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Using measure-capacity inequalities we study new functional inequalities, namely L q -Poincaré inequalities

As a consequence, we establish the asymptotic behavior of the solutions to the so-called weighted porous media equation

for m ≥ 1, in terms of L 2 -norms and entropies.

Introduction

In this paper we analyze decay rates of the entropies associated to nonlinear diffusion equations using inequalities relating entropy and entropy production functionals. Consider for instance the Ornstein-Uhlenbeck semi-group on R d , which is governed by

∂u ∂t = ∆u -x • ∇u , t 0 , x ∈ R d , with an initial condition u 0 ∈ C 2 R d ∩ L 1 + (R d , dγ).
Here dγ = γ dx is the Gaussian measure on R d , γ(x) := (2π) -d/2 exp(-|x| 2 /2). Two entropies are widely used, namely By the Poincaré inequality in the first case,

∀ f ∈ C 1 (R d ) , Var γ (f ) |∇f | 2 dγ ,
and Gross' logarithmic Sobolev inequality, see [START_REF] Gross | Logarithmic Sobolev inequalities[END_REF], in the second case,

∀ f ∈ C 1 (R d ) , Ent γ f 2 2 |∇f | 2 dγ ,
it follows from Gronwall's lemma that for any t 0, Var γ (u) e -2t Var γ (u 0 ) and Ent γ (u) e -2t Ent γ (u 0 ) for all smooth initial conditions u 0 in L 2 γ (R d ) in the first case, or such that Ent γ (u 0 ) is finite in the second case. With minor changes, the method can be extended to the semi-group generated by

∂u ∂t = ∆u -∇ψ • ∇u , t 0 , x ∈ R d ,
if ψ is a smooth function such that Z := e -ψ dx is finite and the probability measure dµ ψ = Z -1 ψ e -ψ dx satisfies a Poincaré inequality or a logarithmic Sobolev inequality. See for example [ABC + 00] for a review on this inequalities and there applications.

A natural question is how to extend the variance or the entropy convergence to nonlinear semi-groups. Let m > 1, and consider the semi-group generated by the weighted porous media equation ∂u ∂t = ∆u m -∇ψ • ∇u m , t 0 , x ∈ R d , with a non-negative initial condition u(0, x) = u 0 (x). This equation, in short (WPME) is a simple extension of the standard porous media equation, which corresponds to ψ = 0. We shall refer to [START_REF] Vázquez | An introduction to the mathematical theory of the porous medium equation[END_REF] for an introduction on this topic. A major difference is that under appropriate conditions on ψ the solution of (WPME) converges to its mean. In other words, the nonlinear semi-group converges to the limit measure µ ψ . The variance of a solution solution of (WPME) now obeys to

d dt Var µ ψ (u) = - 8 (m + 1) 2 | ∇u m+1 2
| 2 dµ ψ .

Classical Poincaré and logarithmic Sobolev inequalities are of no more use and have to be replaced by adapted functional inequalities, which are the purpose of this paper. This paper extends some earlier results on solutions to the porous media equation on the torus S 1 ≡ [0, 1) and related functional inequalities, see [START_REF] Carrillo | Entropy-Energy inequalities and improved convergence rates for nonlinear parabolic equations[END_REF]. As for the functional inequalities, we will work in a more general framework involving two Borel probability measures µ and ν on a Riemannian manifold (M, g), which are not necessarily absolutely continuous with respect to the volume measure. To consider quantities like f q dµ and |∇f | 2 dν, it is therefore natural to work in the space of functions f ∈ C 1 (M ), although slightly more general function spaces can be introduced by density with respect to appropriate norms. If the measures were absolutely continuous with respect to the volume measure, we could take functions which are only locally Lipschitz continuous as in [START_REF] Barthe | Concentration for independent random variables with heavy tails[END_REF].

In Section 2 we will define functional inequalities that we shall call L q -Poincaré and L qlogarithmic Sobolev inequalities. Equivalence of these inequalities with capacity-measure criteria will be established, based on Maz'ja's theory. Links with more classical inequalities such as weak Poincaré or weak logarithmic Sobolev inequalities are then studied in Section 3. Explicit criteria can be deduced from earlier works, mainly [START_REF] Barthe | Sobolev inequalities for probability measures on the real line[END_REF][START_REF] Barthe | Concentration for independent random variables with heavy tails[END_REF][START_REF] Cattiaux | Weak logarithmic sobolev inequalities and entropic convergence[END_REF]. In Section 4

we will give applications to the weighted porous media equation. Using the L q -Poincaré and L q -logarithmic Sobolev inequalities we describe the asymptotic behavior of the solutions in terms of variance or entropy. The proof of two variants of results of [START_REF] Barthe | Concentration for independent random variables with heavy tails[END_REF] is given in an appendix, see Section 5.

Throughout this paper, we intend to work under minimal assumptions and do not require that the measures showing up on both sides of the inequalities are the same or that they are absolutely continuous with respect to the volume measure. However, when only one measure is specified, one has to understand that the measures µ and ν are the same on both sides of the inequalities.

2 Two L q -functional inequalities 2.1 L q -Poincaré inequalities Definition 2.1 Let µ and ν be respectively a probability measure and a positive measure on M . Assume that q ∈ (0, 1]. We shall say that (µ, ν) satisfies a L q -Poincaré inequality with constant C P if for all non-negative functions f ∈ C 1 (M ) one has

Var µ (f q ) 1/q := f 2q dµ - f q dµ 2 1/q C P |∇f | 2 dν . (1) 
Note that if q > 1, Inequality (1) is not true if µ is not a Dirac measure. Consider indeed f = 1 + ǫ g with ǫ → 0 and g bounded. By applying Inequality (1) we get

q 2 ǫ 2 Var µ g 2 + o(1) 1/q ǫ 2 C P |∇g| 2 dν + o(ǫ 2 ) .
If g is such that Var µ g 2 and |∇g| 2 dν are both positive and finite, we obtain a contradiction by letting ǫ → 0 if q > 1.

Proposition 2.2 For any bounded positive function f , the function q → Var µ (f q ) 1/q is increasing with respect to q ∈ (0, 1]. As a consequence, if the L q 1 -Poincaré inequality holds, then the L q 2 -Poincaré inequality also holds for any 0 < q 2 q 1 1.

We shall say that L q -Poincaré inequalities form a hierarchy of inequalities. The classical Poincaré inequality corresponding to q = 1 implies all L q -Poincaré inequalities for q ∈ (0, 1).

Proof ⊳ Without loss of generality, we may assume that f is positive. For any q ∈ (0, 1), let F (q) := Var µ (f q ) 1/q . We have

F ′ (q) F (q) = d dq log F (q) = 1 q -log F (q) + µ(f 2q log f 2 ) -µ(f q ) µ(f q log f 2 ) F (q) q . Let h(t) := µ(f tq log f 2 )/µ(f tq ), t ∈ (1, 2
) and observe that by the Cauchy-Schwarz inequality,

2 q [µ(f tq )] 2 h ′ (t) = µ(f tq (log f 2 ) 2 ) µ(f tq ) -[µ(f tq log f 2 )] 2 0. This proves that h(2) = µ(f 2q log f 2 ) µ(f 2q ) µ(f q log f 2 ) µ(f q ) = h(1) .
Hence we arrive at

qF ′ (q) F (q) ≥ -log F (q) + 1 -[µ(f q )] 2 µ(f 2q ) µ(f 2q log f 2 ) F (q) q = -log F (q) + µ(f 2q log f 2q ) q µ(f 2q ) ≥ -log F (q) + log µ(f 2q ) 1/q ≥ 0
where the last two inequalities hold by Jensen's inequality and by monotonicity of the logarithm. ⊲

We will now give a characterization of the L q -Poincaré inequality in terms of the capacity measure criterion. Such a criterion has recently been applied in [START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry[END_REF][START_REF] Chen | Capacitary criteria for Poincaré-type inequalities[END_REF][START_REF] Cattiaux | Weak logarithmic sobolev inequalities and entropic convergence[END_REF] to give necessary and sufficient conditions for the usual, weak or super Poincaré inequality, and the usual or weak logarithmic Sobolev inequality or the F -Sobolev inequality. The capacity measure criterion allows to compare all these inequalities and can be characterized in terms of Hardy's inequality, in the one-dimensional case.

