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This paper shows how the steady-state availability and failure frequency can be calculated in a single pass for very large systems, when the availability is expressed as a product of matrices.

We apply the general procedure to k-out-of-n:G and linear consecutive k-out-of-n:F systems, and to a simple ladder network in which each edge and node may fail. We also give the associated generating functions when the components have identical availabilities and failure rates. For large systems, the failure rate of the whole system is asymptotically proportional to its size. This paves the way to ready-to-use formulae for various architectures, as well as proof that the differential operator approach to failure frequency calculations is very useful and straightforward.

NOTATION

p i , q i [success, failure] probability of component i (q i = 1 -p i ) p, q implies p i = p, q i = q (for edges).

ρ identical availability of nodes (when ρ = p). Steady-state system availability and failure frequency are important performance indices of a repairable system [START_REF] Shooman | Probabilistic reliability: an engineering approach[END_REF], [START_REF] Singh | System reliability modelling and evaluation[END_REF], [START_REF] Colbourn | The Combinatorics of Network Reliability[END_REF], [START_REF] Kuo | Optimal Reliability Modeling: Principles and Applications[END_REF], from which other key parameters such as the mean time between failures, average failure rate, Birnbaum importance, etc. may be deduced. In the steady-state regime, the frequency of system failure was first calculated by a cut-set [START_REF] Singh | A new method to determine the failure frequency of a complex system[END_REF] or a tie-set approach [START_REF] Singh | Tie set approach to determine the frequency of system failure[END_REF] in the case of statistically independent failures, which will also be considered here. These approaches are based on the inclusion-exclusion (IE) principle, where the failure or repair rates (more generally, the inverses of the mean down or up times), are adequately given for each term of the relevant expansion.

When all the terms of its IE expansion are kept, the exact availability is obtained as a function of each component availability. Several papers have provided a few simple recipes, describing how the system failure frequency and the failure rate can then be derived [START_REF] Schneeweiss | Computing failure frequency, MTBF & MTTR via mixed products of availabilities and unavailabilities[END_REF], [START_REF] Shi | General formulas for calculating the steady-state frequency of system failure[END_REF], [START_REF] Yuan | Boolean algebra method to calculate network system reliability indices in terms of a proposed FMEA[END_REF]. Recent refinements have been proposed when availability expressions are obtained from various instances (SVI, GVI) of sum-of-disjoint-products algorithms [START_REF] Amari | Generic rules to evaluate system-failure frequency[END_REF]. All these formal calculations boil down to a simple fact: the failure frequency may be derived from the availability through the application of a linear differential operator [START_REF] Schneeweiss | Addendum to: Computing failure frequency via mixed products of availabilities and unavailabilities[END_REF], [START_REF] Hayashi | System failure-frequency analysis using a differential operator[END_REF]. This requires knowledge of the exact availability, which is hard to come by except for trivially small networks, and may have hindered the use of this method.

Unsurprisingly, several algorithms have been put forward, in which availability and failure frequency are computed side by side in a common procedure: triangle-star transformation [START_REF] Gadani | System effectiveness evaluation using star and delta transformations[END_REF], OBDD calculations [START_REF] Chang | Computing System Failure Frequencies and Reliability Importance Measures Using OBDD[END_REF], and another instance of differential operator calculations [START_REF] Hayashi | Transformation from availability expression to failure frequency expression[END_REF].

In this paper, we want to promote the differential operator method for the calculation of the failure frequency by showing it gives the exact result for numerous, widely used configurations, with an arbitrary large number of components. We take advantage of recent results establishing that the availability of recursive networks may be expressed as a product of transfer matrices that take each edge and node availabilities exactly into account [START_REF] Tanguy | Exact solutions for the two-and all-terminal reliabilities of a simple ladder network[END_REF], [START_REF] Tanguy | Exact solutions for the two-and all-terminal reliabilities of the Brecht-Colbourn ladder and the generalized fan[END_REF], [START_REF] Tanguy | What is the probability of connecting two points ?[END_REF].

