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We show that the expansion of an initially confined interacting 1D Bose-Einstein condensate can exhibit
Anderson localization in a weak random potential with correlation lengthσR. For speckle potentials the Fourier
transform of the correlation function vanishes for momentak > 2/σR so that the Lyapunov exponent vanishes
in the Born approximation fork > 1/σR. Then, for the initial healing length of the condensateξin > σR the
localization is exponential, and forξin < σR it changes to algebraic.

PACS numbers: 05.30.Jp,03.75.Kk,03.75.Nt,05.60.Gg

Disorder in quantum systems can have dramatic effects,
such as strong Anderson localization (AL) of non-interacting
particles in random media [1]. The main paradigm of AL is
that the suppression of transport is due to a destructive inter-
ference of particles (waves) which multiply scatter from the
modulations of a random potential. AL is thus expected to
occur when interferences play a central role in the multiple
scattering process [2]. In three dimensions, this requiresthe
particle wavelength to be larger than the scattering mean free
path,l, as pointed out by Ioffe and Regel [3]. One then finds a
mobility edge at momentumkm = 1/l, below which AL can
appear. In one and two dimensions, all single-particle quan-
tum states are predicted to be localized [4, 5, 6], although for
certain types of disorder one has an effective mobility edgein
the Born approximation (see Ref. [7] and below). A crossover
to the regime of AL has been observed in low dimensional
conductors [8, 9], and recently, evidences of AL have been
obtained for light waves in bulk powders [10] and in 2D dis-
ordered photonic lattices [11]. The subtle question is whether
and how the interaction between particles can cause delocal-
ization and transport, and there is a long-standing discussion
of this issue for the case of electrons in solids [12].

Ultracold atomic gases can shed new light on these prob-
lems owing to an unprecedented control of interactions, a per-
fect isolation from a thermal bath, and the possibilities of
designing controlled random [13, 14, 15, 16, 17] or quasi-
random [18] potentials. Of particular interest are the studies of
localization in Bose gases [19, 20] and the interplay between
interactions and disorder in Bose and Fermi gases [21, 22].
Localization of expanding Bose-Einstein condensates (BEC)
in random potentials has been reported in Refs. [15, 16, 17].
However, this effect isnot related to AL, but rather to the
fragmentation of the core of the BEC, and to single re-
flections from large modulations of the random potential in
the tails [15]. Numerical calculations [15, 23, 24] confirm
this scenario for parameters relevant to the experiments of
Refs. [15, 16, 17].

In this Letter, we show that the expansion of a 1D interact-
ing BEC can exhibit AL in a random potential without large
or wide modulations. Here, in contrast to the situation in

Refs. [15, 16, 17], the BEC is not significantly affected by
a single reflection. For thisweak disorderregime we have
identified the following localization scenario on the basisof
numerical calculations and the toy model described below.

At short times, the disorder does not play a significant
role, atom-atom interactions drive the expansion of the BEC
and determine the long-time momentum distribution,D(k).
According to the scaling theory [25],D(k) has a high-
momentum cut-off at1/ξin, whereξin = ~/

√
4mµ andµ are

the initial healing length and chemical potential of the BEC,
andm is the atom mass. When the density is significantly de-
creased, the expansion is governed by the scattering of almost
non-interacting waves from the random potential. Each wave
with momentumk undergoes AL on a momentum-dependent
lengthL(k) and the BEC density profile will be determined
by the superposition of localized waves. For speckle poten-
tials the Fourier transform of the correlation function vanishes
for k > 2/σR, whereσR is the correlation length of the disor-
der, and the Born approach yields an effective mobility edgeat
1/σR. Then, if the high-momentum cut-off is provided by the
momentum distributionD(k) (for ξin > σR), the BEC isexpo-
nentially localized, whereas if the cut-off is provided by the
correlation function of the disorder (forξin < σR) the localiza-
tion is algebraic. These findings pave the way to observe AL
in experiments similar to those of Refs. [15, 16, 17].

We consider a 1D Bose gas with repulsive short-range in-
teractions, characterized by the 1D coupling constantg and
trapped in a harmonic potentialVho(z) = mω2z2/2. The
finite size of the trapped sample provides a low-momentum
cut-off for the phase fluctuations, and for weak interactions
(n≫ mg/~2, wheren is the 1D density), the gas forms a true
BEC at low temperatures [26].