Let µ and ν be respectively a probability measure and a positive measure on M . Given measurable sets A and Ω such that A ⊂ Ω ⊂ M , the capacity Cap ν (A, Ω) is defined as

Cap ν (A, Ω) := inf |∇f | 2 dν : f ∈ C 1 (M ) , I A f I Ω .
If the set f ∈ C 1 (M ) : I A f I Ω is empty then, by convention, we set Cap ν (A, Ω) := +∞. This the case of Cap ν (A, A) = +∞ for any bounded measurable set A and any ν with a locally positive density.

Let q ∈ (0, 1) and define

β P := sup k∈Z µ(Ω k ) 1/(1-q) Cap ν (Ω k , Ω k+1 ) q/(1-q) (1-q)/q
where the supremum is taken over all Ω ⊂ M with µ(Ω) ≤ 1/2 and all sequences (Ω k ) k∈Z such that for all k ∈ Z,

Ω k ⊂ Ω k+1 ⊂ Ω.
Theorem 2.3 Let µ and ν be respectively a probability measure and a positive measure on M .

(i) If q ∈ [1/2, 1) and (µ, ν) satisfies a L q -Poincaré inequality with a constant C P , then β P 2 1/q C P .

(ii) If q ∈ (0, 1) and β P < +∞, then (µ, ν) satisfies a L q -Poincaré inequality with constant C P κ P β P , for some constant κ P which depends only on q.

Proof ⊳ The proof follows the main lines of Theorem 2.3.5 of [START_REF] Maz'ja | Springer Series in Soviet Mathematics[END_REF].

Proof of (i). Consider Ω ⊂ M such that µ(Ω) ≤ 1/2 and let (Ω k ) k∈Z be a sequence such that for all k ∈ Z,

Ω k ⊂ Ω k+1 ⊂ Ω. Fix N ∈ N * and for k ∈ {-N, . . . N }, let f k ∈ C 1 (M ) be such that I Ω k f k I Ω k+1 . If no such f k exists, that is if Cap ν (Ω k , Ω k+1 )
= +∞, then we discard Ω k+1 from the sequence and reindex it. Finally, let (τ k ) k∈{-N,...N } be a non-increasing family of non-negative reals numbers to be defined later. A function f on M is defined as follows:

(1)

f = τ -N on Ω -N , (2) f = (τ k -τ k+1 ) f k + τ k+1 on Ω k+1 \ Ω k for all k ∈ {-N, N -1}, (3) f = τ N f N +1 on Ω N +1 \ Ω N and f = 0 on Ω \ Ω N +1 .
Using the fact that f = 0 on Ω c , it follows from the Cauchy-Schwarz inequality that

f q dµ 2 µ(Ω) f 2q dµ ,
from which we get

Var µ (f q ) 1 2 f 2q dµ .
By the co-area formula, we obtain

f 2q dµ = ∞ 0 µ({f t}) d(t 2q ) N -1 k=-N τ k τ k+1 µ({f τ k }) d(t 2q ) = N -1 k=-N µ({f τ k }) τ 2q k -τ 2q k+1 .
From 2q 1, we get τ 2q k -τ 2q k+1 (τ k -τ k+1 ) 2q , and

Var µ (f q ) 1 2 N -1 k=-N µ(Ω k ) (τ k -τ k+1 ) 2q .
Using the L q -Poincaré inequality we get 1 2

N -1 k=-N µ(Ω k ) (τ k -τ k+1 ) 2q 1/q C P |∇f | 2 dν .
On the other hand, with the convention τ N +1 = 0, we have

|∇f | 2 dν = N k=-N (τ k -τ k+1 ) 2 Ω k+1 \Ω k |∇f k | 2 dν .
We may now take the infimum over all functions f k and obtain 1 2

N -1 k=-N µ(Ω k ) (τ k -τ k+1 ) 2q 1/q C P N k=-N (τ k -τ k+1 ) 2 Cap ν (Ω k , Ω k+1 ) .
Next consider an appropriate choice of (τ k ) N k=-N : for k ∈ {-N, . . . N }, let

τ k = N j=k µ(Ω j ) Cap ν (Ω j , Ω j+1 ) 1 2 (1-q) . We observe that τ k -τ k+1 = µ(Ω k ) Cap ν (Ω k ,Ω k+1 ) 1/(2(1-q))
and

N -1 k=-N µ(Ω k ) 1/(1-q) Cap ν (Ω k , Ω k+1 ) q/(1-q) (1-q)/q 2 1/q C P (1 + R N ) with R N := µ(Ω N ) 1/(1-q) Cap ν (Ω N ,Ω N+1 ) q/(1-q) N -1 k=-N µ(Ω k ) 1/(1-q) Cap ν (Ω k ,Ω k+1 ) q/(1-q)
-1

. By taking the limit as N goes to infinity, we obtain β P 2 1/q C P .

Proof of (ii). Let f be a smooth non-negative function on M and take q ∈ (0, 1]. For all a 0, Var µ (f q ) (f q -a q ) 2 dµ |f -a| 2q dµ .

With a := m(f ), a median of f with respect to µ, define

F + = (f -a) + and F -= (f -a) -= F + -(f -a), so that Var µ (f q ) (f q -a q ) 2 dµ F 2q + dµ + F 2q -dµ .
We recall that m = m(f ) is a median of f with respect to the measure µ if and only if µ({f m}) 1/2 and µ({f m}) 1/2. The computation of the term F 2q -dµ is exactly the same as the one of F 2q + dµ, so we shall only detail one of them. Let us fix ρ ∈ (0, 1), note Ω k := F + ρ k for any k ∈ Z, and use again the co-area formula:

F 2q + dµ = +∞ 0 µ({F + t}) d(t 2q ) = k∈Z ρ k ρ k+1 µ({F + t}) d(t 2q ) 1 -ρ 2q ρ 2q k∈Z µ(Ω k ) ρ 2kq .
By Hölder's inequality with parameters (1/(1 -q), 1/q) one gets

F 2q + dµ 1 -ρ 2q ρ 2q k∈Z µ(Ω k ) 1/(1-q) Cap ν (Ω k , Ω k+1 ) q/(1-q) 1-q k∈Z ρ 2k Cap ν (Ω k , Ω k+1 ) q 1 -ρ 2q ρ 2q β q P k∈Z ρ 2k Cap ν (Ω k , Ω k+1 ) q . For k ∈ Z, define g k := min 1, F + -ρ k+1 ρ k -ρ k+1 + . Then we have I Ω k g k I Ω k+1 , Cap ν (Ω k , Ω k+1 ) Ω k+1 \Ω k |∇g k | 2 dν = 1 ρ 2k (1 -ρ) 2 Ω k+1 \Ω k |∇F + | 2 dν .
Hence

F 2q + dµ 1 -ρ 2q ρ 2q (1 -ρ) 2q β q P |∇F + | 2 dν q .
The same inequality holds for F -:

F 2q -dµ 1 -ρ 2q ρ 2q (1 -ρ) 2q β q P |∇F -| 2 dν q .
Using the inequality a q + b q 2 1-q (a + b) q for any a, b 0, ones gets (Var µ (f q )) 1/q κ P β P |∇f | 2 dν with κ P := 2 (1-q)/q min ρ∈(0,1)

(1-ρ 2q )

1/q ρ 2 (1-ρ) 2 . ⊲ 2.2 L q -logarithmic Sobolev inequalities
Definition 2.4 Let µ and ν be respectively a probability measure and a positive measure on M and assume that q ∈ (0, 1]. We shall say that (µ, ν) satisfies a L q -logarithmic Sobolev inequality with constant C LS if and only if, for any non-negative function f ∈ C 1 (M ),

Ent µ f 2q 1/q := f 2q log f 2q f 2q dµ dµ 1/q C LS |∇f | 2 dν .
It is well known that Ent µ f 2

Var µ (f ) for any non-negative function f , for any probability measure µ. Hence, for any q ∈ (0, 1], any L q -logarithmic Sobolev inequality results in a L q -Poincaré inequality with corresponding measures.

