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We show that the expansion of an initially confined interagtlD Bose-Einstein condensate can exhibit
Anderson localization in a weak random potential with clatien lengthox. For speckle potentials the Fourier
transform of the correlation function vanishes for moménta 2/0= so that the Lyapunov exponent vanishes
in the Born approximation fok > 1/0x. Then, for the initial healing length of the condensgte> or the
localization is exponential, and f@gn < or it changes to algebraic.

PACS numbers: 03.75.Nt,03.75.Kk,79.60.Ht

Disorder in quantum systems can have dramatic effectgple, atom-atom interactions drive the expansion of the BEC
such as strong Anderson localization of non-interacting pa and determine the long-time momentum distributi@r{k).
ticles in random medie[|[1]. The main paradigm of AndersonAccording to the scaling theory|]21]])(k:) has a high-
localization (AL) is that the suppression of transportigim ~ momentum cut-off at /&, where&, = h/\/4mu andy are
a destructive interference of particles (waves) which iplyit  the initial healing length and chemical potential of the BEC
scatter from the modulations of a random potential. AL isthu andm is the atom mass. When the density is significantly
expected to occur when the interference effects play aaentrdecreased, the expansion is governed by the scattering of al
role in the multiple scattering proceﬂs [2]. In 3D, thisriegst  most non-interacting particles (waves) from the random po-
the particle wavelength larger than the scattering mean fretential. Each wave with momentui undergoes Anderson
path,/, as pointed out by loffe and Regﬂ [3]. One then finds alocalization on a momentum-dependent lendgtt) and the
mobility edge at momenturh, = 1/1, below which AL can  BEC density profile will be determined by the superposition
appear. In 1D and 2D all single-particle quantum states aref localized waves. For speckle potentials used in quantum
predicted to be Iocalizecﬂ[:ﬂ ﬂ 6], although for certaineyp gases@OIj]B.iDlS] the Fourier transform of the cor@ati
of disorder one has an effective mobility edge in the Born apfunction vanishes fok > 2/0%, whereoy, is the correlation
proximation (see Ref[[?] and below). The subtle question idength of the disorder, and the Born approach yields an ef-
whether and how the interaction between particles can caudective mobility edge at /or. Then, if the high-momentum
delocalization and transport, and there is a long-standiigqg ~ cut-off is provided by the momentum distributid(%) (for
cussion of this issue for the case of electrons in soﬁbs [8]. &n > ogr), the BEC isexponentiallylocalized, whereas if the

Ultracold atomic gases can shed new light on these prokeut-off is provided by the correlation function of the dider
lems owing to an unprecedented control of interactionsya pe (for §in < oz) the localization isalgebraic These findings
fect isolation from a thermal bath, and the possibilitieslef ~ pave the way to observe AL in experiments similar to those of
signing controlled randonfl[§; ILP.J1] 12] 13] or quasi-rando Refs. [11.[1p[ 13].

[L4] potentials. Of particular interest are the studiesootl- We consider a 1D Bose gas with repulsive short-range in-
ization in Bose gase§ [11F.]16] and the interplay betweenm-inte teractions, characterized by the 1D coupling consiaand
actions and disorder in Bose and Fermi gakds[[17, 18]. Locafrapped in an external harmonic potentigd(z) = mw?z%/2.
ization of expanding Bose-Einstein condensates (BECYyin ra The finite size of the sample introduced by the trapping po-
dom potentials has been reported in Refs] [1L[ 1, 13]. Howtential provides a low-momentum cut-off for the phase fluc-
ever, this effect imotrelated to AL, but rather to the fragmen- tuations, and in the weakly interacting regime>§ mg/h?,
tation of the core of the BEC, and to single reflections fromwheren is the 1D density), the gas forms a true BEC at suffi-
large modulations of the random potential in the tafid [11].ciently low temperature$ [p2].

