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We show that the expansion of an initially confined interagtlD Bose-Einstein condensate can exhibit
Anderson localization in a weak random potential. For sfgepbtentials used in quantum gases, the Fourier
transform of the correlation function has a finite suppor an1D there is a mobility edgkén = 1/0=, where
or Is the correlation length of the disorder. Then, for theiahibealing length of the expanding condensate
&in > or the localization is exponential, and f@f < o it changes to algebraic.

PACS numbers: 03.75.Nt,03.75.Kk,79.60.Ht

Disorder in quantum systems can have dramatic effectgple, atom-atom interactions drive the expansion of the BEC
such as strong Anderson localization of non-interacting pa and determine the long-time momentum distributi@r{k).
ticles in random medie[|[1]. The main paradigm of AndersonAccording to the scaling theoryﬂlZl]D(k:) has a high-
localization (AL) is that the suppression of transportigtim ~ momentum cut-off at /&, where&y, = h/\/4mu andy are
a destructive interference of particles (waves) which iplyit  the initial healing length and chemical potential of the BEC
scatter from the modulations of a random potential. AL isthu andm is the atom mass. As soon as the density is significantly
expected to occur when the interference effects play aaentrdecreased, the long-time expansion is governed by thescatt
role in the multiple scattering proceﬂs [2]. In 3D, thisrieggsi  ing of almost non-interacting particles from the randornepet
the particle wavelength larger than the scattering meam fretial. Each wave with momentumundergoes Anderson local-
path,l, as pointed out by loffe and Reg(ﬂ [3]. One then findsization on a momentum-dependent localization length).

a mobility edgeat momentumk,, = 1/1, below which AL For speckle potentials used in the studies of quantum gases
can appear. In 1D and 2D all single-particle quantum statefLd,[1].[1}[1B] the Fourier transform of the correlationdun
are predicted to be Iocalizeﬂ B& 6], except for certapety tion has a finite support and in 1D there is a mobility edge
of disorder (see below and Re[] [7]). The subtle question isn = 1/0x, whereoy is the correlation length of the disor-
whether and how the interaction between particles can causter (see below). Thus, the density of the localized BEC will
delocalization and transport, and there is a long-standisrg be determined by the superposition of localized waves with
cussion of this issue for the case of electrons in sofids [8].  momentak < min(1/&n,1/0%). Asymptotic behavior of the

Ultracold atomic gases can shed new light on these probdensity profile shows that if the high-momentum cut-off is
lems owing to an unprecedented control of interactionsya pe provided by the momentum distributida(k) (for &in > o),
fect isolation from a thermal bath, and the possibilitieslef ~ the BEC isexponentiallyocalized. Otherwise, if the cut-off is
signing accurately controlled randof [0)] 10] £, [[3, 13] orprovided by the mobility edge (fafi, < o%) the localization
quasi-random[[14] potentials. Of particular interest dre t is algebraic These findings pave the way to observe AL in
studies of localization in Bose gas¢s][{5 16] and the undexperiments similar to those of Refg.][{1] [, 13].
standing of the interplay between interactions and disdrde ~ We consider a 1D Bose gas with repulsive short-range in-
Bose and Fermi gasef [1f] 18]. Localization of expandingeractions, characterized by the 1D coupling consiaand
Bose-Einstein condensates (BEC) in random potentials hasapped in an external harmonic potentigd(z) = mw?z%/2.
been reported in Refs] [1[,]1P,]13]. However, this effect isThe finite size of the sample introduced by the trapping po-
notrelated to AL, but rather to the fragmentation of the coretential provides a low-momentum cut-off for the phase fluc-
of the BEC, and to strong single reflections from large mod-uations, and in the weakly interacting regime>§ mg/h?,
ulations of the random potential in the tails][11]. Numetica wheren is the 1D density), the gas forms a true BEC at suffi-
calculations [IL[ 49 20] confirm this scenario for paramsete ciently low temperatureg [P2].
relevant to the experiments of ReE[ @ 13]. We treat the BEC wave function(z,t) using the mean-