Let q ∈ (0, 1) and define

β LS = sup      k∈Z µ(Ω k ) log 1 + e 2 µ(Ω k ) 1/(1-q) [Cap ν (Ω k , Ω k+1 )] q/(1-q)      (1-q)/q
where the supremum is taken over all Ω ⊂ M with µ(Ω) ≤ 1/2 and all sequence (Ω k ) k∈Z such that, for all k ∈ Z, Ω k ⊂ Ω k+1 ⊂ Ω.

Theorem 2.5 Let µ and ν be respectively a probability measure and a positive measure on M . If q ∈ (0, 1) and β LS < +∞, then (µ, ν) satisfies a L q -logarithmic Sobolev inequality with constant C LS κ LS β LS , where κ LS depends only on q.

This theorem is the counterpart for the L q -logarithmic Sobolev inequality of Theorem 2.3, (ii). As for Theorem 2.3, (i), related results will be stated in Corollary 3.8.

Proof ⊳ Let f be a smooth function on M , m = m(f ) a median of f with respect to µ, and

Ω + := {|f | > m}, Ω -:= {|f | < m}.
As in [START_REF] Barthe | Sobolev inequalities for probability measures on the real line[END_REF], we can write the dual formulation

Ent µ f 2q sup (|f | q -m q ) 2 + h dµ : h 0 , e h dµ e 2 + 1 + sup (|f | q -m q ) 2 -h dµ : h 0 , e h dµ e 2 + 1 . (2)
Such an inequality follows from Rothaus' estimate, [START_REF] Rothaus | Analytic inequalities, isoperimetric inequalities and logarithmic Sobolev inequalities[END_REF],

Ent µ g 2 Ent µ (g -a) 2 + 2 µ (g -a) 2
for any a ∈ R, and the fact that, according to Lemma 5 in [START_REF] Barthe | Sobolev inequalities for probability measures on the real line[END_REF],

Ent µ (g -a) 2 + + 2 µ((g -a) 2 + ) sup (g -a) 2 + h dµ : h 0 , e h dµ e 2 + 1 .
Estimates for the positive and the negative part are exactly the same, so we will give details only for F + := (|f | -m) + . Using the fact that (t q -1) 2 < (t -1) 2q for any t > 1, for q ∈ (0, 1), we get

(|f | q -m q ) 2 + h dµ F 2q + h dµ .
Let ρ ∈ (0, 1).

F 2q + h dµ = +∞ 0 F + >t h dµ d(t 2q ) = k∈Z ρ k ρ k+1 F + >t h dµ d(t 2q ) k∈Z ρ 2qk -ρ 2q(k+1) F + >ρ k+1 h dµ = 1 -ρ 2q ρ 2q k∈Z ρ 2qk F + >ρ k h dµ .
Using Lemma 6 of [START_REF] Barthe | Sobolev inequalities for probability measures on the real line[END_REF], which asserts that

F + >ρ k h dµ µ(Ω k ) log 1 + e 2 µ(Ω k )
where

Ω k := F + > ρ k , we obtain sup F 2q + h dµ : h 0 , e h dµ e 2 + 1 1 -ρ 2q ρ 2q k∈Z ρ 2qk µ(Ω k ) log 1 + e 2 µ(Ω k )
.

By Hölder's inequality, it follows that

Ent µ F 2q + 1 -ρ 2q ρ 2q k∈Z ρ 2qk µ(Ω k ) log 1 + e 2 µ(Ω k ) 1 -ρ 2q ρ 2q    k∈Z µ(Ω k ) log 1 + e 2 µ(Ω k ) 1/(1-q) [Cap ν (Ω k , Ω k+1 )] q/(1-q)    1-q k∈Z ρ 2k Cap ν (Ω k , Ω k+1 ) q 1 -ρ 2q ρ 2q β q LS k∈Z ρ 2k Cap ν (Ω k , Ω k+1 ) q 1 -ρ 2q ρ 2q β q LS |∇F + | 2 dµ q .
The same computation shows that

Ent µ F 2q - 1 -ρ 2q ρ 2q β q LS |∇F -| 2 dµ q .
Summing both contributions in Inequality (2) completes the proof with

κ LS = 2 1-q q 1 -ρ 2q 1/q ρ -2 .

⊲ 3 Weak inequalities and explicit criteria

The goal of this section is to provide tractable criteria to establish L q -Poincaré and the L q -logarithmic Sobolev inequalities. The strategy here is to adapt results which have been obtained for weak Poincaré inequalities by Barthe, Cattiaux and Roberto in [START_REF] Barthe | Concentration for independent random variables with heavy tails[END_REF]. Two important results stated in this paper are extended to measures µ and ν which are not supposed to be absolutely continuous with respect to the volume measure, and given with proofs in Section 5.

L q Poincaré and weak Poincaré inequalities

Even if the constants β P and β LS provide an estimate of the best constant of the L q -Poincaré and the L q -logarithmic Sobolev inequalities, their expressions in terms of suprema taken over infinite sequences of sets are a priori difficult to use. In this section, we look for simpler criteria and establish upper and lower bounds on the constants.

The first idea is relate the L q -Poincaré inequality and the weak Poincaré inequality introduced by Röckner and the fourth author in [START_REF] Röckner | Weak Poincaré inequalities and L 2 -convergence rates of Markov semigroups[END_REF]. Let us define the oscillation of a bounded function f by Osc µ (f ) := supess µ f -infess µ f . If µ is absolutely continuous with respect to the volume measure and f is continuous, we can therefore define such a quantity as (sup f -inf f ) where f is the restriction of f to the support of µ. Our definition slightly differs from the one of [START_REF] Röckner | Weak Poincaré inequalities and L 2 -convergence rates of Markov semigroups[END_REF], which is based on supess µ |f -f dµ|.

Definition 3.1 Let µ and ν be respectively a probability measure and a positive measure on M . We shall say that (µ, ν) satisfies a weak Poincaré inequality if there exists a non-negative non increasing function on (0, +∞) ∋ s → β WP (s) such that, for any bounded function f ∈ C 1 (M ),

∀ s > 0 , Var µ (f ) β WP (s) |∇f | 2 dν + s Osc µ (f ) 2 .
Since Var µ (f ) µ((f -a) 2 ) for all a ∈ R, and as a special case, for a = (supess µ f +infess µ f )/2,

Var µ (f ) Osc µ (f ) 2 /4
, which means that we can assume that β WP (s) ≡ 0 for any s 1/4. Proposition 3.2 Let q ∈ [1/2, 1). If (µ, ν) satisfies the L q -Poincaré inequality, then it also satisfies a weak Poincaré inequality with β WP (s) = k β P s 1-1/q , k := (11 + 5 √ 5)/2.