Numerical calculationd [11, [L§, 0] confirm this scenarip fo  We treat the BEC wave function(z, ) using the mean-
parameters relevant to the experiments of R§f§.[[11, 32, 13] field Gross-Pitaevskii equation (GPE). In the presence of a

In this Letter, we show that the expansion of a 1D interact-Superimposed homogeneous random potefitia) (B3l this
ing BEC can exhibit AL in a random potential without large €guation reads:
or wide modulations. Here, in contrast to the situation in _p2
Refs. [L1,[2p[13], the BEC is not significantly affected by ihdyy = 2—35 + Vao(2) + V(2) + glo* — p| ¥, (1)

a single reflection. For thisveak disorderegime we have m
identified the following localization scenario on the basis where is normalized byfdz|w|2 = N, with N being the
numerical calculations and the toy model described below. number of atoms. It can be assumed without loss of gener-

At short times, the disorder does not play a significantality that the average o¥ (z) over the disorder{V"), van-



2

ishes, while the correlation functia@i(z) = (V(2')V(2’+z))  The momentum distributio®(k) follows from Eq. (§). For
can be written ag’(z) = ViZc(z/ow), where the reduced t>> 1/w, itis stationary and has a high-momentum cut-off at
correlation functionc(u) has unity height and width. So, the inverse healing lengtty¢:
Tk = /(V?) is the standard deviation, amdg is the corre- N 3N
lation length of the disorder. D(k) = |v(k, )| ~ T’”(l — kK201 — k&n), (7)
The properties of the correlation function depend on the

model of disorder. Although most of our discussion is gen-with the normalization conditiogfj@fdkl)(k) = N.
eral, we mainly refer to a 1D speckle random potenfia) [24] According to the Anderson theor{] [1k-waves will ex-
similar to the ones used in experiments with cold atomsyonentially localize as a result of multiple scatteringnfro
6. 19, [11[1R[13]. 1t is a random potential with a truncatedthe modulations of the random potential. Thus, components
negative exponential single-point distributign][24]: exp(ikz) in Eq. () will become localized functiongy, (z).

- At large distances the functiogy, (z) decays exponentially,
expl (V(’i/) + VR)/VRl (Vé’” + 1) . (2)  sothatin|¢p(2)| ~ —v(k)|z|, with y(k) = 1/L(k) being the

R R Lyapunov exponent, anl(k) the localization length. The AL

where© is the Heaviside step function, and with a correlationof the BEC occurs when the independéntaves have local-
function which can be controlled almost at will [13]. For a ized. Assuming that the phases of the functigpéz), which
speckle potential produced by diffraction through a 1D squa are determined by the local properties of the random poten-

PIV(2) =

aperture [1334], we have tial and by the time,, are random uncorrelated functions for
Cl2) = V2e(z)o):  clu) = sin® () /2. 3) different momenta, the BEC density is given by
The key point is that the Fourier transform@fz) has a finite no(z) = ([v(2)%) = 2/ dkD(k)(|ox(2)[?),  (8)
0

support:

. N N where we have taken into account tiiatk) = D(—k) and
C(k):VRQO‘RC(k’O’R); C(Ii)z\/71‘/2(1—%;/2)@(1—%;/2), 4) <|¢k(z)|2> _ <|¢—k(z)|2>

We now briefly outline the properties of the functiahg z)

so thatC'(k) = 0 for k > 2/0.. This is a general property of - : ;
(k) > 2/o g properyy from the theory of localization of single particles. For aake

speckle potentials, related to the way they are producedjusi . . .
b b ythey P o random potential, using the phase formahs@ [23] the state

finite-size diffusive plateq [24]. i N & written in the form:
We now consider the expansion of the BEC, using the fol VIt MOMENtUmy IS written inthe form-

lowing toy model. Initially, the BEC is assumed to be at ¢, (2) = r(2)sin[0(2)]; 8.0 = kr(z) cos[0(2)], (9)
equilibrium in the trapping potentidio(z) and in the ab-

sence of disorder. In the Thomas-Fermi regime (TF) wher@nd the Lyapunov exponent is obtained from the relation
1 > hw, the initial BEC density is an inverted parabola, 7(k) = —limy,|_(log[r(2)] /[z]). If the disorder is suffi-
n(z) = (u/g)(1 — 22/L2)O(1 — |z|/Lte), with Lte =  ciently weak, then the phase is approximatetyand solving
\/2p1/mw? being the TF half-length. The expansion is in- the Schrodinger equation up to first orderdné(z)/k — 1,
duced by abruptly switching off the confining trap at time Oné finds [28],

