessµf+

]2
+
∑

k∈N

c2 ρ2k (sk+1 − sk) .

On the other hand, by noticing that

∑

k∈N

ρ2k (sk+1 − sk) =

(

1

ρ2
− 1

)

∑

k∈N

ρ2k sk −
1

ρ2
s0 =

1 − ρ2

ρ2

∑

k∈N

ρ2k (sk − s0) ,

we get
∫

Ω+

f2
+ dµ ≤ s

[

supessµf+

]2
+ c2

1 − ρ2

ρ2

∑

k∈N

ρ2k (sk − s0) .

By our assumptions, for any k ∈ N\{0}, the function θ 7→ sk− s0+ θ s0
γ(s+θ (sk−s))

is monotone increasing

on (0, 1). Hence
sk − s0
γ(s)

6
sk

γ(sk)
6 Capν(Ωk,Ωk+1) ,

sk − s0 ≤ γ(s)Capν(Ωk,Ωk+1) .

Define

Fk := min

{

1,
1

1 − ρ

(

f+

c ρk
− ρ

)

+

}

.

By definition of Capν(Ωk,Ωk+1), we have

Capν(Ωk,Ωk+1) 6

∫

Ωk+1\Ωk

|∇Fk|2 dµ =
1

c2 ρ2k (1 − ρ)2

∫

Ωk+1\Ωk

|∇f+|2 dµ .

Collecting the estimates, we get

∫

Ω+

f2
+ dµ ≤ s

[

supessµf+

]2
+

1

ρ2

1 + ρ

1 − ρ

∫

Ω+

|∇f+|2 dµ .

The result follows after optimizing on ρ, that is by taking ρ =
(√

5 − 1
)

/2. ⊲

Theorem 2 in [BCR05] can be generalized in case of two measures µ and ν which are not
absolutely continuous with respect to the volume measure as follows. The main idea is to
apply Lemma 5.2 with θ = 1/2 and use the median of f to define subsets of M with measure
at most equal to θ.
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Theorem 5.3 Let µ and ν be respectively a probability measure and a positive measure on M .
Consider a positive non increasing function γ on (0, 1/2) and assume that for every measurable
subsets A, B of M such that A ⊂ B and µ(B) 6 1/2,

Capν(A,B) ≥ µ(A)

γ(µ(A))
.

Then with k := (11 + 5
√

5)/ 2, for every function f ∈ C1(M) and every s ∈ (0, 1/4) one has

Varµ(f) ≤ k γ(s)

∫

|∇f |2 dν + s
[

Oscµ(f)
]

.

Proof ⊳ Fix s ∈ (0, 1/4) and let m be a median of f with respect to µ. Denote by Ω+

and Ω− the sets {f > m} and {f < m}. By definition of m, µ(Ω±) 6 1/2. By definition of
the variance, we also know that

Varµ(f) 6

∫

(f −m)2 dµ =

∫

Ω+

(f −m)2 dµ +

∫

Ω−

(f −m)2 dµ .

We can apply Lemma 5.2 to F+ and F− with θ = 1/2 and get the result using the fact that,
if a = infessµf and b = supessµf , then for any m ∈ [a, b], (b −m)2 + (m − a)2 6 (b − a)2 =

Oscµ(f)2. ⊲

Concerning the weak logarithmic Sobolev inequalities, the absolute continuity of µ with respect
to the volume measure can easily be removed in Theorem 2.1 of [CGG05], without change in
the proof.

Lemma 5.4 Let µ and ν be respectively a probability measure and a positive measure on M .
If (µ, ν) satisfies a weak logarithmic Sobolev inequality with associated function hWLS, then
for every A ⊂ B ⊂M such that µ(B) 6 1/2,

Capν(A,B) ≥
µ(A) log

(

1 + e2

µ(A)

)

γ
[

µ(A) log
(

1 + e2

µ(A)

)]

with γ(s) := 2hWLS(s/2).

Proof ⊳ As in the proof of Proposition 3.6, it holds that

Capν(A,B) ≥ µ(A) log
(

1 + e2/µ(A)
)

− s

hWLS(s)
.

⊲

Reciprocally, if the capacity measure criterion of Lemma 5.4 is satisfied, it is not clear that a
weak logarithmic Sobolev inequality holds unless we assume the absolute continuity of µ with
respect to the volume measure. See Theorem 2.2 of [CGG05] in such a case.
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