Proof ⊳ By Theorem 2.3, the constant β P is finite. Let A ⊂ Ω ⊂ M with µ(Ω) 1/2 and consider the sequence:

(Ω k ) k∈Z such that Ω k = A for all k 0 Ω k = Ω and for all k > 0. Notice that Cap ν (Ω k , Ω k+1 ) = ∞ if Ω k = Ω k+1 . By definition of β P we get [µ(A)] 1/q β P Cap ν (A, Ω) .
Using the method of Barthe, Cattiaux and Roberto in [START_REF] Barthe | Concentration for independent random variables with heavy tails[END_REF], Theorem 2, one can then prove that (µ, ν) satisfies a weak Poincaré inequality with constant β WP (s). See Theorem 5.3 for a precise statement and apply it with γ(s) = β P s 1-1/q . ⊲ Another criterion to prove L q -Poincaré inequalities is based on Theorem 2.3.6 of [START_REF] Maz'ja | Springer Series in Soviet Mathematics[END_REF].

Theorem 3.3 ([Maz85]) Let q ∈ [1/2, 1). For all bounded open set Ω ⊂ M , if (Ω k ) k∈Z is an increasing sequence of open sets such that Ω k ⊂ Ω k+1 ⊂ Ω, then k∈Z µ(Ω k ) 1/(1-q) [Cap ν (Ω k , Ω k+1 )] q/(1-q) 1 1 -q µ(Ω) 0 t Φ(t) q/(1-q) dt ,
where Φ(t) := inf {Cap ν (A, Ω) : A ⊂ Ω , µ(A) t}.

Notice that as a consequence, β P (1 -q) -(1-q)/q t/Φ(t) L q/(1-q) (0,µ(Ω))

Corollary 3.4 Let q ∈ [1/2, 1) and assume that (µ, ν) satisfies a weak Poincaré inequality with function β WP . Then (µ, ν) satisfies satisfies a L q -Poincaré inequality with

β P κ P 4 1-q 1-q q β WP (•/4) L q 1-q (0,1/2)
where κ P is defined in Theorem 2.3.

Proof ⊳ The method is again similar to the one of Theorem 2 in [START_REF] Barthe | Concentration for independent random variables with heavy tails[END_REF]; see Theorem 5.3 in Section 5. If (µ, ν) satisfies a weak Poincaré inequality, then for all Ω ⊂ M with µ(Ω)

≤ 1/2, A ⊂ Ω, µ(A) 4 β WP (µ(A)/4) Cap ν (A, Ω) .
Hence for t > 0, Φ(t) t 4 β WP (t/4) , and the result follows. ⊲ Proposition 3.2 and Corollary 3.4 can be summarized as follows. For any q ∈ [1/2, 1),

L q -Poincaré =⇒ Weak Poincaré with β WP (s) = C s q-1 q =⇒ L q ′ -Poincaré ∀ q ′ ∈ (0, q) .
As we shall see in Section 3.5, weak Poincaré inequalities with β WP (s) = C s q-1 q do not imply L q ′ -Poincaré inequalities with q ′ = q.

3.2 L q -Logarithmic Sobolev and weak logarithmic Sobolev inequalities L q -Poincaré have been established in terms of weak Poincaré inequalities in Section 3.1. Very similar characterizations can be done for L q -logarithmic Sobolev in terms of weak logarithmic Sobolev inequalities. Recall first the definition of the weak logarithmic Sobolev inequality. Definition 3.5 Let µ and ν be respectively a probability measure and a positive measure on M . We sall say that (µ, ν) satisfies a weak logarithmic Sobolev inequality if there exists a positive and non-increasing function h WLS on R + such that for any bounded function f ∈ C 1 (M ),

∀ s > 0 , Ent µ f 2 h WLS (s) |∇f | 2 dν + s Osc µ (f ) 2 .
A preliminary step amounts to state the analogue of Proposition 3.2.

Proposition 3.6 Let q ∈ [1/2, 1). If µ is absolutely continuous with respect to the volume measure and (µ, ν) satisfies the L q -logarithmic Sobolev inequality, then it also satisfies a weak logarithmic Sobolev inequality with h WLS (s) = c q s 1-1/q for some positive constant c q .

Proof ⊳ By Legendre duality, for any non-negative function f ,

f 2q g dµ Ent µ f 2q ∀ g such that e g dµ 1 . Let A ⊂ Ω ⊂ M with µ(Ω) 1 and assume that f ∈ C 1 (M ) is such that I A f I Ω .
Then by the L q -logarithmic Sobolev inequality for (µ, ν), we get

A g dµ 1/q ≤ f 2q g dµ 1/q ≤ β LS |∇f | 2 dν .
Choose now g = -∞ on Ω c , g = 0 on Ω\A and g = log(1+1/(2µ(A)) on A so that e g dµ ≤ 1. Using I A ≤ f ≤ I Ω , a simple computation gives

Ent µ f 2q 1/q ≥ µ(A) log 1 + 1 2 µ(A) 1/q ≥ c 1/q µ(A) log 1 + e 2 µ(A) µ(A) log 1 + e 2 µ(A) 1-1/q
where c := log 2/ log(1 + 2e 2 ). Now optimizing in f leads to

Cap ν (A, Ω) ≥ c 1/q β LS µ(A) log 1 + e 2 µ(A) µ(A) log 1 + e 2 µ(A)
1-1/q , which entails the desired weak logarithmic Sobolev inequality by [CGG05, Th.

2.2] ⊲

Let us study the reciprocal property.

Theorem 3.7 Let q ∈ [1/2, 1). For any

Ω ⊂ M , (Ω k ) k∈Z such that Ω k ⊂ Ω k+1 ⊂ Ω, one gets k∈Z µ(Ω k ) log 1 + e 2 µ(Ω k ) 1/(1-q) [Cap ν (Ω k , Ω k+1 )] q/(1-q) 1 1 -q µ(Ω) 0 t ψ(t) q/(1-q) dt , where ψ(t) := inf Cap ν (A, Ω) : A ⊂ Ω , µ(A) log 1 + e 2 µ(A) t .
Proof ⊳ The proof is a direct adaptation of the proof of Theorem 3.3 (see pages 122 and 123 of [START_REF] Maz'ja | Springer Series in Soviet Mathematics[END_REF]). ⊲ As a consequence, we obtain the following characterization. Let c := log 2/(2 log(1 + 2e 2 )).

Corollary 3.8 Let q ∈ [1/2, 1). Assume that (µ, ν) satisfies a weak logarithmic Sobolev inequality with function h WLS . Then it satisfies a L q -logarithmic Sobolev inequality if 1/2 0 h WLS (c t) q/(1-q) dt < +∞ .

In such a case, the optimal constant of the L q -logarithmic Sobolev inequality is bounded by κ LS 4 1-q 1/2 0 h WLS (c t) q/(1-q) dt (1-q)/q , where κ LS is defined in Theorem 2.5.

Proof ⊳ By Theorem 2.2 in [START_REF] Cattiaux | Weak logarithmic sobolev inequalities and entropic convergence[END_REF] (also see Lemma 5.4), for all Ω ⊂ M with µ(Ω) ≤ 1/2, A ⊂ Ω,

µ(A) 2 log 1 + 1 2µ(A) h WLS µ(A) 2 log 1 + 1 2µ(A) Cap ν (A, Ω) , Picking c = log(2)/(2 log(1 + 2e 2 )), we thus get c µ(A) log 1 + e 2 µ(A) h WLS c µ(A) log 1 + e 2 µ(A)
Cap ν (A, Ω) .

Theorem 3.7 then gives the result because ψ(t) ≥ c t / h WLS (c t). ⊲

As a consequence of Proposition 3.6 and Corollary 3.8, we have the following result.