Our paper is organized as follows. In Section II, we show how the failure frequency of a system may generally be deduced from the steady-state availability when the latter is expressed by a product of transfer matrices. We first apply this method in Section III, which is devoted to k-out-of-n systems (either k-out-of-n:G or linear consecutive k-out-of-n:F ones) with distinct components. Section IV provides a generic example for the two-terminal failure frequency of a simple ladder network, which has been solved recently for arbitrary edge and node availabilities [START_REF] Tanguy | Exact solutions for the two-and all-terminal reliabilities of a simple ladder network[END_REF]; the same procedure could easily be used for more complex networks and their all-terminal reliability too [START_REF] Tanguy | Exact solutions for the two-and all-terminal reliabilities of the Brecht-Colbourn ladder and the generalized fan[END_REF], [START_REF] Tanguy | What is the probability of connecting two points ?[END_REF]. In each configuration, we pay attention to the case of identical components, for which the common availability is p (for edges) and ρ (for nodes). For large systems, we show that the asymptotic failure rate has a linear dependence with size, and is given by derivatives of the largest eigenvalue of the unique transfer matrix with respect to p and ρ. We conclude by a brief outlook.

II. GENERAL PROCEDURE

In many systems, as will be explicitly shown in the following sections, the availability A (or the unavailability U) is given by an expression of the form

A = v L M n • • • M 1 v R , (1) 
where M k (1 ≤ k ≤ n) is a transfer matrix, the elements of which are multilinear polynomials of individual component availabilities, and where v L and v R are two vectors in which these availabilities do not appear. The mean failure frequency ν is obtained from [START_REF] Schneeweiss | Addendum to: Computing failure frequency via mixed products of availabilities and unavailabilities[END_REF], [START_REF] Hayashi | System failure-frequency analysis using a differential operator[END_REF] 

ν = i λ i p i ∂A ∂p i = i µ i q i ∂U ∂q i . (2) 
In order to avoid unnecessarily heavy notation, we call M ′ k the matrix obtained by applying the linear differential operator

i λ i p i ∂ ∂p i to M k . Therefore, ν = v L M ′ n M n-1 • • • M 1 v R +v L M n M ′ n-1 • • • M 1 v R + • • • +v L M n M n-1 • • • M ′ 1 v R . (3) 
Since M k 's elements are at most linear functions of each p i , the derivation of M ′ k is straightforward. For instance, a matrix element p 1 + p 2 p 3 -p 1 p 2 p 3 in M k would give rise to

λ 1 p 1 + (λ 2 + λ 3 ) p 2 p 3 -(λ 1 + λ 2 + λ 3 ) p 1 p 2 p 3
; the recipes given in [START_REF] Schneeweiss | Computing failure frequency, MTBF & MTTR via mixed products of availabilities and unavailabilities[END_REF], [START_REF] Shi | General formulas for calculating the steady-state frequency of system failure[END_REF], [START_REF] Schneeweiss | Addendum to: Computing failure frequency via mixed products of availabilities and unavailabilities[END_REF] fully apply.

Both availability and failure frequency may be obtained in a single pass in the following way. Let us initialize the procedure by setting

A 1 = M 1 v R , (4) 
V 1 = M ′ 1 v R . (5) 
The recursion equations are

A k = M k A k-1 , (6) 
V k = M k V k-1 + M ′ k A k-1 , (7) 
from which we deduce the final results

A = v L A n , (8) 
ν = v L V n . (9) 
We can now turn to a few 'real-life' applications.

III. k-OUT-OF-n SYSTEMS

k-out-of-n systems are widely used, in various configurations; they have therefore contributed to a huge body of literature (see [START_REF] Kuo | Optimal Reliability Modeling: Principles and Applications[END_REF], [START_REF] Chao | Survey of reliability studies of consecutive-k-out-of-n:F & related systems[END_REF], [START_REF] Kuo | Opinions on consecutive-k-out-of-n:F systems[END_REF] and references therein). We start our discussion with these systems because each transfer matrix actually refers to a single equipment only.