In this Letter, we show that the expansion of a 1D interactfield Gross-Pitaevskii equation (GPE). In the presence of a
ing BEC can exhibit AL in a random potential without large SuP€rimposed homogeneous random potehtia) [P], this
or wide modulations. Here, in contrast to the situation in€quation reads:

Refs. [1].[1k[13], the BEC is not significantly affected by R
a single reflection. For thimeak disorderegime we have 0y = | =——02 + Vio(2) + V(2) + gl|> — p| ¥, (1)
. = . . - 2m
identified the following localization scenario on the basis
numerical calculations and the toy model described below. whereq is normalized by[ dz|¢|> = N, with N being the
At short times, the disorder does not play a significanthumber of atoms. It can be assumed without loss of gener-



ality that the average o¥ (z) over the disorder{V), van-  no longer important, the BEC represents a superposition of
ishes, while the correlation functi@r(z) = (V(2')V(z'+z))  almostindependent plane waves:
can be written ag’(z) = Vgc(z/0w), where the reduced

©dk - .
correlation functionc(u) has unity height and width. So, Y(z,t) = / \/71/)“?%) exp(ikz). (6)
Vr = /(V?) is the standard deviation, afnd is the corre- T
lation length of the disorder. The momentum distributio® (k) follows from Eq. [b). Im-

The properties of the correlation function depend on thePortantly, D(k) is stationary and has a high-momentum cut-
model of disorder and are central features for AL. Although©ff at the inverse healing length &in:
most of the discussion below is general, we mainly refer to a 3N&n 5.0
1D speckle random potential [24] similar to the ones used in 4 (1 = k)01 — k&in),  (7)
experiments with cold atomg|[§,]1p,] 1] {2] 13]. Itis a ran-

dom potential with a truncated negative exponential s'mgIeWIth the n_ormallzatlon conditiofi ° dkD(k) = N. .
point distribution ]. According to the Anderson theorﬂ [1k-waves will ex-

ponentially localize as a result of multiple scatteringnfiro
expl—(V(2) - V) / Vi Viz the modulations of the random potential. Thus, components
P (V): RIVRL g ( ‘ER) + 1) » (@) exp(ikz) in Eq. (§) will become localized functiong; ().

At large distances the functiof), (z) decays exponentially, so
where® is the Heaviside step function, and with a correlationthatln [¢x (2)| ~ —v(k)|z|, with v(k) = 1/L(k) being the
function which can be controlled almost at wifl ]13]. For a Lyapunov exponent, andi(k), the localization length. The
speckle potential produced by diffraction through a 1D squa AL of the BEC occurs when the independéntvaves have

D(k) = [k, 1) =

PIV(2) =

aperture [13] 4], we have localized. Assuming that the phases of the functiop&:),
which are determined by the local properties of the random
C(z) = VRQC(z/aR); c(u) = sinu/u. (3) potential and by the timé,, are random uncorrelated func-

tions for different momenta, the BEC density is given by
The key point is that the Fourier transform@tz) has a finite

support no(2) = ()2 = 2 / T wDE D). ©

@(k):VFggRg(k;gR); 5(,€):\/W_/2(1_,€/2)@(1_,€/2)7 (4) where we have taken into account tiiatk) = D(—k) and
(I6x(2)[?) = (P (2)?)-
so thatC(k) = 0 for k > 2/, This is a general property of ~ We now briefly outline the properties of the functiohgz)
speckle potentials, related to the way they are producedusi following from the theory of localization of single partd.
finite-size diffusive plated[24]. For a weak random pqtential, using _the phaS(_e formalism ap-
We now consider the expansion of the BEC, using the folProach [2B] the state with momentuis written in the form:
lowing toy model. Initially, the BEC is assumed to be at

equilibrium in the trapping potentidii(z) and in the ab- ou(2) = r(2)sin[0(2)]; 0.0r = kr(z)cos[0(2)], (9)
sence of disorder. In the Thomas-Fermi regime (TF) where . . .
4 > hw, the initial BEC density is an inverted parabola, and the Lyapunov exponent is obtained from the relation