Corollary 3.9 Let q ∈ [1/2, 1) and assume that (µ, ν) satisfies a L q -logarithmic Sobolev inequality. Then for all 0 < q ′ < q, all Ω ⊂ M with µ(Ω) ≤ 1/2 and all sequence (Ω k ) k∈Z such that, for all k ∈ Z, Ω k ⊂ Ω k+1 ⊂ Ω, we have

β q ′ LS = sup      k∈Z µ(Ω k ) log 1 + e 2 µ(Ω k ) 1/(1-q ′ ) [Cap ν (Ω k , Ω k+1 )] q ′ /(1-q ′ )      (1-q ′ )/q ′ < +∞ .
This result completes that of Theorem 2.5. Unfortunately the equivalence is not proved for the L q -logarithmic Sobolev inequality. This however proves the counterpart of Proposition 2.2, namely the hierarchy between L q -logarithmic Sobolev inequalities. Summarizing the results of this subsection, we have for any q ∈ [1/2, 1),

L q -Logarithmic Sobolev =⇒ Weak logarithmic Sobolev with h WLS (s) = C s q-1 q =⇒ L q ′ -Logarithmic Sobolev ∀ q ′ ∈ (0, q) .

A Hardy condition on R

On R, to a probability measure µ and a positive measure ν with density ρ ν with respect to Lebesgue's measure, if m µ is a median of µ, we associate the functions

R(x) := µ([x, +∞)) , L(x) := µ((-∞, x]) , r(x) := x mµ 1 ρ ν dx and ℓ(x) := mµ x 1 ρ ν dx .
Proposition 3.10 Let q ∈ [1/2, 1], and let µ and ν be respectively a probability measure and a positive measure on R. With the above notations, (µ, ν) satisfies a L q -Poincaré inequality if

∞ mµ | r R | q/(1-q) dµ < ∞ and mµ -∞ | ℓ L | q/(1-q) dµ < ∞ .
Analogoulsy, (µ, ν) satisfies a L q -logarithmic Sobolev inequality if

∞ mµ | r R log R | q/(1-q) dµ < ∞ and mµ -∞ | ℓ L log L | q/(1-q) dµ < ∞ .
Proof ⊳ The proof of Theorem 3 in [START_REF] Barthe | Concentration for independent random variables with heavy tails[END_REF] can then be adapted to the setting of Proposition 3.10. It relies on weak Poincaré inequalities. Taking advantage of Var µ (f )

µ(|F -| 2 ) + µ(|F + | 2 )) with F ± := (f -f (m µ )
) ± , we notice that the weak Poincaré inequality

Var µ (f ) k γ(s) |∇f | 2 dν + s Osc µ (f ) 2 ∀ s ∈ (0, 1/2)
holds if we are able to prove independently for g = F + and g = F -that the inequality

µ(|g| 2 ) k γ(s) |∇g| 2 dν + s supess µ g 2 ∀ s ∈ (0, 1/2)
holds for some positive non increasing function γ on (0, 1) and for k := (11 + 5 √ 5)/2. For this purpose, we are going to rely on Lemma 5.2. If A and B are two measurable subsets of

M = (m µ , ∞) such that A ⊂ B and µ(B) 1/2, then Cap ν (A, B) Cap ν A, (m µ , ∞) = Cap ν (a, ∞), (m µ , ∞) = 1 r(a)
where a = inf A. By Lemma 5.2, it is therefore sufficient to prove that

1 r(a) R(a) γ(R(a)) ∀ a > m µ .
With the change of variables t = R(a), a > m µ , this amounts to require that

γ(t) t (r • R -1 )(t) .
With no restriction, we can choose γ(t) := t (r • R) -1 (t) for any t ∈ (0, 1/2).

By Corollaries 3.4 and 3.8, (µ, ν) satisfies a L q -Poincaré inequality if β WP ∈ L q/(1-q) (0, 1/2) and a L q -logarithmic inequality if h WLS ∈ L q/(1-q) (0, 1/2). ⊲

Examples

Let us illustrate the above results on L q -Poincaré and L q -logarithmic Sobolev inequalities with examples on M = R, in case of a single measure µ = ν. We start with some observations on L q -Poincaré inequalities.

(i) The classical Poincaré inequality implies a L q -Poincaré inequality for all q ∈ [1/2, 1) by Proposition 2.2. This gives an explicit estimate of the constant κ p,q of Theorem 1 of [START_REF] Carrillo | Entropy-Energy inequalities and improved convergence rates for nonlinear parabolic equations[END_REF] when p q = 2, that is κ p,q 2 p+2 π 2 . Recall indeed that 1/(4 π 2 ) is the Poincaré constant of the uniform measure on [0, 1), with periodic boundary conditions.

(ii) For p ∈ (0, 1), the probability measure dµ = e -|x| p /(2 Γ(1 + 1/p)) dx, x ∈ R, satisfies a weak Poincaré inequality with β WP (s) = C log(2/s) 2/p-2 for some positive constant C. As a consequence, µ also satisfies a L q -Poincaré inequality for all q ∈ [1/2, 1).

(iii) For α > 0, the probability measure dµ = α (1 + |x|) -1-α dx/2, x ∈ R, satisfies a weak Poincaré inequality with β WP (s) = C s -2/α for some positive constant C, see [START_REF] Röckner | Weak Poincaré inequalities and L 2 -convergence rates of Markov semigroups[END_REF][START_REF] Barthe | Concentration for independent random variables with heavy tails[END_REF]. Then for any q ∈ [1/2, 1), the probability measure µ satisfies a L q -Poincaré inequality if α > 2q/(1 -q). As in Example 1.1 of [START_REF] Wang | Orlicz-Poincaré inequalities[END_REF] in case of Orlicz-Poincaré inequalities (see below), the L q -Poincaré inequality is not satisfied for α = 2q/(1 -q).

Similar remarks can be done for L q -logarithmic Sobolev inequalities.

(i) Gross' logarithmic Sobolev inequality implies the L q -logarithmic Sobolev inequality, for all q ∈ [1/2, 1).

(ii) For p ∈ (0, 1), the probability measure dµ = e -|x| p /(2 Γ(1 + 1/p)) dx, x ∈ R, satisfies a weak logarithmic Sobolev inequality with h WLS (s) = C (log 1/s) (2-p)/p for some positive constant C, see [START_REF] Cattiaux | Weak logarithmic sobolev inequalities and entropic convergence[END_REF]. As a consequence, dµ also satisfies a L q -logarithmic Sobolev inequality for all q ∈ [1/2, 1).

(iii) For α > 0, the probability measure dµ = α (1 + |x|) -1-α dx/2, x ∈ R, satisfies the weak logarithmic Sobolev with h WLS (s) = C s -2/α (log(1/s)) (2+α)/α for some positive constant C, see [START_REF] Cattiaux | Weak logarithmic sobolev inequalities and entropic convergence[END_REF]. Then for any q ∈ [1/2, 1), the probability measure µ satisfies a L q -logarithmic Sobolev inequality if α > 2q/(1 -q).

At the light of the above examples L q -Poincaré and L q -logarithmic Sobolev inequalities seem to be satisfied by the same measures. This is not true as shown by the following example. On R, the probability measure

dµ = C α,β 1 + |x| 1+α |log x| β dx with α > 0 , β ∈ R ,
satisfies a weak Poincaré inequality with β WP (s) = C s -2/α (log(1/s)) -2β/α for some constant C > 0 and a weak logarithmic Sobolev inequality with h WLS (s) = C ′ s -2/α (log(1/s)) 1+2(1-β)/α for some positive constant C ′ . Fix α such that 2 α q 1-q = 1. Using Bertrand's integrals, the probability measure µ satisfies a L q -Poincaré inequality if and only if β > 1, and a L qlogarithmic Sobolev inequality if and only if β > 1 + 1/(1 -q). The two conditions clearly differ.