A. k-out-of-n:G systems

We first consider the simple k-out-of-n:G system, where each component has an availability

p i (1 ≤ i ≤ n).
To operate as a whole, the system needs at least k elements to function. Its availability A k,n may be written as (see [START_REF] Kuo | Optimal Reliability Modeling: Principles and Applications[END_REF], p. 244)

A k,n = 1 -(1, 0, • • • , 0) k Λ n Λ n-1 Λ 1        1 1 . . . 1        k , (10) 
with

Λ i =           q i p i 0 • • • 0 0 q i p i 0 0 0 0 . . . . . . 0 . . . . . . 0 q i p i 0 0 • • • 0 q i           k×k . ( 11 
)
We have reduced the size of the matrix to a k ×k one, instead of the original

(k +1)×(k +1),
because of the nature of v L = (1, 0, . . . , 0) k and v R in eq. ( 10).

The 'derivative' of Λ i is

Λ ′ i =           -λ i p i λ i p i 0 • • • 0 0 -λ i p i λ i p i 0 0 0 0 . . . . . . 0 . . . . . . 0 -λ i p i λ i p i 0 0 • • • 0 -λ i p i           k×k , (12) 
so that the computation of the failure frequency following the method given in section II is straightforward (care should of course be taken of the minus sign in eq. ( 10)).

Let us revisit Example 7.2 of [START_REF] Kuo | Optimal Reliability Modeling: Principles and Applications[END_REF] (see p. 245) for the 5-out-of-8:G system with p i = 0.90, 0.89, ..., 0.83. Assuming a unique repair rate for all components, namely µ, the failure rates

λ i are such that λ i p i = µ (1 -p i ).
From the procedure detailed in Section II, we deduce When all components are identical (p i ≡ p and λ i ≡ λ), only one transfer matrix appears.

Admittedly, A k,n is so simple that a matrix formulation is hardly necessary. Nonetheless, we can give a compact expression for the generating function

G k (z) = ∞ n=0 A k,n z n (the derivation is given in the appendix): G k (k-out-of-n:G; z) = p k z k (1 -z) (1 -(1 -p) z) k . ( 13 
)
Since the generating function is a formal power-series expansion, we can apply the linear differential operator λ p ∂ ∂p to eq. ( 13) so that

G k (z) = ∞ n=0 ν k,n z n is easily found to be G(k-out-of-n:G; z) = λ k p k z k (1 -(1 -p) z) k+1 , (14) 
which is another formulation of the well-known result

ν k,n = λ k   n l   p k (1-p) n-k (eq. (7.10)
of [START_REF] Kuo | Optimal Reliability Modeling: Principles and Applications[END_REF], p. 234).

B. Linear consecutive k-out-of-n:F systems

These systems have been studied in many papers [START_REF] Chao | Survey of reliability studies of consecutive-k-out-of-n:F & related systems[END_REF], [START_REF] Kuo | Opinions on consecutive-k-out-of-n:F systems[END_REF] and a recent textbook [START_REF] Kuo | Optimal Reliability Modeling: Principles and Applications[END_REF]. The reliability A k,n -the probability of operation of a system of n components, which fails if at least k consecutive elements fail -of such a system is given by (see also eq. ( 9.48) of [START_REF] Kuo | Optimal Reliability Modeling: Principles and Applications[END_REF], p. 344)

A k,n = (1, 0, . . . , 0) k Λ n Λ n-1 Λ 1        1 1 . . . 1        k , (15) 
with

Λ i =           p i q i 0 • • • 0 p i 0 q i 0 . . . . . . . . . 0 . . . 0 p i 0 • • • 0 q i p i 0 0 • • • 0           k×k . (16) 
Here again, we have reduced the size of the matrix and the vectors with respect to their original formulation. Consequently,

Λ ′ i =           λ i p i -λ i p i 0 • • • 0 λ i p i 0 -λ i p i 0 . . . . . . . . . 0 . . . 0 
λ i p i 0 • • • 0 -λ i p i λ i p i 0 0 • • • 0           k×k , (17) 
leading once again to a straightforward calculation of the failure frequency.