t = 0, still in the absence of disorder. Assuming that the - 2 2

condition of weak interactions is preserved during the expa (k) = (V2 /80v)(Ve/ B)*(kow)*@(2korw),  (10)
sion, we work within the framework of the GPR (1). RepulsivewhereE = /2k?/2m. Such a perturbative (Born) approxima-
atom-atom interactions drive the short-time{ 1/w) expan-  tion assumes the inequality

sion, while at longer timeg (> 1/w) the interactions are not ) 1/2
important and the expansion becomes free. According to the Vrow < (°k/m) (ko) ™", (11)

scaling approactf [P1], the expanding BEC acquires a dynamyhich is equivalent toy(k) < k. Typically, Eq. [T}L) means
ical phase and the density profile is rescaled, remaining aghat the random potential does not comprise large or wide
inverted parabola: peaks.

B T Deviations from a pure exponential decay @f are ob-
P(z,t) = (w[z/b(t), 0]/«/b(t)) exp {imz b(t)/2hb(t)}£5) tained using diagrammatic methogfs][25], and one has

where the scaling parametit) = 1 for t = 0, andb(t) ~ 2y _ mo(k) /Ood sin y 12

V2wt fort > 1/w [@]. (9% ()1 2 0 u u sinh(ru) (12)
We assume that the random potential is abruptly switched 1+ u2 2

on at a timet, > 1/w. Since the atom-atom interactions are <m> exp{—2(1 +u®)y(k)|2[},

no longer important, the BEC represents a superposition of
almost independent plane waves: where (k) is given by Eq. [(10). Note that at large dis-
tances {(k)|z| > 1], Eq. (12) reduces tq|¢x(2)|?) =~

b(z,t) = /\%J(k,t) expl(ikz). (6) (w7/2/64,/27(k;)|z|3/2) exp{—2y(k)|z]}.



Equations [(10) and[(1L2) show that the localization effect 1
is related to the properties of the correlation functiontad t 0.1 F —= numerics
random potential. For the 1D speckle potential the coritat oot f Z’S‘;‘:T{gfjﬁcs A
function C'(k) has a high-momentum cut-dff/ o5, and from £ o001
Egs. [) and[(30) we find 2 leos

™m?Vio, T 1e0s
V(k)="0(k)(1—kow)O(1—kow); Vo(k):TkRgR (13) 1e-06
le-07 ¥

Thus, one has(k) > 0 only for kor < 1 so that there is © 200 —150 —100 —50 0 50 100 150 200
a mobility edge atl /o, in the Born approximation. Strictly 7/

speaking, on the basis of this approach one cannot say that th . . . .
Lyapunov exponent is exactly zero fbr> 1/o.. However, Figure 1: (colgr online) Density profile of the Iocaﬁzed BHiCa
direct numerical calculations of the Lyapunov exponentsho speckle potential @t = 150/w. Shown are the numerical data (black

e : points), the fit of the result from Eqdf] (7)]] (8) ard](12) [redics
that fork > 1/0itis at least two orders of magnitude smaller line], and the fit of the asymptotic formulh [14) [blue dotte].

than ’70(1/03) representing a Characteri_stic valuendk) for  |nset: Time evolution of the rms size of the BEC. The paramseaies
k approaching /ox. Forog 2 1pm, achievable for speckle Vi = 0.1y, &, = 0.01Lt¢, andog = 0.78&n.