Orlicz-Poincaré inequalities

The L q -Poincaré inequality for q ∈ [1/2, 1) is a particular case of the Orlicz-Poincaré inequality introduced by Roberto and Zegarlinski in [START_REF] Roberto | Orlicz-Sobolev inequalities for sub-Gaussian measures and ergodicity of Markov semi-groups[END_REF] in the sub-Gaussian case and by the fourth author in [START_REF] Wang | Orlicz-Poincaré inequalities[END_REF], in the others cases. Proposition 3.11 Let q ∈ [1/2, 1]. Then the L q -Poincaré inequality holds for some C P > 0 if and only if the following Orlicz-Poincaré inequality

|f -µ(f )| 2q dµ 1/q ≤ C OP |∇f | 2 dµ .
(3) holds for some C OP > 0.

Proof ⊳ We notice that Var µ (f q ) ≤ (f q -a) 2 dµ for any a ∈ R, and as a special case for a = µ(f ). The function t → (t q -1)/(t -1) q is monotone increasing on (1, ∞) and converges to 1 as t → ∞, so that (t q -1) 2 (t -1) 2q for any t ∈ (1, ∞). This proves that Var µ (f q ) ≤ |f -µ(f )| 2q dµ. Inequality (3) therefore implies the L q -Poincaré inequality. On the other hand, let F := f -m, where m is a median of f . We have

f -µ(f ) 2q = F -µ(F ) 2q ≤ F 2q + µ(|F |) ≤ 2 F 2q , and hence µ(|f -µ(f )| 2q ) ≤ 2 2q (F 2q + + F 2q -) dµ .
As in the proof of Theorem 2.3, (3) follows from β P < ∞. ⊲

We are now in position to prove that weak Poincaré inequalities with β WP (s) = C s q-1 q and L q Poincaré inequalities are not equivalent (see the end of Section 3.1), or to be precise that Weak Poincaré

with β WP (s) = C s q-1 q =⇒ L q -Poincaré .
By Proposition 3.11 and according to [Wan06, Proposition 3.2], µ(f 2q/(1-q) ) is finite for any f ∈ C 1 with f Lip ≤ 1. An example for which a weak Poincaré inequality with β WP (s) = C s (q-1)/q holds while the L q Poincaré inequality is wrong is given by µ

= ν = α (1 + |x|) -1-α dx/2, x ∈ R, α = 2q/(1 -q)
, which satisfies a weak Poincaré inequality with β WP (s) = C s (q-1)/q for some positive constant C, and f (x

) := √ 1 + x 2 .
3.6 Perturbation, tensorization and concentration of measure Proposition 3.12 (i) Let µ, ν be respectively a probability measure and a positive measure on M . Assume that h is a bounded function on M and define the probability measure dµ h := Z -1 h e h dµ with Z h := e h dµ. If (µ, ν) satisfies a L q -Poincaré (resp. a L qlogarithmic Sobolev) inequality with constant C P (resp. C LS ), then (µ h , ν) satisfies a L q -Poincaré (resp. a L q -logarithmic Sobolev) inequality with constant C P exp (Osc µ (h)/q) (resp. C LS exp (Osc µ (h)/q)).

(ii) If for any i ∈ {1, • • • , n}, µ i is a probability measure and (µ i , µ i ) satisfies a L q -Poincaré (resp. a L q -logarithmic Sobolev) inequality with constant C Pi (resp. C LSi ), then (⊗ n i=1 µ i , ⊗ n i=1 µ i ) satisfies a L q -Poincaré (resp. L q -logarithmic Sobolev) inequality on M n with constant n 1/q-1 max 1 i n C Pi (resp. n 1/q-1 max 1 i n C LSi ).

(iii) If µ is a probability measure and (µ, µ) satisfies a L q -Poincaré inequality, then for any non-negative function f ∈ C 1 with f Lip ≤ 1 there exists t 0 > 0 and C > 0 such that

∀ t t 0 , µ({f ≥ t}) ≤ C t 2q/(1-q) . (4) 
Proof ⊳ The first point is based on the same proof as in Theorem 3.4.1 and 3.4.3 of [ABC + 00]. We observe that for any a ∈ R,

Var µ h (f q ) |f q -a| 2 dµ h e -Oscµ(h) |f q -a| 2 dµ ,
and apply the L q -Poincaré inequality with a = µ(f ). Similarly, with a = µ(f ), we get

Ent µ h (f q ) f q log f q a + f q -a dµ h e -Oscµ(h) Ent µ (f q ) .
The second point is almost the same as in Theorem 3.2.1 and 3.2.2 of [ABC + 00]: for all functions f ∈ C 1 (M ) (see Proposition 1.4.1 of [ABC + 00]), by sub-additivity of the variance,

Var ⊗ n i=1 µ i (f q ) n i=1
Var µ i (f q ) d⊗ n i=1 µ i .

Apply the L q -Poincaré inequality, Var µ i (f q )

1/q

C Pi |∇ x i f | 2 dµ i , component by compo- nent to get Var ⊗ n i=1 µ i (f q ) n i=1 C Pi |∇ x i f | 2 dµ i q d⊗ n i=1 µ i .
Hölder's inequality with q ∈ (0, 1), and the identity n i=1 x q i n 1-q ( n i=1 x i ) q for x i 0, give

Var ⊗ n i=1 µ i (f q ) n i=1 C Pi |∇f | 2 d⊗ n i=1 µ i q n 1-q max 1 i n C Pi n i=1 |∇f | 2 d⊗ n i=1 µ i q , with the notation n i=1 |∇ x i f | 2 = |∇f | 2 .
The proof for the L q -logarithmic Sobolev inequality is similar and relies on the sub-additivity of the entropy:

Ent ⊗ n i=1 µ i f 2q n i=1 Ent µ i f 2q d⊗ n i=1 µ i .
Property (iii) is inspired by the method of Aida, Masuda and Shigekawa in [START_REF] Aida | Logarithmic Sobolev inequalities and exponential integrability[END_REF]. Define a(t) := µ({f ≥ t}) and choose t 0 such that a(t 0 ) ≤ 1/2. For any t t 0 , define g := min 1 t (f -t) + , 1 . On the one hand, by the Cauchy-Schwarz inequality,

g q dµ 2 = f t 0 g q dµ 2 µ({f t 0 }) g 2q dµ 1 2 g 2q dµ ,
Var µ (g q ) 1 2 g 2q dµ 1 2 µ({f 2t}) = 1 2 a(2t) .

On the other hand, by the L q -Poincaré inequality, 1 2 a(2t)

1/q 1 2 Var µ (g q ) 1/q C P |∇g| 2 dµ C P µ({t ρ < 2t}) t 2
using the fact that, a.e., |∇f | 2 f Lip 1. With κ := 2 1/q C P , this proves that t 2 (a(2t)) 1/q + κ a(2t) κ a(t) ∀ t > t 0 , and as a consequence, t 2 (a(2t)) 1/q κ a(t) ∀ t > t 0 .