We treat the BEC wave functionψ(z, t) using the Gross-
Pitaevskii equation (GPE). In the presence of a superimposed
random potentialV (z), this equation reads:

i~∂tψ =

[−~
2

2m
∂2

z + Vho(z) + V (z) + g|ψ|2 − µ

]
ψ, (1)

whereψ is normalized by
∫

dz|ψ|2 = N , with N being the
number of atoms. It can be assumed without loss of gener-
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ality that the average ofV (z) over the disorder,〈V 〉, van-
ishes, while the correlation functionC(z) = 〈V (z′)V (z′+z)〉
can be written asC(z) = V 2

R c(z/σR), where the reduced
correlation functionc(u) has unity height and width. So,
VR =

√
〈V 2〉 is the standard deviation, andσR is the corre-

lation length of the disorder.
The properties of the correlation function depend on the

model of disorder. Although most of our discussion is gen-
eral, we mainly refer to a 1D speckle random potential [27]
similar to the ones used in experiments with cold atoms
[13, 14, 15, 16, 17]. It is a random potential with a truncated
negative exponential single-point distribution [27]:

P [V (z)] =
exp[−(V (z) + VR)/VR]

VR
Θ

(
V (z)

VR
+ 1

)
, (2)

whereΘ is the Heaviside step function, and with a correlation
function which can be controlled almost at will [17]. For a
speckle potential produced by diffraction through a 1D square
aperture [17, 27], we have

C(z) = V 2
R c(z/σR); c(u) = sin2(u)/u2. (3)

Thus the Fourier transform ofC(z) has a finite support:

Ĉ(k)=V 2
R σRĉ(kσR); ĉ(κ)=

√
π/2(1−κ/2)Θ(1−κ/2), (4)

so thatĈ(k) = 0 for k > 2/σR. This is actually a general
property of speckle potentials, related to the way they are pro-
duced using finite-size diffusive plates [27].

We now consider the expansion of the BEC, using the fol-
lowing toy model. Initially, the BEC is assumed to be at
equilibrium in the trapping potentialVho(z) and in the ab-
sence of disorder. In the Thomas-Fermi regime (TF) where
µ ≫ ~ω, the initial BEC density is an inverted parabola,
n(z) = (µ/g)(1 − z2/L2

TF)Θ(1 − |z|/LTF), with LTF =√
2µ/mω2 being the TF half-length. The expansion is in-

duced by abruptly switching off the confining trap at time
t = 0, still in the absence of disorder. Assuming that the
condition of weak interactions is preserved during the expan-
sion, we work within the framework of the GPE (1). Repulsive
atom-atom interactions drive the short-time (t . 1/ω) expan-
sion, while at longer times (t ≫ 1/ω) the interactions are not
important and the expansion becomes free. According to the
scaling approach [25], the expanding BEC acquires a dynam-
ical phase and the density profile is rescaled, remaining an
inverted parabola:

ψ(z, t) =
(
ψ[z/b(t), 0]/

√
b(t)

)
exp {imz2ḃ(t)/2~b(t)},

(5)
where the scaling parameterb(t) = 1 for t = 0, andb(t) ≃√

2ωt for t≫ 1/ω [15].
We assume that the random potential is abruptly switched

on at a timet0 ≫ 1/ω. Since the atom-atom interactions are
no longer important, the BEC represents a superposition of
almost independent plane waves:

ψ(z, t) =

∫
dk√
2π
ψ̂(k, t) exp(ikz). (6)

The momentum distributionD(k) follows from Eq. (5). For
t≫ 1/ω, it is stationary and has a high-momentum cut-off at
the inverse healing length1/ξin:

D(k) = |ψ̂(k, t)|2 ≃ 3Nξin

4
(1 − k2ξ2in)Θ(1 − kξin), (7)

with the normalization condition
∫ +∞

−∞ dkD(k) = N .
According to the Anderson theory [1],k-waves will expo-

nentially localize as a result of multiple scattering from the
random potential. Thus, componentsexp(ikz) in Eq. (6) will
become localized functionsφk(z). At large distances,φk(z)
decays exponentially, so thatln |φk(z)| ≃ −γ(k)|z|, with
γ(k) = 1/L(k) the Lyapunov exponent, andL(k) the local-
ization length. The AL of the BEC occurs when the indepen-
dentk-waves have localized. Assuming that the phases of the
functionsφk(z), which are determined by the local properties
of the random potential and by the timet0, are random, un-
correlated functions for different momenta, the BEC density
is given by

n0(z) ≡ 〈|ψ(z)|2〉 = 2

∫ ∞

0

dkD(k)〈|φk(z)|2〉, (8)

where we have taken into account thatD(k) = D(−k) and
〈|φk(z)|2〉 = 〈|φ−k(z)|2〉.