A numerical application may be found in the Lin/Con/4/11:F model, as in Example 9.6 of [START_REF] Kuo | Optimal Reliability Modeling: Principles and Applications[END_REF], where the p i 's range from 0.7 to 0.9 by steps of 0.02. Assuming again that the repair rate for each equipment is µ, we get A 4,11 = 30105385968617 30517578125000 ≈ 0.98649329 and a failure frequency ν 4,11 = 155495836041 30517578125000 µ ≈ 0.050953 µ. The corresponding failure rate is then equal to 0.0516505 µ.

For the sake of completeness, we give the generating function for identical components is (see eq. (2.2) of [START_REF] Canfield | Asymptotic reliability of consecutive k-out-of-n systems[END_REF], [START_REF]z)) a partial fraction decomposition of eq[END_REF])

G k (Lin/Con/k/n:F; z) = 1 -(1 -p) k z k 1 -z + p (1 -p) k z k+1 . (18) 
Use of eq. ( 18) to obtain the failure frequency generating function is straightforward, and will not be repeated here.

IV. SIMPLE LADDER

We consider in this section the two-terminal availability of a simple ladder network, displayed in Fig. 1, where successive nodes are labelled S i or T j , and where the larger black dots mark the source s and terminal t. This network is a simplified description of a standard architecture for long-hail communication networks: it consists in primary and backup paths, plus additional connections between transit nodes enabling the so-called "local protection" policy by bypassing faulty intermediate nodes or edges. Such an architecture of "absolutely reliable nodes and unreliable edges," with up to 25 edges, was chosen as Example 5 in [START_REF] Heidtmann | Smaller sums of disjoint products by subproduct inversion[END_REF] for a comparison of different "sum of disjoint products" minimizing algorithms, or by Rauzy [START_REF] Rauzy | A new methodology to handle Boolean models with loops[END_REF] as well as Kuo and collaborators in OBDD test calculations [START_REF] Kuo | Determining terminal pair reliability based on edge expansion diagrams using OBDD[END_REF], [START_REF] Yeh | OBDD-based evaluation of k-terminal network reliability[END_REF], [START_REF] Fu-Min | Analyzing network reliability with imperfect nodes using OBDD[END_REF].

We showed [START_REF] Tanguy | Exact solutions for the two-and all-terminal reliabilities of a simple ladder network[END_REF] that the two-terminal availability has a beautiful algebraic structure [START_REF] Shier | Network Reliability and Algebraic Structures[END_REF],

since its exact expression is given by a product of 3 × 3 transfer matrices (see eqs. (ai, bi, ci) and (Si, Ti).

(resp. T n ), we find that [START_REF] Tanguy | Exact solutions for the two-and all-terminal reliabilities of a simple ladder network[END_REF], [START_REF] Tanguy | What is the probability of connecting two points ?[END_REF] 

R Sn = (1 0 0) M n • • • M 0      1 0 0      , (19) 
R Tn = (0 1 0) M n • • • M 0      1 0 0      . (20) 
The transfer matrix M n is given by

M n =      a n S n b n c n S n T n a n b n c n S n T n a n b n S n T n c n T n a n b n c n S n T n -a n b n S n T n -b n c n S n T n a n (1 -2 b n ) c n S n T n      . (21) 
For n = 0, we must set a 0 = 1, and may choose c 0 = 0 because it does not change the final result. It is worth noting that all five availabilities of the n th "cell" or building block of the network appear in a single transfer matrix M n , which is not sparse, contrary to the matrices of Section III.