n(z) = (u/g)(1 — 22/L20)0(1 — |2|/Lte), with Le = 7_(1;) = —lim);|_(log [r(z)]/|z|>. If th_e disorder is Sl_Jffi-
v/2u/mw? being the TF half-length. The expansion is in- ciently Wf.‘a_k, then the phase is a_pprommaﬂe&yand solving
duced by abruptly switching off the confining trap at time € Schrodinger equation up to first orderdné(z)/k — 1,
t = 0, still in the absence of disorder. Assuming that theONe fmds],

condition of weak interactions is preserved during the expa v(k) ~ (V27 /80:)(Vr/ E)*(kow)*¢(2kos),  (10)
sion, we work within the framework of the GPE (). Repulsive
atom-atom interactions drive the short-timeJ 1/w) expan-
sion, while at longer timeg (> 1/w) the interactions are not
important and the expansion becomes free. According to the Vieor < (th/m)(k:aR)l/Q, (12)

scaling approacl'ml], the expanding BEC acquires a dynamWhich is equivalent to/(k) < k. Typically, Eq. ) means

ical phase and the density profile is rescaled, remaining ag . o - 4om potential does not comprise large or wide
inverted parabola: peaks

L Deviations from a pure exponential decay &f are ob-
P(z,t) = (1/1[2/’?@), 0]/ v b(t)) exp {imz"b(t)/2hb(1)}, tained using diagrammatic methofs|[25], and one has
(5) 2 o0
where the scaling parametigt) = 1 for ¢t = 0, andb(t) ~ (|r(2)]?) = L(k)/ du u sinh(7u) x (12)
V2wt for t > 1/w [L]. 2 Jo
We assume that the random potential is abruptly switched 1+ u? 2 —2(14u2)y (k)2
on at a timefy > 1/w. Since the atom-atom interactions are (1 + cosk(ﬂu)> © ’

whereE = h?k?/2m. Such a perturbative approach assumes
the inequality



where (k) is given by Eq. [(10). Note that at large dis- 1
tances {(k)|z| > 1), Eq. (12) reduces tQ|¢k(Z)|2> = 0.1 F == numerics
(77/2/64/29(R) 22 ) exp{-27(k)]21}. oo | T anavics
Equations[(110) and ([L2) show that the localization effectis ~_  0.001 asymproties
closely related to the properties of the correlation funttf % 1e-04
the random potential. In particular, if the Fourier tramefmf - Le-05
the correlation functiorC'(k) has a high-momentum cut-off
kmax, @ mobility edge appears &t = kmax/2. This means 1e-06
that only particles with momenta < &, become localized. le-07 R R
For the 1D speckle potential, from Eqf. (4) ahd (10) we find 200 -150 100 -50 0 50 100 150 200

z/ Ly

2
o, 1
0 =R 1-ko)01 o) (k) = 57 (12). (@)
§in \41 Figure 1: (color online) Density profile of the localized BECa

. speckle potential. Shown are the numerical data (blackigpithe
According to Eq.), one hag(k) > 0 only for ko < 1 fit of the result from Eqs.ﬂ?) 8) an:ﬂlZ) [red solid linehdathe