We now briefly outline the properties of the functionsφk(z)
from the theory of localization of single particles. For a weak
random potential, using the phase formalism [28] the state
with momentumk is written in the form:

φk(z) = r(z) sin [θ(z)] ; ∂zφk = kr(z) cos [θ(z)] , (9)

and the Lyapunov exponent is obtained from the relation
γ(k) = − lim|z|→∞〈log [r(z)] /|z|〉. If the disorder is suffi-
ciently weak, then the phase is approximatelykz and solving
the Schrödinger equation up to first order in|∂zθ(z)/k − 1|,
one finds [28],

γ(k) ≃ (
√

2π/8σR)(VR/E)2(kσR)
2ĉ(2kσR), (10)

whereE = ~
2k2/2m. Such a perturbative (Born) approxima-

tion assumes the inequality

VRσR ≪ (~2k/m)(kσR)
1/2, (11)

or equivalentlyγ(k) ≪ k. Typically, Eq. (11) means that the
random potential does not comprise large or wide peaks.

Deviations from a pure exponential decay ofφk are ob-
tained using diagrammatic methods [29], and one has

〈|φk(z)|2〉 =
π2γ(k)

2

∫ ∞

0

du u sinh(πu) × (12)

(
1 + u2

1 + cosh(πu)

)2

exp{−2(1 + u2)γ(k)|z|},

whereγ(k) is given by Eq. (10). Note that at large dis-
tances (γ(k)|z| ≫ 1), Eq. (12) reduces to〈|φk(z)|2〉 ≃(
π7/2/64

√
2γ(k)|z|3/2

)
exp{−2γ(k)|z|}.
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The localization effect is closely related to the properties of
the correlation function of the disorder. For the 1D speckle
potential the correlation function̂C(k) has a high-momentum
cut-off 2/σR, and from Eqs. (4) and (10) we find

γ(k)=γ0(k)(1−kσR)Θ(1−kσR); γ0(k)=
πm2V 2

RσR

2~4k2
. (13)

Thus, one hasγ(k) > 0 only for kσR < 1 so that there is
a mobility edge at1/σR in the Born approximation. Strictly
speaking, on the basis of this approach one cannot say that the
Lyapunov exponent is exactly zero fork > 1/σR. However,
direct numerical calculations of the Lyapunov exponent show
that fork > 1/σR it is at least two orders of magnitude smaller
thanγ0(1/σR) representing a characteristic value ofγ(k) for
k approaching1/σR. ForσR & 1µm, achievable for speckle
potentials [17] and forVR satisfying Eq. (11) withk ∼ 1/σR,
the localization length atk > 1/σR exceeds10cm which is
much larger than the system size in the studies of quantum
gases. Therefore,k = 1/σR corresponds to an effective mo-
bility edge in the present context. We stress that it is ageneral
feature of optical speckle potentials, owing to the finite sup-
port of the Fourier transform of their correlation function.

We then use Eqs. (7), (12) and (13) for calculating the den-
sity profile of the localized BEC from Eq. (8). Since the high-
momentum cut-off ofD(k) is1/ξin, and for the speckle poten-
tial the cut-off ofγ(k) is 1/σR, the upper bound of integration
in Eq. (8) iskc = min{1/ξin, 1/σR}. As the density pro-
file n0(z) is a sum of functions〈|φk(z)|2〉 which decay expo-
nentially with a rate2γ(k), the long-tail behavior ofn0(z) is
mainly determined by the components with the smallestγ(k),
i.e. those withk close tokc, and integrating in Eq. (8) we limit
ourselves to leading order terms in Taylor series forD(k) and
γ(k) atk close tokc.

For ξin > σR, the high-momentum cut-offkc in Eq. (8) is
set by the momentum distributionD(k) and is equal to1/ξin.
In this case all functions〈|φk(z)|2〉 have a finite Lyapunov
exponent,γ(k) > γ(1/ξin), and the whole BEC wave function
is exponentially localized. For the long-tail behavior ofn0(z),
from Eqs. (7), (8) and (12) we obtain:

n0(z) ∝ |z|−7/2 exp{−2γ(1/ξin)|z|}; ξin > σR. (14)

Equation (14) assumes the inequalityγ(1/ξin)|z| ≫ 1, or
equivalentlyγ0(kc)(1 − σR/ξin)|z| ≫ 1.