With c := κ q t -2q 0 and a n := a(2 n t 0 ), this means

a n+1 c 2 -2nq a q n ∀ n ∈ N .
If b n := 2 2n αn with (n + 1) α n+1 = n q α n -2 n q, then b n+1 c b q n and lim sup n→∞ b n is therefore bounded by the unique fixed point, b, of b → c b q . The sequence (α n ) n∈N converges to q/(1 -q). Hence a(t) a n O 2

-2n q 1-q as t → ∞ ,
where n is the integer part of log(t/t 0 )/ log 2. This concludes the proof. ⊲

4 Application to the weighted porous media equation

Let d be a positive integer and ψ ∈ C 2 (R d ) a function such that e -ψ dx < +∞. We define the probability measure

dµ ψ := e -ψ dx Z ψ
and the operator L on C 2 (R d ) by

∀ f ∈ C 2 (R d ) , Lf := ∆f -∇ψ • ∇f . Such a generator L is symmetric in L 2 µ ψ (R d ), ∀ f, g ∈ C 1 (R d ) , f Lg dµ ψ = -∇f •∇g dµ ψ .
We consider for m > 1 the nonlinear partial differential equation

∂u ∂t = L u m (WPME)
for t 0, x ∈ R d , corresponding to a non-negative initial condition u(0, x) = u 0 (x) for any x ∈ R d . Such an equation will be called the weighted porous media equation.

L 1 -contraction, existence and uniqueness

The existence proof is based on the method developed by Vázquez in [START_REF] Vázquez | An introduction to the mathematical theory of the porous medium equation[END_REF]. The main difference between the standard porous media and the weighted porous media equations is that a natural space to study weak solutions of (WPME) is a weighted space, for instance L 2 µ ψ (R d ), which contains all constant functions. We shall first consider the case of a bounded domain and then extend solutions to the whole space.

Consider first a bounded domain Ω ⊂ R d with smooth boundary. Denote by Q = Ω × [0, +∞), Σ = ∂Ω × [0, +∞). Let u 0 be a positive function in Ω which satisfies n • ∇u 0 = 0 on ∂Ω, where n = n(x) denotes the outgoing normal unit vector at x ∈ ∂Ω. We shall say that u is classical solution of

(WPME) in Ω if u is a C 2 function on Q such that    u t = L u m in Q u(•, 0) = u 0 in Ω n • ∇u = 0 on Σ (5) Lemma 4.1 (L 1 -contraction principle) Let Ω ⊂ R d be
a bounded domain with smooth boundary. If u, û are two classical solutions of (5) with smooth positive initial data u 0 and û0 , then for all t > τ > 0 one gets

Ω (u(t, x) -û(t, x)) + dµ ψ (x) Ω (u(τ, x) -û(τ, x)) + dµ ψ (x) Ω (u 0 (x) -û0 (x)) + dµ ψ (x) . Proof ⊳ Let χ ∈ C 1 (R) be such that 0 χ 1, χ(s) = 0 for s 0, χ ′ (s) > 0 for s > 0. We obtain Ω (u -û) t χ(u m -ûm ) dµ ψ = Ω L(u m -ûm ) χ(u m -ûm ) dµ ψ = - Ω |∇(u m -ûm )| 2 χ ′ (u m -ûm ) dµ ψ ,
using that n • ∇(u m -ûm ) = 0 on Σ. Therefore, by taking χ as a smooth approximation of the function sgn + 0 which is identically equal to 1 on (0, +∞) and to 0 on (-∞, 0], and observing that

∂ ∂t (u -û) + = sgn + 0 (u -û) ∂ ∂t (u -û) ,
we get that d dt Ω (u -û) + dµ ψ 0 .

⊲ Lemma 4.1 results in a Maximum Principle for (WPME).

Corollary 4.2 (Maximum Principle and uniqueness) Let Ω ⊂ R d be a bounded domain with smooth boundary and consider two classical solutions u, û of (5) with smooth positive initial data u 0 and û0 . If u 0 û0 in Ω, then u û in Q. As a consequence, the classical solution of (WPME) is unique.

We may now apply the existence theory for non degenerate parabolic equations as in [START_REF] Ladyženskaja | Linear and quasilinear equations of parabolic type[END_REF].

Proposition 4.3 Let Ω ⊂ R d be a bounded domain with smooth boundary. For any positive function u 0 ∈ C ∞ , there exits a classical solution u of (5) with initial datum u 0 . Moreover, for all τ 0,

Ω τ 0 |∇u(t, x) m | 2 dt dµ ψ (x) - Ω u m+1 (τ, x) dµ ψ (x) = - Ω u 0 (x) m+1 dµ ψ (x) .
Proof ⊳ Since the initial datum u 0 is positive on Ω, which is bounded, it follows that min(u 0 ) > 0. Standard quasilinear theory (see chapter 6 of [START_REF] Ladyženskaja | Linear and quasilinear equations of parabolic type[END_REF]) applies, thus providing us with a classical solution of (WPME). For all τ > 0, we have

Ω u m+1 (τ, x) dµ ψ (x) - Ω u 0 (x) m+1 dµ ψ (x) = Ω τ 0 ∂ ∂s u m+1 (s, x) dt dµ ψ (x) = -(m + 1) Ω τ 0 |∇u m | 2 dµ ψ dt
after an integration by parts. ⊲

The results obtained for a bounded domain can be extended to solutions in the whole euclidean space. Various results can be stated which are out of the scope of our paper, so let us make some simplifying assumptions.

Proposition 4.4 Let u 0 be a C 1 ∩ L m+1 µ ψ (R d ) positive initial condition. Then there exists a unique classical solution of the (WPME) with initial datum u 0 .

Proof ⊳ We can approximate the solution using the following scheme:

(1) Consider an initial datum which is uniformly bounded away from 0, for instance u n 0 = u 0 + 1/n.

(2) Consider a regularized drift term ψ n such that ψ n ≡ ψ in B(0, n) and ψ n (x) ≡ c n |x| 2 /2 in B(0, n) c , with c n > 0.

Example 4.6 Consider on R d the probability measure µ given by

dµ(x 1 , • • • , x n ) := Z -1 e W (x 1 ,••• ,xn) n i=1 dx i (1 + |x i |) 1+α ,
where Z is a normalization constant and W a bounded function on R d . By Proposition 3.12, the measure µ satisfies a L q -Poincaré inequality with q ∈ [1/2, 1) if α > 2q/(1 -q). Then the variance of the solution to the associated (WPME) converges to 0 as t → +∞ if m > (α+4)/α. 5 Appendix. A Variant of two results of [START_REF] Barthe | Concentration for independent random variables with heavy tails[END_REF] We present variants of Theorem 1 and 2 in [START_REF] Barthe | Concentration for independent random variables with heavy tails[END_REF], in which we remove any assumption on the absolute continuity of the measure µ with respect to the volume measure.

We recall that (µ, ν) satisfies a weak Poincaré inequality with associated function

β WP if Var µ (f ) β WP (s) |∇f | 2 dν + s Osc µ (f )
2 ∀ s ∈ (0, 1/4) , ∀ f ∈ C 1 (M ) .

See Definition 3.1 for details. Lemma 5.2 Let µ and ν be respectively a probability measure and a positive measure on M . For some θ ∈ (0, 1), consider a positive non increasing function γ on (0, θ) and assume that for every measurable subsets A, B of M such that A ⊂ B and µ(B) θ, Cap ν (A, B) ≥ µ(A) γ(µ(A)) .

Then for every function f ∈ C 1 (M ) such that µ(Ω + ) θ, Ω + := {f > 0}, and every s ∈ (0, 1) one has f 2 + ≤ k γ(s)

Ω + |∇f | 2 dν + s supess µ f 2 .
Proof ⊳ Fix s ∈ (0, 1). Let c = c(s) := inf{t ≥ 0 : µ({f + > t}) ≤ s}. If c = 0 then µ(Ω + ) ≤ s and Ω + f 2 + dµ ≤ s supess µ f 2 + . We also know that c supess µ f + and s 0 := µ({f + > c}) ≤ s. For a given ρ ∈ (0, 1), let Ω k := {f + > c ρ k } for any k ∈ N and define s k := µ(Ω k ). We observe that s 0 s s 1 s 2 . . . µ(Ω + ) θ .