Equations [START_REF] Chao | Survey of reliability studies of consecutive-k-out-of-n:F & related systems[END_REF][START_REF] Kuo | Opinions on consecutive-k-out-of-n:F systems[END_REF][START_REF] Canfield | Asymptotic reliability of consecutive k-out-of-n systems[END_REF] apply to the most general ladder in terms of individual availabilities. If an edge or a node is missing, its reliability p i should be set to zero, and its failure rate may be considered arbitrary, because it will not alter the final result. Similarly, if a given edge or node is perfect, its reliability should be equal to one; its failure rate λ i should then, of course, be set to zero.

The associated matrix M ′ n is

M ′ n =      m ′ 11 m ′ 12 m ′ 13 m ′ 21 m ′ 22 m ′ 23 m ′ 31 m ′ 32 m ′ 33      , (22) 
with

m ′ 11 = (λ an + λ Sn ) a n S n , m ′ 12 = (λ bn + λ cn + λ Sn + λ Tn ) b n c n S n T n , m ′ 13 = (λ an + λ bn + λ cn + λ Sn + λ Tn ) a n b n c n S n T n , m ′ 21 = (λ an + λ bn + λ Sn + λ Tn ) a n b n S n T n , m ′ 22 = (λ cn + λ Tn ) c n T n , m ′ 23 = m ′ 13 , m ′ 31 = -m ′ 21 , m ′ 32 = -m ′ 12 , m ′ 33 = (λ an + λ cn + λ Sn + λ Tn ) a n c n S n T n -2 m ′ 13 .
When a i = b i = c i ≡ p and S i = T i ≡ ρ the three eigenvalues ζ 0 and ζ ± of the transfer matrix are [START_REF] Tanguy | Exact solutions for the two-and all-terminal reliabilities of a simple ladder network[END_REF] 

ζ 0 = p ρ (1 -p ρ), (23) 
ζ ± = p ρ 2 1 + 2 p (1 -p) ρ ± √ B , (24) 
with B = 1 + 4 p 2 ρ -8 p 3 ρ 2 + 4 p 4 ρ 2 . The two-terminal availabilities are [START_REF] Tanguy | Exact solutions for the two-and all-terminal reliabilities of a simple ladder network[END_REF] 

R Tn (p, ρ) = 1 2 p -ζ n+1 0 + p ρ (1 + p ρ) ζ n+1 + -ζ n+1 - ζ + -ζ - -(1 -2 p + p ρ) p 3 ρ 3 ζ n + -ζ n - ζ + -ζ - , (25) 
R Sn (p, ρ) = 1 2 p +ζ n+1 0 + p ρ (1 + p ρ) ζ n+1 + -ζ n+1 - ζ + -ζ - -(1 -2 p + p ρ) p 3 ρ 3 ζ n + -ζ n - ζ + -ζ - . (26) 
These expressions are identical except for the ± sign in front of the ζ n+1 0 term. Assuming that the common link failure rate is λ while that for the nodes is ξ, the failure frequency for the S 0 → T n connection is

ν = λ p ∂R Tn (p, ρ) ∂p + ξ ρ ∂R Tn (p, ρ) ∂ρ ; (27) 
a similar expression applies to R Sn (p, ρ). When n is large, both availabilities are actually of the form α + ζ n + , because the modulus of ζ + is larger than that of the remaining eigenvalues for 0 ≤ p ≤ 1 [START_REF] Tanguy | Exact solutions for the two-and all-terminal reliabilities of a simple ladder network[END_REF]. When nodes are perfect, we have therefore in this limit

ν ≈ λ p ∂α + ∂p ζ n + + n α + ∂ζ + ∂p ζ n-1 + , (28) 
so that the failure rate is