so that the mobility edge ibm = 1/0s. We stress that the it of the asymptotic formula|(}4) [blue dotted line]. Inséfime
existence of a mobility edge is generalfeature of optical evolution of the rms size of the BEC. The parametersare- 0.1,
speckle potentials, owing to the finite support of the Faurie &in = 0.01 L, andor = 0.78&n.
transform of their correlation function.
We then use Eqsf](7)_{12) arfd}(13) for calculating the den-
sity profile of the localized BEC from Eq[](8). Since the 0f &in = 0w, or for &y very close tor, and at distances where
high-momentum cut-off of the momentum distributiovik)  7o(ke)|(1 — &3 /07)z| < 1, still assuming thato (ke)|2| > 1
is 1/&n [see Eq. [[7)], and for the speckle potential the mo-we findng(z) oc [z[~2.
bility edge is1/o, the upper bound of integration in E{] (8) ~ Since the typical momentum of the expanding BEC is
is ke = min{1/&n, 1/0x}. As the density profiley(z) isa  1/&n, according to Eq.[(31), our approach is valid Gy <
sum of functions/|¢x (z)|2) which decay exponentially with  1(éin/0x)'/. For a speckle potential, the typical momen-
a rate2v(k), the long-tail behavior ofiy(z) is mainly deter-  tum of the waves which become localizedligo, and for
mined by the components with the smallegk). These are &n < 0w the restriction is strongel’z < 1u(&in/0%)*. These
the components with momenta close to the high-momenturaonditions were not fulfilled, neither in the experiments of
cut-off k.. Therefore, when calculating the integral in E§;. (8), Refs. [L1.[1R[ 13], nor in the numerics of Refs] (L1, L9, 20].
one may use Taylor series foX(k) and~y(k) atk close tokc. We now present the results of numerical calculations for
In the following, we limit ourselves to the leading ordemtes. ~ the expansion of a 1D interacting BEC in a speckle poten-
For &n > o, the high-momentum cut-off; in Eq. (§) is  tial, performed on the basis of Eq] (1). The BEC is initially
set by the momentum distributidn(k) and is equal td /&pn. at equilibrium in the combined random plus confining har-
In this case all functiong|¢(z)|?) have a finite Lyapunov monic potential, and the expansion of the BEC is induced by
exponentyy(k) > ~(1/&n) > 0, and the whole BEC wave switching off abruptly the confining potential at tinle= 0
function isexponentially localizedFor the long-tail behavior as in Refs.[[41[ 34 }6]. The differences from the model dis-
of no(2), from Egs. [I?), K|8) andﬂZ) we obtain: cussed above are that the random potential is already presen
for the initial stationary condensate and that the intéoast
no(2) o< |22 exp{=27(1/&n)|2[}; &n>o0r  (14)  are maintained during the whole expansion. This, however,
. , . . _ : does not significantly change the physical picture.
Eg:ztelogltLﬁjg:;%ig}e%e(zgﬁqﬁy 5':/) éi|)|>z>| ;VXhICh The properties of the initially trapped BEC have been dis-
: cussed in Ref.|ﬂ8] for an arbitrary ratip /ox. Foréin < o,

For&n < og, the momentum cut-off is provided by the mo- . .
. o the BEC follows the modulations of the random potential,
bility edge, so that the Lyapunov exponents{ffy.(z)|") in while for &, 2 o the effect of the random potential can

Eq. @) do not have a finite lower bound. Then the localizatio L ~
of the BEC becomeslgebraicand it is onlypartial. The part be significantly smoothed. In both cases, the weak random

of the BEC wave function, corresponding to the waves withpOIentiaI or_1|y slightly modifigs the density profilE[lS]. At

momenta in the range/o. < k < 1/¢n, CONtINUES t0 ex- the same time, the expansion qf the BEC is strongly sup-

pand. Under the conditiof (ko) (1 — €2 /02)|z| > 1 for the pressed compared to the non-disordered case. This is seen
" n R

. R . . from the time evolution of the rms size of the BEG; =
asymptotic density distribution of localized partlcles,sE@%) 5 5 . . :
and [1P) yield: (22) — (2)2, in the inset of Fig[]1. At large times, the BEC

density reaches an almost stationary profile. The numéyical
no(z) o 2|72 &n < ow. (15)  obtained density profile in Fid] 1 shows an excellent agree-
ment with a fit ofn(z) from Egs. [J), [B) and[(}2), where a
Far tails ofng(z) will be always described by the asymp- multiplying constant was the only fitting parameter. Notatth
totic relations @4) 0@5), unless = ox. Inthe special case Eq. @) overestimates the density in the center of the Ipedli
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