For ξin < σR, kc is provided by the Lyapunov expo-
nents of〈|φk(z)|2〉 so that they do not have a finite lower
bound. Then the localization of the BEC becomesalge-
braic and it is onlypartial. The part of the BEC wave func-
tion, corresponding to the waves with momenta in the range
1/σR < k < 1/ξin, continues to expand. Under the condition
γ0(kc)(1 − ξ2in/σ

2
R )|z| ≫ 1 for the asymptotic density distri-

bution of localized particles, Eqs. (8) and (12) yield:

n0(z) ∝ |z|−2; ξin < σR. (15)

Far tails ofn0(z) will be always described by the asymp-
totic relations (14) or (15), unlessξin = σR. In the special case

of ξin = σR, or for ξin very close toσR and at distances where
γ0(kc)|(1 − ξ2in/σ

2
R )z| ≪ 1, still assuming thatγ0(kc)|z| ≫ 1

we findn0(z) ∝ |z|−3.
Since the typical momentum of the expanding BEC is

1/ξin, according to Eq. (11), our approach is valid forVR ≪
µ(ξin/σR)

1/2. For a speckle potential, the typical momen-
tum of the waves which become localized is1/σR and for
ξin < σR the restriction is stronger:VR ≪ µ(ξin/σR)

2. These
conditions were not fulfilled, neither in the experiments of
Refs. [15, 16, 17], nor in the numerics of Refs. [15, 23, 24].

We now present numerical results for the expansion of a
1D interacting BEC in a speckle potential, performed on the
basis of Eq. (1). The BEC is initially at equilibrium in the
combined random plus harmonic potential, and the expansion
of the BEC is induced by switching off abruptly the confining
potential at timet = 0 as in Refs. [15, 16, 17, 20]. The dif-
ferences from the model discussed above are that the random
potential is already present for the initial stationary conden-
sate and that the interactions are maintained during the whole
expansion. This, however, does not significantly change the
physical picture.

The properties of the initially trapped BEC have been dis-
cussed in Ref. [22] for an arbitrary ratioξin/σR. Forξin ≪ σR,
the BEC follows the modulations of the random potential,
while for ξin & σR the effect of the random potential can
be significantly smoothed. In both cases, the weak random
potential only slightly modifies the density profile [22]. At
the same time, the expansion of the BEC is strongly sup-
pressed compared to the non-disordered case. This is seen
from the time evolution of the rms size of the BEC,∆z =√
〈z2〉 − 〈z〉2, in the inset of Fig. 1. At large times, the BEC

density reaches an almost stationary profile. The numerically
obtained density profile in Fig. 1 shows an excellent agree-
ment with a fit ofn0(z) from Eqs. (7), (8) and (12), where a
multiplying constant was the only fitting parameter. Note that
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Figure 1: (color online) Density profile of the localized BECin a
speckle potential att = 150/ω. Shown are the numerical data (black
points), the fit of the result from Eqs. (7), (8) and (12) [red solid
line], and the fit of the asymptotic formula (14) [blue dottedline].
Inset: Time evolution of the rms size of the BEC. The parameters are
VR = 0.1µ, ξin = 0.01LTF, andσR = 0.78ξin.
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Figure 2: (color online) a) Lyapunov exponentγeff in units of1/LTF

for the localized BEC in a speckle potential, in the regimeξin >
σR. The solid line isγ(1/ξin) from Eq. (13). b) Exponent of the
power-law decay of the localized BEC in the regimeξin < σR. The
parameters are indicated in the figure.

Eq. (8) overestimates the density in the center of the localized
BEC, where the contribution of waves with very smallk is
important. This is because Eq. (13) overestimatesγ(k) in this
momentum range, where the criterion (11) is not satisfied.

We have also studied the long-tail asymptotic behavior of
the numerical data. Forξin > σR, we have performed fits of
|z|−7/2e−2γeff|z| to the data. The obtainedγeff are in excel-
lent agreement withγ(1/ξin) following from the prediction of
Eq. (14), as shown in Fig. 2a. Forξin < σR, we have fitted
|z|−βeff to the data. The results are plotted in Fig. 2b and show
that the long-tail behavior of the BEC density is compatible
with a power-law decay withβeff ≃ 2, in agreement with the
prediction of Eq. (15).

In summary, we have shown that in weak disorder the ex-
pansion of an initially confined interacting 1D BEC can ex-
hibit Anderson localization. Importantly, the high-momentum
cut-off of the Fourier transform of the correlation function for
1D speckle potentials can change localization from exponen-
tial to algebraic. Our results draw prospects for the obser-
vation of Anderson localization of matter waves in experi-
ments similar to those of Refs. [15, 16, 17]. ForVR = 0.2µ,
ξin = 3σR/2 andσR = 0.27µm, we find the localization length
L(1/ξin) ≃ 460µm. These parameters are in the range of ac-
cessibility of current experiments [17]. In addition, the local-
ized density profile can be imaged directly, which allows one
to distinguish between exponential and algebraic localization.
Finally, we would like to raise an interesting problem for fu-
ture studies. The expanding and then localized BEC is an ex-
cited Bose-condensed state as it has been made by switching
off the confining trap. Therefore, the remaining small interac-
tion between atoms should cause the depletion of the BEC and
the relaxation to a new equilibrium state. The question is how
the relaxation process occurs and to which extent it modifies
the localized state.
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