Using the decomposition Ω + = Ω 0 + k∈N (Ω k+1 \ Ω k ), we get

Ω + f 2 + dµ = Ω 0 f 2 + dµ + k>0 Ω k+1 \Ω k f 2 + dµ s 0 supess µ f + 2 + k∈N c 2 ρ 2k (s k+1 -s k ) .
Since s 0 s, we can actually write

Ω + f 2 + dµ = Ω 0 f 2 + dµ + k>0 Ω k+1 \Ω k f 2 + dµ s supess µ f + 2 + k∈N c 2 ρ 2k (s k+1 -s k ) .
On the other hand, by noticing that

k∈N ρ 2k (s k+1 -s k ) = 1 ρ 2 -1 k∈N ρ 2k s k - 1 ρ 2 s 0 = 1 -ρ 2 ρ 2 k∈N ρ 2k (s k -s 0 ) ,
we get

Ω + f 2 + dµ ≤ s supess µ f + 2 + c 2 1 -ρ 2 ρ 2 k∈N ρ 2k (s k -s 0 ) .
By our assumptions, for any k ∈ N \ {0}, the function θ → s k -s 0 + θ s 0 γ(s+θ (s k -s)) is monotone increasing on (0, 1). Hence 

Ω k+1 \Ω k |∇F k | 2 dµ = 1 c 2 ρ 2k (1 -ρ) 2 Ω k+1 \Ω k |∇f + | 2 dµ .
Collecting the estimates, we get

Ω + f 2 + dµ ≤ s supess µ f + 2 + 1 ρ 2 1 + ρ 1 -ρ Ω + |∇f + | 2 dµ .
The result follows after optimizing on ρ, that is by taking ρ = √ 5 -1 /2. ⊲ Theorem 2 in [START_REF] Barthe | Concentration for independent random variables with heavy tails[END_REF] can be generalized in case of two measures µ and ν which are not absolutely continuous with respect to the volume measure as follows. The main idea is to apply Lemma 5.2 with θ = 1/2 and use the median of f to define subsets of M with measure at most equal to θ.

  Var γ (u) := u -u dγ 2 dγ and Ent γ (u) := u log u u dγ dγ . If u is a smooth solution of the Ornstein-Uhlenbeck equation, integrations by parts show that d dt Var γ (u) = -2 | ∇u | 2 dγ and d dt Ent γ (u) = -4 | ∇ √ u | 2 dγ .

  Theorem 5.1[START_REF] Barthe | Concentration for independent random variables with heavy tails[END_REF] Let µ and ν be respectively a probability measure and a positive measure on M . Assume that that (µ, ν) satisfies a weak Poincaré inequality for some non-negative non increasing function β WP (s). Let γ(s) := 4 β WP (s/4). Then for every measurable subsetsA, B of M such that A ⊂ B and µ(B) 1/2, Cap ν (A, B) ≥ µ(A) γ(µ(A)).Proof ⊳ The proof of[START_REF] Barthe | Concentration for independent random variables with heavy tails[END_REF] can be extended to the case of two measures µ and ν without changes. Let us sketch it for completeness. Let f be such that I A f I B and observe that Osc µ (f ) 1. By the Cauchy-Schwarz inequality, Henceβ WP (s) |∇f | 2 dν + s Var µ (f ) ≥ 1 2 f 2 dµ ≥ µ(A) 2 ,which completes the proof after noticing that a γ(a) = a 4 β WP (a/4) sup s∈(0,1/4) a/2-s β WP (s) with a/2 = µ(A)/2 1/4. ⊲ In the next result, we explicitly remove the assumption of absolute continuity with respect to the volume measure. Let k := (11 + 5 √ 5)/2 ≈ 11.0902.

.

  s k -s 0 γ(s) s k γ(s k ) Cap ν (Ω k , Ω k+1 ) , s k -s 0 ≤ γ(s) Cap ν (Ω k , Ω k+1 ) .DefineF k := min 1, 1 1 -ρ f + c ρ k -ρ + By definition of Cap ν (Ω k , Ω k+1 ), we have Cap ν (Ω k , Ω k+1 )

Acknowledgments. The authors thank Philippe Laurençot for helpful discussions on existence results for weighted porous media equations. They have been supported by the IFO project of the French Research Agency (ANR).

(3) Modify the operator L by considering L n f m := ∇(a n (f ) ∇f ) -∇ψ n • ∇f m where a 0 is a smooth positive function on [0, m n -(m-1) ] and such that a n (s) = m s m-1 for any s 1/n. The standard theory of parabolic equations applies and provides us with a solution u n of the regularized equation, ∂u n /∂t = L n u m n .

(4) Prove an L 1 -contraction principle as in Lemma 4.1, from which we deduce a Maximum Principle and the uniqueness of the approximating solution u n . We observe that u n is a solution of (WPME) with initial datum u n 0 , except that ψ has to be replaced by ψ n . (5) Barrier functions based on the solution of the heat equation can be provided, thus showing the conservation of the L 1 -norm (with respect to the measure dµ ψ ) and uniform estimates with respect to n ∈ N.

(6) Take a pointwise monotone limit as n → ∞ and obtain a weak solution u(t, x) of (WPME) with initial datum u 0 . Classical regularity properties (see for instance [LSU67, Chap. 6]) prove that the weak solution is a classical solution on R d . (i) If (µ ψ , µ ψ ) satisfies a L q -Poincaré inequality, q = 2/(m + 1), for some constant C P > 0, then for any initial condition u 0 ∈ L 2 (µ ψ ), we have

.

Reciprocally, if the above inequality is satisfied for any u 0 , then (µ ψ , µ ψ ) satisfies a L q -Poincaré inequality with constant C P .

(ii) If (µ ψ , µ ψ ) satisfies a L q -logarithmic Sobolev inequality, q = 1/m, for some constant C LS > 0, then for any non-negative initial condition u 0 such that Ent µ ψ (u 0 ) < ∞, we have

.

Reciprocally, if the above inequality is satisfied for any u 0 , then (µ ψ , µ ψ ) satisfies a L q -logarithmic Sobolev inequality with constant C LS .

Proof ⊳ Let us briefly sketch the first result.

One can now apply the L q -Poincaré inequality with u = f 2/(m+1) , q = 2/(m + 1), to get

.

A simple integration of this differential inequality gives the result. Reciprocally, a derivation at t = 0 gives the L q -Poincaré inequality with constant C P . The proof in the second case is similar. ⊲ Theorem 5.3 Let µ and ν be respectively a probability measure and a positive measure on M . Consider a positive non increasing function γ on (0, 1/2) and assume that for every measurable subsets A, B of M such that A ⊂ B and µ(B) 1/2,

.

Then with k := (11 + 5 √ 5)/ 2, for every function f ∈ C 1 (M ) and every s ∈ (0, 1/4) one has

Proof ⊳ Fix s ∈ (0, 1/4) and let m be a median of f with respect to µ. Denote by Ω + and Ω -the sets {f > m} and {f < m}. By definition of m, µ(Ω ± ) 1/2. By definition of the variance, we also know that

We can apply Lemma 5.2 to F + and F -with θ = 1/2 and get the result using the fact that, if a = infess Proof ⊳ As in the proof of Proposition 3.6, it holds that Cap ν (A, B) ≥ µ(A) log 1 + e 2 /µ(A) -s h WLS (s) .

⊲

Reciprocally, if the capacity measure criterion of Lemma 5.4 is satisfied, it is not clear that a weak logarithmic Sobolev inequality holds unless we assume the absolute continuity of µ with respect to the volume measure. See Theorem 2.2 of [START_REF] Cattiaux | Weak logarithmic sobolev inequalities and entropic convergence[END_REF] in such a case.