λ ≈ λ ∂ ln α + ∂ ln p + n ∂ ln ζ + ∂ ln p , (29) 
with

∂ ln ζ + ∂ ln p = -1 + 4 p -6 p 2 + 4 p 3 + (3 -4 p) 1 + 4 p 2 (1 -p) 2 2 (1 -p) 1 + 4 p 2 (1 -p) 2 , (30) 
∂ ln α + ∂ ln p = 4 -5 p + 8 p 2 -20 p 3 + 16 p 4 -4 p 5 -(4 -7 p + 4 p 2 -2 p 3 ) 1 + 4 p 2 (1 -p) 2 2 (1 -p) [1 + 4 p 2 (1 -p) 2 ] . (31) 
The variations with p of ∂ ln ζ + /∂ ln p and ∂ ln α + /∂ ln p are displayed in Figs. 2 and3.

Since |ζ + | < 1 for p < 1, the contribution of ∂ ln α + /∂ ln p will prevail, and λ will have a linear dependence with n in the large network limit (this is a general property when the eigenvalue of highest modulus is different from unity). For very reliable components, eqs. (29-31) simplify. It is easy to show by a series expansion in the link unavailability q that the global failure rate is given (to first order) by λ → (2 n + 4) λ q; this result could also have been obtained by visual inspection and enumeration of the minimal cuts. 31)). The maximum, reached for p ≈ 0.709902, is about 0.458825.

V. CONCLUSION AND OUTLOOK

We have shown that the linear differential method for computing the failure frequency is a very simple and useful one for k-out-of-n systems as well as the two-terminal availability for recursive networks (this should hold for the all-terminal availability, too [START_REF] Tanguy | What is the probability of connecting two points ?[END_REF]). Its application is not limited to the case of extremely reliable components. Even though we restricted our discussion to expressions dealing with availabilities, a similar treatment could be performed for expressions where unavailabilities are the input data (see eq. ( 2)). For more complex networks, the size of the transfer matrix increases (for instance, it is a 13 × 13 one for the 'street 3 × n' of [START_REF] Yeh | OBDD-based evaluation of k-terminal network reliability[END_REF]) but the calculations remain straightforward. Finally, the expressions given for steady-state availabilities can also be used for time-dependent systems provided that failures and reparations are still statistically independent events, because the expressions are formally identical (the availabilities of components must be replaced by the reliabilities).

APPENDIX I PROOF OF EQ. (13)

A k,n is given by 

so that

G k (z) = p z 1 -(1 -p) z G k-1 (z) = p z 1 -(1 -p) z k G 0 (z) . ( 36 
)
Since A 0,n = 1, ∀n, G 0 (z) = 1/(1 -z); eq. ( 13) follows.

  λ i , µ i [failure, repair] rate of component i λ, µ common [failure, repair] rate of components A steady-state availability of the system U steady-state unavailability of the system ν mean failure frequency of the system λ mean failure rate of the system (ν = A λ) M ′ i λ i p i ∂ ∂p i M G(z) generating function for the availability G(z) generating function for the failure frequency A k,n availability of a k-out-of-n:G system I. INTRODUCTION

A 5 , 8

 58 = 615925280183 625000000000 ≈ 0.98548045 and a failure frequency ν 5,8 = 8012914359 156250000000 µ ≈ 0.051283 µ. The failure rate λ 5,8 = ν 5,8 /A 5,8 is then equal to 0.0520382 µ.
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 1 Fig. 1. Different source-terminal connections for a simple ladder. Edges and nodes are indexed by their availabilities:

Fig. 2 .

 2 Fig. 2. Variation of ∂ ln ζ+/∂ ln p with p for a simple ladder with perfect nodes (eq. (30)). The maximum, reached for p ≈ 0.251641, is about 1.13827.

Fig. 3 .

 3 Fig.3. Variation of ∂ ln α+/∂ ln p with p for a simple ladder with perfect nodes (eq. (31)). The maximum, reached for

A k,n z n implies 1 z

 1 n+1 = (1 -p) A k,n + p A k-1,n . (34) Setting G k (z) = ∞ n=0 G k (z) = (1 -p) G k (z) + p G k-1 (z) .
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