potentials [1B] and fok satisfying Eq. [(A1) withk ~ 1/,
the localization length at > 1/0, exceedslOcm which is
much larger than the system size in the studies of quantum Far tails ofng(z) will be always described by the asymp-
gases. Thereforé, = 1/ corresponds to an effective mo- totic relations [¢) o (35), unless = o«. In the special case
bility edge in the present context. We stress thatitgeaeral  of &, = o, or for &, very close tar, and at distances where
feature of optical speckle potentials, owing to the finit-su  ~,(kc)|(1 — £2/02)z| < 1, still assuming thago (kc)|z| > 1
port of the Fourier transform of their correlation function we findng(z) o< |z]73.
We then use Eqs[|(7)[12) anfi}13) for calculating the sjnce the typical momentum of the expanding BEC is
density profile of the localized BEC from Eqf] (8). Since 1/&n, according to Eq.[(31), our approach is valid far <
the high-momentum cut-off of the momentum distribution 1(&in/ow)'/2. For a speckle potential, the typical momen-
D(k) is 1/&in, and for the speckle potential the cut-off of tym of the waves which become localized1ligs, and for
7(k) is 1/0, the upper bound of integration in EQ] (8) is ¢, < o, the restriction is strongel/r < u(&in/or)?. These
ke = min{1/&in, 1/0}. As the density profilews(z) is @ conditions were not fulfilled, neither in the experiments of
sum of functions(|¢k(z)|_2> Which decay e>.(pone.ntially with - Refs. [13.[TR[ 3], nor in the numerics of Refs][[L1], [I9, 20].
a rate2y(k), the long-tail behavior ofi(2) is mainly deter- We now present the results of numerical calculations for
mined by the components with the smalle). These are 6 eypansion of a 1D interacting BEC in a speckle potential,
the components with momenta close to the high-momenturge formed on the basis of EQ] (1). The BEC is initially at
cut-off ke, and integrating in Eq[k8_) we will limit ourselves  gqilibrium in the combined random plus confining harmonic
to leading order terms in Taylor series tk) andvy(k) atk  otential, and the expansion of the BEC is induced by switch-
close toke. _ _ _ ing off abruptly the confining potential at time= 0 as in
For &in > o5, the high-momentum cut-off; in Eq. ®is  Refs. [11.[2k[213[46]. The differences from the model dis-
set by the momentum distributid(k) and is equal td /&in.  ¢yssed above are that the random potential is already presen

In this case all functiong|¢y(2)|?) have a finite Lyapunov ¢4 the intial stationary condensate and that the intévast
exponenty (k) > 7(1/&n), and the whole BEC wave function 516 maintained during the whole expansion. This, however,
is exponentially localizedror the long-tail behavior ofo(2),  §oes not significantly change the physical picture.

from Egs. n7)’ KB) andﬂZ) we obtain: The properties of the initially trapped BEC have been dis-
no(z) o |2| /2 exp{—2v(1/&n)|z|}; &n > 0w (14)  cussed in Ref[[18] for an arbitrary ratip /ox. FOrén < o,

the BEC follows the modulations of the random potential,

while for &, = ox the effect of the random potential can

be significantly smoothed. In both cases, the weak random

potential only slightly modifies the density profilE[lS]. At

the same time, the expansion of the BEC is strongly sup-

do not have a finite lower bound. Then the localization of h - his |
the BEC becomealgebraicand it is onlypartial. The part pressed c_ompared tp the non—dlson_jered case. This is seen
) from the time evolution of the rms size of the BEQ; =

of the BEC wave function, corresponding to the waves with (%) — ()2, in the inset of Fig[]L. At large times, the BEC

momenta in the rangé/o, < k < 1/&n, continues to ex- . - g )
e density reaches an almost stationary profile. The numéyical
— €2 /52
pand. Un_der the_con_d|t|p1yb(_kc)(1 5'“./UR)|Z| > 1 for the obtained density profile in Fig] 1 shows an excellent agree-
asymptotlg density distribution of localized partlcleq,sE@S) ment with a fit ofng (=) from Egs. [V) KB) andKZ[Z) where a
and ) yield: multiplying constant was the only fitting parameter. Notatth
no(z) o |2|72%; &n < O (15)  Eq. () overestimates the density in the center of the Ipedli

Equation [1}) assumes the inequalityl /&n)|z| > 1, or
equivalentlyyg (ke)(1 — or/&n)|z| > 1.

For &, < g, the high-momentum cut-off in EJJ(8) is pro-
vided by the Lyapunov exponents Gt (z)|?) so that they
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Figure 2: (color online) a) Lyapunov exponeyat; in units of 1 /Lte
for the localized BEC in a speckle potential, in the regige > . -
or. The solid line isy(1/&n) from Eq. (1). b) Exponent of the URL: pt t p: // wwv. at onopt i c. fr|
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